首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytochrome P450 monooxygenases are a major metabolic mechanism responsible for pyrethroid resistance in Helicoverpa armigera (Hübner) from Asia. Cytochrome P450-mediated O-demethylation activity toward p-nitroanisole (PNOD) of individual fourth instars was determined in five strains of H. armigera by using a microplate reader. The four resistant strains of YS, HD, YGF, and YG59 had 6-, 71-, 2540-, and 11,800-fold resistance, respectively, to fenvalerate in comparison with the susceptible BK77 strain. Their mean PNOD activity was 4-, 10-, 24-, and 60-fold, respectively, compared with the BK77 strain. A strong positive correlation (correlation coefficient r = 0.98) between PNOD activity and fenvalerate resistance was found. Of 48 larvae from each strain, only 4% larvae of the susceptible BK77 strain had detectable PNOD activity, whereas 25, 33, 79, and 96% of larvae from the resistant strains YS, HD, YGF, and YG59 exhibited PNOD activity, respectively. There was a clear discrimination of patterns of PNOD frequency distribution between H. armigera strains and their magnitudes of fenvalerate resistance. The PNOD activity can be used as a biochemical marker for monooxygenase-mediated pyrethroid resistance in field populations of H. armigera.  相似文献   

2.
CYP9A17v2组成型过量表达参与棉铃虫对拟除虫菊酯的抗性   总被引:1,自引:0,他引:1  
微粒体细胞色素P450氧化酶介导的解毒代谢增强是棉铃虫Helicoverpa armigera对拟除虫菊酯类杀虫剂产生抗性的主要原因。作者前期的研究表明, CYP9A12CYP9A14组成型过量表达与棉铃虫YGF品系对拟除虫菊酯的高水平抗性相关, CYP9A12CYP9A14的功能表达研究结果为其参与对拟除虫菊酯抗性提供了直接证据。本研究通过对棉铃虫CYP9A17v2的克隆、mRNA表达水平和功能表达的研究, 以期明确该基因是否参与棉铃虫对拟除虫菊酯的抗性。结果表明: CYP9A17v2CYP9A12的氨基酸序列具有很高的相似性(94%)。与棉铃虫对照品系(YG)相比, CYP9A17v2在YGF抗性品系末龄幼虫脂肪体中具有10.9倍的组成型过量表达, 而在中肠中未发现过量表达。用酿酒酵母Saccharomyces cerevisiae异源表达的CYP9A17v2能够代谢多种拟除虫菊酯(顺式氰戊菊酯、溴氰菊酯和氟氯氰菊酯)。据此认为CYP9A17v2组成型过量表达参与了棉铃虫对拟除虫菊酯的抗性。至此, CYP9A亚家族中已有3个P450基因(CYP9A12, CYP9A14 CYP9A17v2)被证实参与了棉铃虫对拟除虫菊酯的氧化解毒代谢。  相似文献   

3.
Five contemporary strains of the bollworm Helicoverpa armigera Hübner from China, Pakistan and India, all with high resistance to pyrethroids, were compared with a standard susceptible strain that originated from the Cote D'Ivoire in the 1970s ('SCD'). Two of the Chinese strains ('YGF' and 'YGFP') were derived by laboratory selection from a third, field collected strain ('YG'). The strain 'YG' exhibited 7-, 14- and 21-fold resistance to fenvalerate, cypermethrin and deltamethrin, respectively. After selection with fenvalerate for 14 generations ('YGF'), this increased to 1690-, 540- and 73-fold. Selection with a mixture of fenvalerate and piperonyl butoxide (PBO) for 14 generations ('YGFP') resulted in resistance ratios of 2510, 2920 and 286. The synergistic ratios to fenvalerate that resulted from pre-treatment of PBO were 5-, 462- and 12-fold in YG, YGF and YGFP strains, respectively. Resistance ratios for a Pakistani strain (PAK) were 2320-, 4100- and 223-fold to fenvalerate, cypermethrin and deltamethrin, respectively. The synergistic ratio of PBO to these pyrethroids was 450-, 950- and 11-fold. The strong synergism of pyrethroids by PBO implied that an oxidative metabolism could be involved in pyrethroid resistance in these resistant strains. The activities of cytochrome P450 monooxygenases from midguts of final instar larvae to p-nitroanisole (PNOD), ethoxycoumarin (ECOD), methoxyresorufin (MROD) significantly increased in all the resistant strains when compared with the susceptible strain. This further implies that cytochrome P450 monooxygenases are involved in pyrethroid resistance in Asian H. armigera. Comparative in vitro studies of the metabolism of 14C-deltamethrin by midgut microsomes of the resistant PAK and susceptible SCD strains showed that the resistant strain had a much greater capacity than the susceptible strain for the metabolic degradation of deltamethrin. This enhanced metabolic degradation occurred in the presence of NADPH which suggested an oxidative detoxification. In the resistant strains, minor increases in glutathione S-transferase activity (to the substrates CDNB and DCNB), and esterase activity (to the substrate alpha-naphthyl acetate) further suggested that, of the putative metabolic mechanisms, oxidases are the most important. This study provides the first evidence that cytochrome P450 monooxygenases are a major metabolic mechanism responsible for pyrethroid resistance in H. armigera from Asia.  相似文献   

4.
张爽  杨亦桦  武淑文  吴益东 《昆虫学报》2008,51(12):1255-1259
细胞色素P450氧化酶解毒代谢作用增强是棉铃虫Helicoverpa armigera对拟除虫菊酯类杀虫剂产生抗性的主要原因,棉铃虫细胞色素P450氧化酶基因CYP9A12的组成型过量表达与拟除虫菊酯抗性相关。为了进一步明确棉铃虫细胞色素P450氧化酶基因CYP9A12与拟除虫菊酯类杀虫剂抗性的关系,采用酿酒酵母Saccharomyces cerevisiae表达系统异源表达了CYP9A12基因,检测了该基因的酵母表达产物对溴氰菊酯、氟氯氰菊酯、甲氰菊酯和联苯菊酯4种药剂的离体代谢作用。结果表明:含有CYP9A12外源基因的重组酵母细胞裂解液对溴氰菊酯、氟氯氰菊酯和联苯菊酯的代谢率分别为8.58,5.85和3.94 pmol/min·mg protein,而没有检测到对甲氰菊酯的代谢。本研究表明了CYP9A12具有代谢多种拟除虫菊酯的能力,也为CYP9A12参与拟除虫菊酯的解毒代谢提供了直接证据。  相似文献   

5.
6.
用苯巴比妥钠(2mg/g)和氰戊菊酯(0.2mg/g)拌饲料处理,对敏感品系棉铃虫Helicoverpa armigera中肠的细胞色素P450和细胞色素c还原酶含量均具有明显的诱导作用(两者都使细胞色素P450含量提高了2.24倍,使细胞色素c还原酶的含量分别提高1.33和1.40倍),但对细胞色素b5诱导作用不显著(仅为对照的1.23和1.15倍);此外,苯巴比妥钠对敏感棉铃虫中肠的艾氏剂环氧化酶活性和甲氧试卤灵-O-脱甲基酶活性也有显著的诱导作用(分别提高了2.75和2.66倍),但对7-乙氧香豆素-O-脱乙基酶活性没有诱导作用,而氰戊菊酯对敏感棉铃虫中肠的艾氏剂环氧化酶活性则有2.02倍的诱导作用。同一浓度的苯巴比妥钠和氰戊菊酯使抗性品系棉铃虫中肠的细胞色素P450含量分别提高1.21和1.15倍,使细胞色素c还原酶含量分别提高1.48和1.86倍(差异显著),但是细胞色素b5含量没有明显变化(分别为对照的1.15和0.98倍);此外,氰戊菊酯能使抗性棉铃虫中肠的艾氏剂环氧化酶活性提高1.53倍,但苯巴比妥钠对该酶活性则有明显抑制作用。  相似文献   

7.
杨恩会  林雁  吴益东 《昆虫学报》2006,49(2):247-253
用氰戊菊酯-辛硫磷混剂(有效成分1∶10,简称氰-辛混剂)对棉铃虫Helicoverpa armigera室内品系(YS)进行16代的抗性选育,获得棉铃虫对氰-辛混剂的抗性品系(YS-FP)。YS-FP品系与YS品系相比,对氰-辛混剂的抗性为14.7倍,对其中的单剂氰戊菊酯和辛硫磷的抗性分别为2 170倍和3.1倍。随着筛选的进行,氰戊菊酯和辛硫磷之间的共毒系数在F2代出现短暂的增加,然后逐渐降低,它们之间的互作由增效变为拮抗。交互抗性测定结果表明,YS-FP品系对氯氰菊酯、溴氰菊酯、三氟氯氰菊酯、三唑磷和灭多威产生了明显的交互抗性,对硫丹、多杀菌素和爱玛菌素没有产生交互抗性。YS-FP品系6龄幼虫中肠细胞色素P450氧化酶甲氧基香豆素O-脱甲基活性为YS品系的10倍,3龄幼虫谷胱甘肽S-转移酶和酯酶活性分别是YS品系的1.7倍(CDNB结合作用)和2.4倍(α-NA 酯酶水解作用)。氰-辛混剂的筛选导致了棉铃虫多种解毒酶活性的增加,特别是细胞色素P450氧化酶活性增强最为明显。本研究结果表明氰-辛混剂对棉铃虫的筛选导致了广谱的交互抗性和多种代谢抗性机理,并且两个单剂之间的互作由增效变为拮抗,因此氰 辛混剂在棉铃虫抗性治理中的作用是有限的和暂时的。  相似文献   

8.
Cytochrome P450 genes can be induced by xenobiotics, which may contribute to insect's adaptability to the environments and resistance to insecticides. Previous studies indicated that cytochrome P450 CYP6B7 played a vital role in the resistance of Helicoverpa armigera to fenvalerate. However, effects of different insecticides on the expression of CYP6B7 in H. armigera are still unclear. In this study, resistance level of H. armigera to six insecticides was determined by topical application method, and effects of fenvalerate, phoxim and indoxacarb on the expression of CYP6B7 in susceptible (HDS) and fenvalerate-resistant (BJR) strains of H. armigera were evaluated by RT-qPCR. The results showed that BJR strain had an extremely high level of resistance to fenvalerate (1990.57-fold), and the induction of CYP6B7 in different tissues of BJR strain was significantly higher than that of HDS strain after exposure to fenvalerate for 24 and 48 hr. The highest induction level by fenvalerate was observed in the midgut, which were 13.7-fold in HDS strain and 127.9-fold in BJR strain at 24 and 48 hr, respectively. After exposure to phoxim, the expression level of CYP6B7 in HDS and BJR strains was induced by 2.3- and 316.8-fold at 24 hr, respectively. It is worth to note that CYP6B7 could be induced by phoxim at different time points in BJR strain, but only induced at 24 and 72 hr in HDS strain. After indoxacarb exposure, the expression of CYP6B7 was induced by 1.6-fold at 72 hr in BJR strain, whereas it was induced at 24 and 48 hr in HDS strain. These results demonstrated that the expression level of CYP6B7 could be induced by fenvalerate, phoxim and indoxacarb, but the induction time and levels varied; moreover, the induction in BJR strain was markedly higher than that in HDS strain after exposure to fenvalerate and phoxim.  相似文献   

9.
细胞色素P450基因CYP9A12的过量表达已被证实与棉铃虫Helicoverpa armigera对拟除虫菊酯的抗性相关。为探明棉铃虫CYP9A12基因的表达调控机理,根据棉铃虫CYP9A12基因cDNA全长的5′-末端核苷酸序列,采用基因组步移方法,获得CYP9A12的5′-上游区序列(总长为3 575 bp)。与cDNA序列进行比对,表明在起始密码子上游3 bp处有一长为2 124 bp的内含子。利用NNPP分析软件预测出转录起始位点,与根据CYP9A12全长cDNA序列推测的结果是一致的。TFSEARCH 1.3软件分析转录因子结合位点的结果显示,该序列不仅包含启动子的核心结构序列——TATA-box和CAAT-box,亦包含多个转录因子结合位点,如GATA-1,CdxA,Dfd等。本研究结果为深入研究棉铃虫CYP9A12的表达调控机制及其参与杀虫剂抗性的分子机理奠定了一定基础。  相似文献   

10.
We developed a new Salmonella tester strain highly sensitive to promutagenic N-nitrosamines by introducing a plasmid carrying human cytochrome P450 2A6 (CYP2A6) and NADPH-cytochrome P450 reductase (OR) cDNA into the ada- and ogt-deficient strain YG7108. The YG7108 2A6/OR cells expressed high levels of CYP2A6 (77+/-8nmol/l) and OR (470+/-20 micromol cytochrome c reduced/min/l). The expressed CYP2A6 efficiently catalyzed coumarin 7-hydroxylation. N-Nitrosodiethylamine (NDEA), N-nitrosomethylphenylamine (NMPhA), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) were mutagenic in the new strain in the absence of any exogenous activation system. The concentrations of promutagen that caused a two-fold increase in revertants were 7.1, 0.14, and 1.4 microM for NDEA, NMPhA, and NNK, respectively. YG7108 2A6/OR cells showed about 10- and 100-fold higher sensitivity to NDEA and NNK, respectively, than parental YG7108 cells assayed in the presence of rat liver S9 (final concentration, 21% (v/v)). Parental YG7108 cells did not detect NMPhA mutagenicity even in the presence of rat liver S9. We believe that this is the first demonstration that CYP2A6 is responsible for the metabolic activation of NMPhA. The established tester strain may be useful to predict human activation of N-nitrosamine promutagens.  相似文献   

11.
12.
A cDNA clone specific for cytochrome b5 was isolated from Helicoverpa armigera. This sequence corresponded to a mRNA of an estimated 544 nucleotides in length excluding the poly A tail. The mRNA contained an open reading frame of 381 nucleotides encoding a protein of 127 amino acid residues with a molecular weight of 14,564 Daltons. The encoded protein sequence showed 51% protein sequence identity with cytochrome b5 from M. domestica and 36-37% identity with mammalian and avian cytochrome b5 sequences. Northern analysis of larval RNA using this cDNA as probe, revealed that cytochrome b5 mRNA expression is tissue specific with the mRNAs being expressed in abundance in the midguts of larvae, at a lower level in fatbody but is not detectable in larval integument. During normal development this mRNA was undetectable in eggs but was present at similar levels from first to fifth instar larvae. The mRNA was expressed at very low levels in pupae and adult moths. The cytochrome b5 mRNA was found to be inducible by treatment with the monoterpene, a-pinene, and to be over-expressed in some individuals of a pyrethroid resistant population of H. armigera. The induction and over-expression patterns were identical to the cytochrome P450, CYP6B7 mRNA. The present data suggests that cytochrome b5 may be involved in CYP6B7 mediated pyrethroid resistance in H. armigera.  相似文献   

13.
Liu N  Li T  Reid WR  Yang T  Zhang L 《PloS one》2011,6(8):e23403
Four cytochrome P450 cDNAs, CYP6AA7, CYP9J40, CYP9J34, and CYP9M10, were isolated from mosquitoes, Culex quinquefasciatus. The P450 gene expression and induction by permethrin were compared for three different mosquito populations bearing different resistance phenotypes, ranging from susceptible (S-Lab), through intermediate (HAmCq(G0), the field parental population) to highly resistant (HAmCq(G8), the 8(th) generation of permethrin selected offspring of HAmCq(G0)). A strong correlation was found for P450 gene expression with the levels of resistance and following permethrin selection at the larval stage of mosquitoes, with the highest expression levels identified in HAmCq(G8), suggesting the importance of CYP6AA7, CYP9J40, CYP9J34, and CYP9M10 in the permethrin resistance of larva mosquitoes. Only CYP6AA7 showed a significant overexpression in HAmCq(G8) adult mosquitoes. Other P450 genes had similar expression levels among the mosquito populations tested, suggesting different P450 genes may be involved in the response to insecticide pressure in different developmental stages. The expression of CYP6AA7, CYP9J34, and CYP9M10 was further induced by permethrin in resistant mosquitoes. Taken together, these results indicate that multiple P450 genes are up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, thus increasing the overall expression levels of P450 genes.  相似文献   

14.
Enhanced detoxification is the major mechanism responsible for pyrethroid resistance in Chinese populations of Helicoverpa armigera. Previous work has shown that enhanced oxidation contributes to resistance in the fenvalerate-selected Chinese strain, YGF. The current study provides evidence that enhanced hydrolysis by esterase isozymes also contributes to the resistance in this strain. The average esterase activity of third instar YGF larvae was 1.9-fold compared with that of a susceptible SCD strain. Much of this difference was attributed to isozymes at two zones which hydrolysed the model carboxylester substrate 1-naphthyl acetate and also a 1-naphthyl analogue of fenvalerate. A preparation enriched for enzymes migrating to one of these zones from YGF was shown to hydrolyse fenvalerate with a specific activity of about 2.9 nmol/min/mg. This material was also matched by mass spectrometry with four putative carboxylesterase genes, all of which clustered within a phylogenetic clade of secreted midgut esterases. Quantitative PCR on these four genes showed several-fold greater expression in tissues of YGF compared to SCD but no differences was found in the number of copies of the genes between the strains.  相似文献   

15.
【目的】为明确杀虫剂亚致死剂量对草地贪夜蛾Spodoptera frugiperda细胞色素P450基因表达的影响。【方法】本研究采用叶片浸渍法测定了3种杀虫剂[氯虫苯甲酰胺、甲氨基阿维菌素苯甲酸盐和苏云金杆菌Bacillus thuringiensis(Bt)]对草地贪夜蛾2龄幼虫的毒力,以及通过实时荧光定量PCR(real-time quantitative PCR, RT-qPCR)技术测定了这3种杀虫剂亚致死剂量(LC10)处理后48 h时草地贪夜蛾2龄幼虫16个P450基因的表达量。【结果】氯虫苯甲酰胺、甲氨基阿维菌素苯甲酸盐和Bt对草地贪夜蛾2龄幼虫的LC10值分别为0.931, 0.283和1 089.688 mg/L。2龄幼虫受LC10氯虫苯甲酰胺胁迫后,13个P450基因(CYP4G75,CYP6AB12,CYP6B50,CYP321A7,CY321A8,CYP321A9,CYP321A10,CYP321B1,CYP337B5,CYP9A59,CYP9A58,CYP6AE44及CYP6AE43)表达上调...  相似文献   

16.
在增效醚(PBO)对棉铃虫Helicoverpa armigera 3龄幼虫处理后的不同时段,细胞色素P450的含量受到不同程度的抑制:在处理后1 h,细胞色素P450的含量仅为对照的43.9%,至处理后12 h,细胞色素P450的含量下降到最低点,仅为对照的23.4%;而处理后18~24 h,细胞色素P450被抑制的程度有所减弱,其含量分别为对照的85.8%和70.0%。生物测定结果表明,PBO对所测定的7种拟除虫菊酯均有不同程度的增效作用,对氰戊菊酯的增效比最高(119.3),对氯菊酯的增效比最低(2.1)。由于细胞色素P450是拟除虫菊酯的重要解毒酶系,PBO的处理可使棉铃虫细胞色素P450的含量大幅度下降,使其对杀虫剂的解毒能力减弱,从而对杀虫剂产生增效作用。  相似文献   

17.
18.
Abstract:  The relative contribution of oxidases and esterases to pyrethroid resistance was studied in a YS-FP strain of Helicoverpa armigera from China. The YS-FP strain was derived from a field-collected strain (YS) by 16 generations of selection with a mixture of fenvalerate and phoxim. Compared with the YS strain, the YS-FP strain showed 1850- to >7140-fold resistance to four ester-bonded phenoxybenzyl alcohol pyrethroids (fenvalerate, deltamethrin, cypermethrin and cyhalothrin), >205-fold resistance to a non-ester phenoxybenzyl alcohol pyrethroid (etofenprox) and only 19-fold resistance to an ester-bonded methylated biphenyl alcohol pyrethroid (bifenthrin). The oxidase inhibitor piperonyl butoxide eliminated most the of resistance to fenvalerate, deltamethrin, cypermethrin, cyhalothrin and etofenprox, whereas the esterase inhibitor S,S,S -tributylphosphorothioate had a small synergistic effect for fenvalerate and cyhalothrin only. This suggests that the resistance to these pyrethroids in the YS-FP strain was mainly because of enhanced oxidative detoxification. The monooxygenase activities of the midguts of sixth-instar larvae of the YS-FP strain to substrates p -nitroanisole, ethoxycoumarin and methoxycoumarin were 3.7-, 4.7- and 10-fold, respectively, compared with that of the YS strain. Glutathione S -transferase activity and esterase activity were not significantly altered in the YS-FP strain. This confirms that enhanced oxidative detoxification was a major mechanism contributing to pyrethroid resistance in the YS-FP strain.  相似文献   

19.
The expression of some insect P450 genes can be induced by both exogenous and endogenous compounds and there is evidence to suggest that multiple constitutively overexpressed P450 genes are co-responsible for the development of resistance to permethrin in resistant mosquitoes. This study characterized the permethrin induction profiles of P450 genes known to be constitutively overexpressed in resistant mosquitoes, Culex quinquefasciatus. The gene expression in 7 of the 19 P450 genes CYP325K3v1, CYP4D42v2, CYP9J45, (CYP) CPIJ000926, CYP325G4, CYP4C38, CYP4H40 in the HAmCqG8 strain, increased more than 2-fold after exposure to permethrin at an LC50 concentration (10 ppm) compared to their acetone treated counterpart; no significant differences in the expression of these P450 genes in susceptible S-Lab mosquitoes were observed after permethrin treatment. Eleven of the fourteen P450 genes overexpressed in the MAmCqG6 strain, CYP9M10, CYP6Z12, CYP9J33, CYP9J43, CYP9J34, CYP306A1, CYP6Z15, CYP9J45, CYPPAL1, CYP4C52v1, CYP9J39, were also induced more than doubled after exposure to an LC50 (0.7 ppm) dose of permethrin. No significant induction in P450 gene expression was observed in the susceptible S-Lab mosquitoes after permethrin treatment except for CYP6Z15 and CYP9J39, suggesting that permethrin induction of these two P450 genes are common to both susceptible and resistant mosquitoes while the induction of the others are specific to insecticide resistant mosquitoes. These results demonstrate that multiple P450 genes are co-up-regulated in insecticide resistant mosquitoes through both constitutive overexpression and induction mechanisms, providing additional support for their involvement in the detoxification of insecticides and the development of insecticide resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号