首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high acetylcholinesterase (AChE) activity was found associated with pure cholinergic synaptosomes prepared from Torpedo electric organ. This activity was bound to the presynaptic plasma membrane upon subfractionation on sucrose density gradients. It was not solubilized in the presence of 2 M MgCl2 but in the presence of Triton X 100. This presynaptic AChE activity corresponded to a hydrophobic form of the enzyme with a sedimentation coefficient of 5.5 S in our conditions. More than 80% of the AChE activity of intact synaptosomes was externally oriented. The presynaptic AChE activity could represent as much as 25% of the total activity in Torpedo electric organ.  相似文献   

2.
《Biochimie》1987,69(2):147-156
We studied the reactivity of monoclonal antibodies (mAbs) raised against acetylcholinesterase (AChE) purified from Electrophorus and Torpedo electric organs. We obtained IgG antibodies (Elec-21, Elec-106, Tor-3E5, Tor-ME8, Tor-1A5), all of them directed against the catalytic subunit of the corresponding species, with no significant cross-reactivity. These antibodies do not inhibit the enzyme and recognize all molecular forms, globular (G) and asymmetric (A). Tor-ME8 reacts specifically with the denatured A and G subunits of Torpedo AChE, in immunoblots. Several hybridomas raised against Electrophorus AChE produced IgM antibodies (Elec-39, Elec-118, Elec-121). These antibodies react with the A forms of Electrophorus electric organs and also with a subset of dimers (G2) from Torpedo electric organ. In addition, they react with a number of non-AChE components, in immunoblots. In contrast, they do not recognize AChE from other Electrophorus tissues or A forms from Torpedo electric organs.  相似文献   

3.
A rabbit antiserum to mediatophore, a nerve terminal membrane protein involved in calcium dependent ACh release, was raised after immunization with the purified protein. An immunological assay for mediatophore was then developed and the subcellular distribution of this protein in Torpedo electric organ fractions was studied. A good agreement was obtained between the distribution in the different fractions of the antigen and of mediatophore related acetylcholine releasing activity as determined by reconstitution in proteoliposomes. Mediatophore was highly concentrated in presynaptic plasma membranes of electric organ, while very low contents were observed in electric nerves and electric lobes. Although some mediatophore was found in synaptic vesicle fractions, this most probably resulted from presynaptic membrane contamination as evaluated with other presynaptic membrane markers. Nerve terminals of motor end-plates were strongly stained with anti-mediatophore antibodies.  相似文献   

4.
Activation of Torpedo presynaptic muscarinic acetylcholine (ACh) receptors with the agonist oxotremorine (20 μM) results in the inhibition of Ca2+-dependent release of endogenous ACh from Torpedo synaptosomes. This effect is reversed by the muscarinic antagonist atropine (1 μM) which, by itself, has no effect. In contrast, under the same conditions the amount of newly synthesized radiolabeled [3H]ACh released is not affected by muscarinic ligands. These findings suggest that presynaptic muscarinic inhibition in the Torpedo is due to interference with the mobilization of ACh from a storage pool.  相似文献   

5.
In Torpedo, PNS as well as CNS myelines are characterized by clearly separated double intraperiod lines. CNS myelin of Torpedo contains two glycosylated hydrophobic proteins labelled T1 (25,800 Da1) and T2 (29,700 Da1), and two basic proteins BP1 and BP2, migrating like mammalian large basic protein (BP2) and pre-small basic protein (BP1) (Barbarese et al., 1977). PNS myelin of Torpedo carries only BP1 and is characterized by a closely spaced doublet of the glycosylated hydrophobic proteins Con A+ (29,700 Da1) and Con A? (31,000 Da1); the latter does not bind Concanavalin A. These glycosylated proteins (T1, T2, Con A+, Con A?) contain mannose, N-acetylglucosamine and galactose, but lack fucose and sialic acids. They have isoleucine at their amino terminus. They bind anti-rat PNS myelin P0 antibodies but do not react with anti-rat CNS myelin PLP antibodies. Limited proteolyses of isolated proteins suggest sequence homologies between T1 and T2, and possibly between Con A+ and Con A?. The two basic proteins BP1 and BP2 bind antibodies directed against human myelin basic protein. All Torpedo myelin proteins electrofocus in pH regions characteristic of their mammalian counterparts.  相似文献   

6.
The protein composition and architecture of the photosynthetic membranes from the cyanobacterium, Synechococcus cedrorum, were analyzed with the aid of site-specific labels. Using membranes labeled with 35S, about 50 membrane proteins can be detected by sodium dodecyl sulfate acrylamide gel electrophoresis. Approximately half of the proteins are accessible to modification by the impermeant probe, lactoperoxidase, indicating that they have surface-exposed domains. At least six of these external proteins can be removed by EDTA washing; the correspondence in molecular weights between five of these EDTA-extractable proteins and those of typical chloroplast coupling factor preparations may indicate that they are subunits of a membrane-bound ATPase. The photoactive, lipophilic compound, [125I]iodonaphthyl azide, was used to label protein domains in contact with the lipid bilayer. Iodonaphthyl azide modification led to a labeling pattern significantly different from that seen with lactoperoxidase. In particular, proteins in the 13 000–20 000 dalton range that were labeled poorly or not at all by lactoperoxidase were heavily modified by iodonaphthyl azide.Photosystem I and II particles, extracted from the membrane by digitonin treatment, were iodinated by lactoperoxidase after isolation. The PS I particles acted as a relatively tight complex, with most of the proteins remaining inaccessible to surface modification. The PS II particles, on the other hand, responded as a more open structure, with most of the subunits yielding to lactoperoxidase iodination. Similar studies on a highly fluorescent, temperature-sensitive mutant of S. cedrorum revealed a different organization of the PS II complex. This mutant, when grown at 40°C, inserts a 51 kdalton polypeptide in place of a 53 kdalton protein. This protein also replaces the 53 kdalton species in the PS II complex of the mutant after 40°C growth. The structure of this complex is altered in that more sites become accessible to lactoperoxidase. This is particularly true of the 51 kdalton protein, which is barely labeled in wild-type PS II complexes.  相似文献   

7.
Presynaptic actin was identified as a new Torpedo cyclophilin B partner captured in pull-down experiments and by coimmunoprecipitation. The cyclophilin B–actin pull-down interaction was insensitive to the blockade of peptidyl cis/trans prolyl isomerase and calcineurin activities and to the latrunculin A- and jasplakinolide-mediated perturbation of F-actin polymerization. Conversely, it was reduced by ATP and stimulated by a low Cu2+ treatment of synaptosomes and by acrolydan-conjugated cyclophilin B. This Cu2+-induced stress, in parallel, stimulates the formation of GSH adducts with cysteines of synaptosomal actin followed by its deglutathionylation and its dimerization in the presence of higher Cu2+ concentrations. The reversibility of the thiol processing of actin occurred in the same range of Cu2+ concentrations that mediated a stronger cyclophilin B–actin interaction, suggesting cyclophilin B participation in antioxidant processes. Among 2-Cys-peroxiredoxin isoforms, mainly peroxiredoxin-1 was found in cell bodies and nerve endings. Functionally, both Torpedo and human peroxiredoxin-1 were activated in vitro by Torpedo cyclophilin B. Moreover, cyclophilin B, like thioredoxins, maintained an H2O2-dependent peroxidase activity of peroxiredoxin-1 in the presence of dithiothreitol. Thus, the monocysteinic Torpedo cyclophilin B is able to sustain peroxiredoxin-1 activity and might be involved in the presynaptic defense against oxidative stress affecting G-actin posttranslational changes and its redox signaling in nerve ending compartments.  相似文献   

8.
Several features of a proteinaceous binding site and a molecular mode of action are proposed for photosystem II (PS II) herbicides based upon a variety of experimental and theoretical evidence. Experimental studies have established that PS II herbicides bind non-covalently to a 32 kdalton protein in the PS II complex and inhibit electron transfer between the first quinone (Q) and the second quinone (B) on the reducing side of PS II. The herbicides each contain hydrophobic components as well as a flat polar component with a dipole moment in the range of 3–5 Debyes. The primary function of the hydrophobic components is to increase the lipid solubility of the entire herbicide molecule; the secondary function of the hydrophobic components is to fit the hydrophobic surface of the herbicide binding site. It is proposed that the flat polar component binds electrostatically at a highly polar protein site, probably a protein salt bridge or the terminus of a protein alpha helix. Further, it is proposed that the PS II herbicides shift the equilibrium Q?Bz?QB? to the left (i) by reducing the magnitude of an anion-stabilizing electric field across the B-binding site, or (ii) by inhibiting the conformational relaxation or protonation of the PS II protein in response to reduction of B to B?, or (iii) by displacing the quinone head of B from its binding site. Ab initio molecular quantum mechanical calculations have been carried out to investigate the electrostatic interactions in specific herbicide-binding site models.  相似文献   

9.
We report an electrophoretic analysis of the hydrophobic properties of the globular forms of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) from various Torpedo tissues. In charge-shift electrophoresis, the rate of electrophoretic migration of globular amphiphilic forms (Ga) is increased at least twofold when the anionic detergent deoxycholate is added to Triton X-100, whereas that of globular nonamphiphilic forms (Gna) is not modified. The G2a forms of the first class, as defined by their aggregation properties, are converted to nonamphiphilic derivatives by phosphatidylinositol phospholipase C (PI-PLC) and human serum phospholipase D (PLD). AChE G2a forms from electric organs, nerves, skeletal muscle, and erythrocyte membranes correspond to this type, which also exists in very small quantities in detergent-solubilized extracts of electric lobes and spinal cord. They present different electrophoretic mobilities, so that each of these tissues contains a distinct "electromorph," or two in the case of electric organs. The G2a forms of the second class (AChE in plasma, BuChE in heart), as well as G4a forms of AChE and BuChE, are insensitive to PI-PLC and PLD but may be converted to nonamphiphilic derivatives by Pronase.  相似文献   

10.
《The Journal of cell biology》1983,97(6):1737-1744
The crude extract of venom glands of the polychaete annelid Glycera convoluta triggers a large Ca2+-dependent acetylcholine release from both frog motor nerve terminals and Torpedo electric organ synaptosomes. This extract was partially purified by Concanavalin A affinity chromatography. The biological activity was correlated in both preparations to a 300,000-dalton band, as shown by gel electrophoresis. This confirmed previous determinations obtained with chromatographic methods. This glycoprotein binds to presynaptic but not postsynaptic plasma membranes isolated from Torpedo electric organ. Pretreatment of intact synaptosomes by pronase abolished both the binding and the venom- induced acetylcholine release without impairing the high K+-induced acetylcholine release. Pretreatment of nerve terminal membranes by Concanavalin A similarly prevented the binding and the biological response. Binding to Torpedo membranes was still observed in the presence of EGTA. An antiserum directed to venom glycoproteins inhibited the neurotoxin so we could directly follow its binding to the presynaptic membrane. Glycera convoluta neurotoxin has to bind to a ectocellularly oriented protein of the presynaptic terminal to induce transmitter release.  相似文献   

11.
《The Journal of cell biology》1985,101(5):1757-1762
The presynaptic plasma membrane (PSPM) of cholinergic nerve terminals was purified from Torpedo electric organ using a large-scale procedure. Up to 500 g of frozen electric organ were fractioned in a single run, leading to the isolation of greater than 100 mg of PSPM proteins. The purity of the fraction is similar to that of the synaptosomal plasma membrane obtained after subfractionation of Torpedo synaptosomes as judged by its membrane-bound acetylcholinesterase activity, the number of Glycera convoluta neurotoxin binding sites, and the binding of two monoclonal antibodies directed against PSPM. The specificity of these antibodies for the PSPM is demonstrated by immunofluorescence microscopy.  相似文献   

12.
R Durrie  M Saito  A Rosenberg 《Biochemistry》1988,27(10):3759-3764
Preparations highly enriched in Golgi complex membranes, synaptosomes, and synaptic plasma membranes (SPM) by marker enzyme analysis and electron microscopic morphology were made from the brains of 28-day-old rats. These were incubated with cytidine 5'-monophosphate-N-acetyl[14C]neuraminic acid (CMP-NeuAc) in a physiologic buffer, without detergents. Glycolipid sialosyltransferase activities (SATs) were measured by analyzing incorporation of radiolabeled NeuAc into endogenous membrane gangliosides. Golgi SAT was diversified in producing all the various molecular species of labeled gangliosides [2.64 pmol of NeuAc transferred (mg of protein)-1 h-1]. Synaptosomal SAT exhibited a lower activity [0.66 pmol (mg of protein)-1 h-1], but it was highly specific in its labeling pattern, with a marked preference for labeling NeuAc alpha 2----8NeuAc alpha 2----3Gal beta 1----4Glc beta 1----1 Cer (GD3 ganglioside). SPM prepared from the synaptosomes retained the GD3-related SAT (or SAT-2), and the total specific activity increased [1.41 pmol (mg of protein)-1 h-1], which suggests that the location of the synaptosomal activity is in the SPM. These results indicate that SAT activity in Golgi membranes differs from that in synaptosomes with regard to endogenous acceptor substrate specificity and SAT activity of synaptosomes should be located in the synaptosomal plasma membrane. This SAT could function as an ectoenzyme in concert with ecto-sialidase to modulate the GD3 and other ganglioside population in situ at the SPM of the central nervous system.  相似文献   

13.
The venom glands of the annelid Glycera convoluta contain a neurotoxin which triggers ACh release from frog motor terminals and Torpedo synaptosomes. This neurotoxin binds to presynaptic, but not postsynaptic plasma membranes prepared from Torpedo electric organ. The binding site is an ectocellularly oriented protein. The binding does not require Ca. It is inhibited by pretreatment of the membrane by Concanavalin A. The toxin induced ACh release is Ca-dependent and inhibited by D 600.  相似文献   

14.
Two proteins of the presynaptic plasma membrane, syntaxin and SNAP 25, and VAMP/synaptobrevin, a synaptic vesicle membrane protein, form stable protein complexes which are involved in the docking and fusion of synaptic vesicles at the mammalian brain presynaptic membrane. Similar protein complexes were revealed in an homogeneous population of cholinergic synaptosomes purified from Torpedo electric organ by combining velocity sedimentation and immunoprecipitation experiments. After CHAPS solubilization, virtually all the nerve terminal syntaxin was found in the form of large 16 S complexes, in association with 65% of SNAP 25 and 15% of VAMP. Upon Triton X100 solubilization, syntaxin was still recovered in association with SNAP 25 and VAMP but in smaller 8 S complexes. A small (2–5%) percentage of the nerve terminal 15 kDa proteolipid subunit of the v-H+ ATPase and of mediatophore was copurified with syntaxin, using two different antisyntaxin monoclonal antibodies. The use of an homogeneous population of peripheral cholinergic nerve terminals allowed us to extend results on the composition of the brain presynaptic protein complexes to the Torpedo electric organ synapse, a model of the rapid neuromuscular synapses. Copyright © 1996 Elsevier Science Ltd  相似文献   

15.
Abstract: We adapted a method, originally described by Israel et al. (1976) for the preparation of cholinergic nerve endings from Torpedo , to deal with a larger quantity of electric tissue. We followed the distribution of acetylcholine (ACh), ATP, acetylcholine receptor (AChR), choline acetyltransferase (ChAT), ouabainresistant and -sensitive ATPase, lactate dehydrogenase (LDH) and acetylcholinesterase (AChE) and obtained a nerve ending fraction, without detectable contamination by postsynaptic components. This preparation consisted of closed structures of 1–5 μm diameter, containing synaptic vesicles. It had the capacity to synthetize and release ACh. This preparation is therefore quite suitable for biochemical analysis of presynaptic elements. We particularly investigated its content of AChE: it consists exclusively of the 6S dimeric, hydrophobic form of the enzyme. This enzyme is enriched in the nerve ending preparation, by a factor higher than that obtained for ChAT. The yields obtained for the two enzymes suggest that the hydrophobic 6S AChE form may be mostly presynaptic in Torpedo electric organs. We characterized this form as a membrane-bound, externally active enzyme in the nerve ending preparation. It may thus participate in the hydrolysis of extracellularly liberated AChE and its abundance suggests that presynaptic AChE could play an essential role in cholinergic transmission in Torpedo electric organs and perhaps also in other cholinergic synapses.  相似文献   

16.
Phosphatidylinositol-specific phospholipase C (PIPLC) quantitatively solubilizes acetylcholinesterase (AChE) from purified synaptic plasma membranes and intact synaptosomes of Torpedo ocellata electric organ. The solubilized AChE migrates as a single peak of sedimentation coefficient 7.0S upon sucrose gradient centrifugation, corresponding to a subunit dimer. The catalytic subunit polypeptide of AChE is the only polypeptide detectably solubilized by PIPLC. This selective removal of AChE does not affect the amount of acetylcholine released from intact synaptosomes upon K+ depolarization. PIPLC also quantitatively solubilizes AChE from the surface of intact bovine and rat erythrocytes, but only partially solubilizes AChE from human and mouse erythrocytes. The AChE released from rat and human erythrocytes by PIPLC migrates as a approximately 7S species on sucrose gradients, corresponding to a catalytic subunit dimer. PIPLC does not solubilize particulate AChE from any of the brain regions examined of four mammalian species. Several other phospholipases tested, including a nonspecific phospholipase C from Clostridium welchii, fail to solubilize AChE from Torpedo synaptic plasma membranes, rat erythrocytes, or rat striatum.  相似文献   

17.
Botulinum neurotoxins are highly potent toxins capable of rapid and specific interaction with the presynaptic membrane. We have hypothesised that: (1) these neurotoxins possess an electric dipole with the positive pole on receptor binding domain Hc-C and that (2) on approaching the negatively charged presynaptic membrane, they reorient themselves and hit the membrane surface with Hc-C; this electrostatic effect would contribute efficient binding. Electrostatic calculations confirm these hypotheses and strongly indicate that electrostatics effects can play an important role in the unique presynaptic membrane binding properties of these neurotoxins and generally on the interaction of other plasma membrane protein ligands.  相似文献   

18.
《The Journal of cell biology》1990,111(5):2041-2052
We have developed procedures for detecting synaptic vesicle-binding proteins by using glutaraldehyde-fixed or native vesicle fractions as absorbent matrices. Both adsorbents identify a prominent synaptic vesicle-binding protein of 36 kD in rat brain synaptosomes and mouse brain primary cultures. The binding of this protein to synaptic vesicles is competed by synaptophysin, a major integral membrane protein of synaptic vesicles, with half-maximal inhibition seen between 10(-8) and 10(-7) M synaptophysin. Because of its affinity for synaptophysin, we named the 36-kD synaptic vesicle-binding protein physophilin (psi nu sigma alpha, greek = bubble, vesicle; psi iota lambda os, greek = friend). Physophilin exhibits an isoelectric point of approximately 7.8, a Stokes radius of 6.6 nm, and an apparent sedimentation coefficient of 5.6 S, pointing to an oligomeric structure of this protein. It is present in synaptic plasma membranes prepared from synaptosomes but not in synaptic vesicles. In solubilization experiments, physophilin behaves as an integral membrane protein. Thus, a putative synaptic plasma membrane protein exhibits a specific interaction with one of the major membrane proteins of synaptic vesicles. This interaction may play a role in docking and/or fusion of synaptic vesicles to the presynaptic plasma membrane.  相似文献   

19.
The effects of trimethyl-tin (anion-hydroxyde ionophore, inhibiting oxydative phosphorylation and H+-ATPase) probenecid (inhibitor of anion transport in neural cells) and phenylglyoxal (arginine-specific reagent, inhibiting chloride exchanges in erythrocytes) were examined in Torpedo synaptosomes prepared from electric organ. All drugs significantly reduced the stimulated release of acetylcholine triggered by depolarization of nerve endings with high-K+ and/or gramicidin D. In contrast, trimethyl-tin, probenecid and phenylglyoxal did not affect the ionophore A23187-induced release of acetylcholine from the synaptosomes. The inhibitory potency of the compound trimethyl-tin was found to be similar to that of probenecid and phenylglyoxal on depolarization-induced acetylcholine release. This leads us to suggest that a relationship exists between modification of anion distribution during depolarization and acetylcholine release process. Moreover, since the release of ACh by calcium-ionophore A23187 was unaffected by trimethyl-tin, probenecid or phenylglyoxal, such compounds may also have an action on voltage-dependent Ca2+ flux across presynaptic membrane.  相似文献   

20.
This work presents a kinetic approach of the interaction between acetylcholinesterase (AChE) from electric eel and aflatoxin B1 (AFB1) or its protein conjugate (e.g., AFB1–HRP [horseradish peroxidase]) in order to develop a simple and sensitive detection method of these compounds. The dissociation constant Kd of the AChE/AFB1–HRP interaction (0.4 μM) obtained with the surface plasmon resonance (SPR) technique is very close to the inhibition constant reported in amperometric assay (Ki = 0.35 μM), proving that the conjugation of AFB1 to a carrier protein does not significantly influence the affinity of AFB1 for AChE. Thus, the AChE/AFB1–HRP couple can be used as mimic system for the binding of AChE to other AFB1–protein adducts and further used for developing biosensors for AFB1 bound to plasma proteins. The immobilization protocol was designed to minimize the nonspecific adsorption on the self-assembled monolayer (SAM) functionalized surface of the SPR chip without an additional hydrophilic linker, whereas the interaction protocol was designed to mark out the possible occurrence of mass transport limitation (MTL) effects. The detection limits (LODs) were 0.008 μM for AFB1–HRP (2.5 ng ml?1 AFB1) and 0.94 ng ml?1 for AFB1 itself, which is lower than recently reported values in spectrophotometric and amperometric assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号