首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The main prerequisite for organism’s viability is the maintenance of the internal environment despite changes in the external environment, which is provided by the neuroendocrine control system. The key unit in this system is hypothalamus exerting endocrine effects on certain peripheral organs and anterior pituitary. Physiologically active substances of neuronal origin enter blood vessels in the neurohemal parts of hypothalamus where no blood-brain barrier exists. In other parts of the adult brain, the arrival of physiologically active substances is blocked by the blood-brain barrier. According to the generally accepted concept, the neuroendocrine system formation in ontogeny starts with the maturation of peripheral endocrine glands, which initially function autonomously and then are controlled by the anterior pituitary. The brain is engaged in neuroendocrine control after its maturation completes, which results in a closed control system typical of adult mammals. Since neurons start to secrete physiologically active substances soon after their formation and long before interneuronal connections are formed, these cells are thought to have an effect on brain development as inducers. Considering that there is no blood-brain barrier during this period, we proposed the hypothesis that the developing brain functions as a multipotent endocrine organ. This means that tens of physiologically active substances arrive from the brain to the systemic circulation and have an endocrine effect on the whole body development. Dopamine, serotonin, and gonadotropin-releasing hormone were selected as marker physiologically active substances of cerebral origin to test this hypothesis. In adult animals, they act as neurotransmitters or neuromodulators transmitting information from neuron to neuron as well as neurohormones arriving from the hypothalamus with portal blood to the anterior pituitary. Perinatal rats—before the blood-brain barrier is formed—proved to have equally high concentration of dopamine, serotonin, and gonadotropin-releasing hormone in the systemic circulation as in the adult portal system. After the brain-blood barrier is formed, the blood concentration of dopamine and gonadotropin-releasing hormone drops to zero, which indirectly confirms their cerebral origin. Moreover, the decrease in the blood concentration of dopamine, serotonin, and gonadotropin-releasing hormone before the brain-blood barrier formation after the microsurgical disruption of neurons that synthesize them or inhibition of dopamine and serotonin synthesis in the brain directly confirm their cerebral origin. Before the blood-brain barrier formation, dopamine, serotonin, gonadotropin-releasing hormone, and likely many other physiologically active substances of cerebral origin can have endocrine effects on peripheral target organs—anterior pituitary, gonads, kidney, heart, blood vessels, and the proper brain. Although the period of brain functioning as an endocrine organ is not long, it is crucial for the body development since physiologically active substances exert irreversible effects on the targets as morphogenetic factors during this period. Thus, the developing brain from the neuron formation to the establishment of the blood-brain barrier functions as a multipotent endocrine organ participating in endocrine control of the whole body development.  相似文献   

2.
The blood–brain barrier (BBB) forms a protective barrier around the brain, with the important function of maintaining brain homeostasis. Pathways thought to initiate BBB dysfunction include the kinin system, excitotoxicity, neutrophil recruitment, mitochondrial alterations and macrophage/microglial activation, all of which converge on the same point—reactive oxygen species (ROS). Interestingly, ROS also provide a common trigger for many downstream pathways that directly mediate BBB compromise such as oxidative damage, tight junction (TJ) modification and matrix metalloproteinases (MMP) activation. These observations suggest that ROS are key mediators of BBB breakdown and implicate antioxidants as potential neuroprotectants in conditions like stroke and traumatic brain injury (TBI). This review explores some of the pathways both upstream and downstream of ROS that have been implicated in increased BBB permeability and discusses the role of ROS and antioxidants in neuropathology.  相似文献   

3.
Tropical spastic paraparesis/HTLV-I associated myelopathy (TSP/HAM), is characterized by infiltration of human T cell leukaemia virus type-I (HTLV-I)-infected T-cells, anti-HTLV-I cytotoxic T cells and macrophages into the patients’ cerebrospinal fluid and by intrathecally formed anti-HTLV-I antibodies. This implies that the disease involves a breakdown of the blood—brain barrier. Since astrocytes play a central role in establishing this barrier, the authors investigated the hypothesis that the HTLV-I infected T cells disrupt this barrier by damaging the astrocytes. The present study revealed the HTLV-I-producing T cells conferred a severe cytopatic effect upon monolayers of astrocytoma cell line in co-cultures. Following co-cultivation, HTLV-I DNA and proteins appeared in the monolayer cells, but after reaching a peak their level gradually declined. This appearance of the viral components was proved to result from a fusion of the astrocytic cells with the virus-producing T cells, whereas their subsequent decline reflected the destruction of the resulting syncytia. This fusion could be specifically blocked by anti HTLV-I Env antibodies, indicating that it was mediated by the viral Env proteins expressed on the surface of the virus-producing cells. Similar fusion was observed between the HTLV-I-producing cells and certain other human nervous system cell lines. If such fusion of HTLV-I-infected T cells occurs also with astrocytes and other nervous system cells in TSP/HAM patients, it may account, at least partially, for the blood—brain barrier breakdown and some of the neural lesions in this syndrome.  相似文献   

4.
—Subcellular fractions from brains of 5, 10, 13, 16, 21, 30 day-old and adult rats were prepared. Protein content and various enzyme activities were assayed in all fractions and brain homogenates. γ-Glutamyl transpeptidase activity and 5′-nucleotidase were very low at 5 days of life but steadily increased, reaching adult concentrations at about 30 days after birth. Alkaline phosphatase, instead slowly decreased with maturation, while monoamine oxidase after an initial decrease, increased rapidly to adult levels. The relation between the appearance of enzymatic activity in brain and the blood-brain barrier function is discussed.  相似文献   

5.
Abstract— 5-HT was injected intravenously in rats (10 mg/kg) and a marked increase in brain 5-HT and 5-HIAA was observed. For the first 10 min after injection the penetration of 5-HT into the brain and formation of 5-HIAA is evident. After 10 min degradation of exogenous 5-HT and elimination of 5-HIAA are prominent. Metabolism of exogenous 5-HT in the brain is very fast (half-life between 5 and 10 min; completely metabolized in approximately 80 min). The importance of these results in explaining the permeability of blood-brain barrier to 5-HT is discussed. Experiments on brain slices show that 5-HT is more readily metabolized in brain tissue than eliminated into incubation medium. In contrast, 5-HIAA very easily leaves brain tissue.  相似文献   

6.
Paroxysmal dyskinesias (PD) are a heterogeneous group of disorders characterized by sudden attacks of involuntary hyperkinetic movements. In rare cases PD can be symptomatic (e.g. of underlying lesions in the basal ganglia), but most forms have a genetic background. Based on the trigger factors, PD are clinically divided into kinesigenic (PKC/PKD/DYT10), nonkinesigenic (PNKD/DYT8) and exercise-induced (PED/DYT18) forms. The first genes have been described for PNKD (MR1) and PED (SLC2A1). Whereas the function of the MR1 protein is still poorly understood, mutations in SLC2A1 lead to a reduced transport of glucose across the blood–brain barrier. Recently, mutations in PRRT2—which seems to be important in the neuronal synaptic vesicular cycle—were described in patients with PKD. This review summarizes the clinical symptoms, brain imaging findings, pathophysiology and therapeutic options pertaining to the different PD.  相似文献   

7.
《FEBS letters》1994,351(2):181-185
The transport of lysophospholipids through the rat blood—retina and blood—brain barrier was determined by using radioactive 1-palmitoyl-2-lysophosphatidylcholine (Pam-lysoPtdCho) and by measuring the uptake of this labeled compound into the retina and various brain regions after short in situ carotid perfusion. The transport was not affected by probenecid (0.25 mM), but it was inhibited, in a dose-dependent manner, by circulating albumin which is able to bind tightly to lysophosphatidylcholine and lowered the availability of the latter for tissue extraction. Radiotracer transfer in the retina was higher than in brain regions. The permeability-surface area products (PS) changed with the inclusion of unlabeled Pam-lysoPtdCho, showing that transport across retinal and brain microvessels is mainly saturable. The data provided an estimate of transport constants (Vmax, Km and non-saturable constant Kd). However, we could not distinguish whether this saturable process represents the saturation of a transport carrier or simple passive diffusion followed by the saturation of enzymatic reactions. In brain tissue lipid extract, 20 s after carotid injection, radiolabel was associated by 45% to unmetabolized Pam-lysoPtdCho. Partial acylation to phosphatidylcholine, as well as hydrolysis and redistribution of the fatty acyl moiety into main phospholipid classes also occurred. The present results, compared to our previous data, indicate that PamlysoPtdCho is transported faster and/or in greater amounts than unesterified fatty acids.  相似文献   

8.
Abstract— γ-Vinyl GABA (4-amino-hex-5-enoic acid, RMI 71754) is a catalytic inhibitor of GABA-T in vitro. When given by a peripheral route to mice, it crosses the blood-brain barrier and induces a long-lasting, dose-dependent, irreversible inhibition of brain GABA transaminase (GABA-T). Glutamate decarboxylase (GAD) is only slightly affected even at the highest doses used. γ -Vinyl GABA has little or no effect on brain succinate semialdehyde dehydrogenase, aspartate transaminase and alanine transaminase activities. GABA-T inhibition is accompanied by a sustained dose-dependent increase of brain GABA concentration. From the rate of accumulation of GABA it was estimated that GABA turnover in brain was at least 6.5 μmol/g/h. Based on recovery of enzyme activity the half-life of GABA-T was found to be 3.4 days, that of GAD was estimated to be about 2.4 days. γ -Vinyl GABA should be valuable for manipulations of brain GABA metabolism.  相似文献   

9.
Cerebral tissues possess highly selective and dynamic protection known as blood brain barrier (BBB) that regulates brain homeostasis and provides protection against invading pathogens and various chemicals including drug molecules. Such natural protection strictly monitors entry of drug molecules often required for the management of several diseases and disorders including cerebral vascular and neurological disorders. However, in recent times, the ischemic cerebrovascular disease and clinical manifestation of acute arterial thrombosis are the most common causes of mortality and morbidity worldwide. The management of cerebral Ischemia requires immediate infusion of external thrombolytic into systemic circulation and must cross the blood brain barrier. The major challenge with available thrombolytic is their poor affinity towards the blood brain barrier and cerebral tissue subsequently. In the clinical practice, a high dose of thrombolytic often prescribed to deliver drugs across the blood brain barrier which results in drug dependent toxicity leading to damage of neuronal tissues. In recent times, more emphasis was given to utilize blood brain barrier transport mechanism to deliver drugs in neuronal tissue. The blood brain barrier expresses a series of receptor on membrane became an ideal target for selective drug delivery. In this review, the author has given more emphasis molecular biology of receptor on blood brain barrier and their potential as a carrier for drug molecules to cerebral tissues. Further, the use of nanoscale design and real-time monitoring for developed therapeutic to encounter drug dependent toxicity has been reviewed in this study.KEY WORDS: blood brain barrier (BBB), cerebral ischemic disorders, drug delivery, earthworm protease, neurodegenerative disorder, thrombolytic  相似文献   

10.
Delivery of monoclonal antibody therapeutics across the blood-brain barrier is an obstacle to the diagnosis or therapy of CNS disease with antibody drugs. The immune therapy of Alzheimer's disease attempts to disaggregate the amyloid plaque of Alzheimer's disease with an anti-Abeta monoclonal antibody. The present work is based on a three-step model of immune therapy of Alzheimer's disease: (1) influx of the anti-Abeta monoclonal antibody across the blood-brain barrier in the blood to brain direction, (2) binding and disaggregation of Abeta fibrils in brain, and (3) efflux of the anti-Abeta monoclonal antibody across the blood-brain barrier in the brain to blood direction. This is accomplished with the genetic engineering of a trifunctional fusion antibody that binds (1) the human insulin receptor, which mediates the influx from blood to brain across the blood-brain barrier, (2) the Abeta fibril to disaggregate amyloid plaque, and (3) the Fc receptor, which mediates the efflux from brain to blood across the blood-brain barrier. This fusion protein is a new antibody-based therapeutic for Alzheimer's disease that is specifically engineered to cross the human blood-brain barrier in both directions.  相似文献   

11.
Neural Induction of the Blood–Brain Barrier: Still an Enigma   总被引:5,自引:0,他引:5  
1. The study of the blood–brain barrier and its various realms offers a myriad of opportunities for scientific exploration. This review focuses on two of these areas in particular: the induction of the blood–brain barrier and the molecular mechanisms underlying this developmental process.2. The creation of the blood–brain barrier is considered a specific step in the differentiation of cerebral capillary endothelial cells, resulting in a number of biochemical and functional alterations. Although the specific endothelial properties which maintain the homeostasis in the central nervous system necessary for neuronal function have been well described, the inductive mechanisms which trigger blood–brain barrier establishment in capillary endothelial cells are unknown.3. The timetable of blood–brain barrier formation is still a matter of debate, caused largely by the use of varying experimental systems and by the general difficulty of quantitatively measuring the degree of blood–brain barrier tightness. However, there is a general consensus that a gradual formation of the blood–brain barrier starts shortly after intraneural neovascularization and that the neural microenvironment (neurons and/or astrocytes) plays a key role in inducing blood–brain barrier function in capillary endothelial cells. This view stems from numerous in vitro experiments using mostly cocultures of capillary endothelial cells and astrocytes and assays for easily measurable blood–brain barrier markers. In vivo, there are great difficulties in proving the inductive influence of the neuronal environment. Also dealt with in this article are brain tumors, the least understood in vivo systems, and the induction or noninduction of barrier function in the newly established tumor vascularization.4. Finally, this review tries to elucidate the question concerning the nature of the inductive signal eliciting blood–brain barrier formation in the cerebral microvasculature.  相似文献   

12.
Gliomas are some of the most aggressive types of cancers but the blood–brain barrier acts as an obstacle to therapeutic intervention in brain-related diseases. The blood–brain barrier blocks the permeation of potentially toxic compounds into neural tissue through the interactions of brain endothelial cells with glial cells (astrocytes and pericytes) which induce the formation of tight junctions in endothelial cells lining the blood capillaries. In the present study, we characterize a glutathione-coated docetaxel-loaded PEG-PLGA nanoparticle, show its in vitro drug release data along with cytotoxicity data in C6 and RG2 cells, and investigate its trans-blood–brain barrier permeation through the establishment of a Transwell cellular co-culture. We show that the docetaxel-loaded nanoparticle’s size enables its trans-blood–brain barrier permeation; the nanoparticle exhibits a steady, sustained release of docetaxel; the drug is able to induce cell death in glioma models; and the glutathione-coated nanoparticle is able to permeate through the Transwell in vitro blood–brain barrier model.KEY WORDS: blood–brain barrier, brain cancer, docetaxel, glutathione, nanoparticle  相似文献   

13.
血脑屏障与脑血管疾病的相关研究   总被引:1,自引:0,他引:1  
血脑屏障(blood brain barrier,BBB)的主要结构包括:脑毛细血管内皮细胞及其间的紧密连接(tight junction,TJ)、基底膜、基 底膜下星型胶质细胞终足。血脑屏障是存在于血液和脑组织之间的一层屏障系统,在许多大脑疾患的病理过程中,BBB 的破坏导 致通透性增高都是不可避免的一个环节。BBB是保证中枢神经系统的正常生理功能的重要屏障系统。目前已有大量关于血脑屏 障通透性在脑血管疾病中的变化研究。本文分别从血脑屏障的结构和功能,药物通过血脑屏障的方法和功能,脑缺血损伤、阿尔 茨海默病、帕金森病和多发性硬化症等不同的脑病变与血脑屏障通透性的变化及中医药应用等方面做一综述。有针对性地对 BBB和大脑疾病进行进一步的研究与探索,将会为临床治疗相关疾病带来新的视角与机遇。  相似文献   

14.
Morbidity caused by brain dysfunction affects more than 50 million persons in the United States. Although new neuropharmaceuticals have the potential for treating specific brain diseases, they may not effectively enter brain from blood. Safe strategies are needed for drug delivery through the brain capillary wall, which makes up the blood-brain barrier in vivo. Two of these strategies are reviewed, as are related new developments in the molecular and cell biology of the brain capillary endothelium. The production of chimeric peptides represents a physiologic-based strategy for drug delivery. It entails the covalent coupling of the neuropharmaceutical to a brain transport vector, allowing transportation through the blood-brain barrier. Another strategy is biochemical opening of the blood-brain barrier: intracarotid leukotriene infusion is a method for selectively increasing blood-brain barrier permeability in brain tumors without affecting barrier permeability in normal brain tissue.  相似文献   

15.
The brain functions within a specialized environment tightly controlled by brain barrier mechanisms. Understanding the regulation of barrier formation is important for understanding brain development and may also lead to finding new ways to deliver pharmacotherapies to the brain; access of many potentially promising drugs is severely hindered by these barrier mechanisms. The cellular composition of the neurovascular unit of the blood‐brain barrier proper and their effects on regulation of its function are beginning to be understood. One hallmark of the neurovascular unit in the adult is the astroglial foot processes that tightly surround cerebral blood vessels. However their role in barrier formation is still unclear. In this study we examined barrier function in newborn, juvenile and adult mice lacking fibroblast growth factor‐2 (FGF‐2), which has been shown to result in altered astroglial differentiation during development. We show that during development of FGF‐2 deficient mice the astroglial contacts with cerebral blood vessels are delayed compared with wild‐type animals. However, this delay did not result in changes to the permeability properties of the blood brain barrier as assessed by exclusion of either small or larger sized molecules at this interface. In addition cerebral vessels were positive for tight‐junction proteins and we observed no difference in the ultrastructure of the tight‐junctions. The results indicate that the direct contact of astroglia processes to cerebral blood vessels is not necessary for either the formation of the tight‐junctions or for basic permeability properties and function of the blood‐brain barrier. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1201–1212, 2016  相似文献   

16.
—Intravenous injection of a large dose of 6-hydroxydopamine (100 mg/kg) to adult rats caused a significant and long-lasting reduction (about 30 per cent) of the in oirro uptake of [3H]NA in the cerebral cortex and spinal cord, while no changes were seen in the hypothalamus. The endogenous NA in whole brain was similarly reduced (about 20 per cent). Fluorescence histochemistry revealed catecholamine accumulations which are degenerative signs, induced by 6-hydroxydopamine, in axons of the dorsal NA bundle innervating the cerebral cortex. It is concluded that the blood–brain barrier in adult rats is not completely protective with respect to the neurotoxic action of systemically injected 6-hydroxydopamine, which can produce degeneration of a significant number of NA nerve terminals in the cerebral cortex and spinal cord. Previous studies have shown that 6-hydroxydopamine caused a permanent and selective degeneration of a large number of central NA nerve terminals when injected systemically up to 1 week after birth, due to an incompletely developed blood-brain barrier. This barrier for 6-hydroxydopamine develops between the 7th and 9th day after birth (Sachs , 1973). In the present study 6-hydroxydopamine was found to cause a small transient reduction in [3H]NA uptake in cerebral cortex of rats between 9 and 28 days of age, while in older rats the damage produced by 6-hydroxydopamine was long-lasting. Thus, the NA nerves ascending to the cerebral cortex seem to possess a regenerative capacity to a 6-hydroxydopamine-induced degeneration up to about 28 days postnatally, but which later disappears or is markedly retarded.  相似文献   

17.
【目的】构建蜱传脑炎病毒(Tick-borne encephalitis virus,TBEV)跨血脑屏障研究的体外细胞模型,研究2种不同细胞的TBEV培养物在病毒跨过血脑屏障中的主要差异,从而为进一步TBEV跨血脑屏障的分子机制研究奠定基础。【方法】利用人脑微血管内皮细胞(Human brain microvascular endothelial cells,hCMEC/D3)构建体外血脑屏障的细胞模型。用BHK-21细胞中培养的蜱传脑炎病毒感染人脑微血管内皮细胞,检测TBEV在hCMEC/D3中的复制增殖情况;将TBEV加入体外血脑屏障模型的上层微孔中,用实时荧光定量PCR和噬斑测定的方法检测跨过血脑屏障的病毒量;将感染TBEV的人单核细胞加入血脑屏障模型的上层微孔中,观察渗漏进下层孔中的淋巴细胞,并用实时荧光定量PCR和噬斑测定的方法检测跨过血脑屏障的病毒量。利用伊文思蓝标记的白蛋白确定血脑屏障细胞的渗透率变化。【结果】实时荧光定量PCR和病毒滴度测定结果表明,TBEV不能在hCMEC/D3细胞中复制增殖,也不能直接跨过血脑屏障;然而,人单核细胞THP-1感染TBEV后,尽管单核细胞不能直接携带TBEV跨过血脑屏障,但THP-1中产生的病毒却能跨过血脑屏障模型进入下层孔中,并引起血脑屏障渗透率的增高。【结论】单核细胞有助于TBEV跨过血脑屏障。  相似文献   

18.
The blood-brain barrier is a specific property of differentiated brain endothelium. To study the differentiation of blood vessels in the brain, we have correlated the expression of a number of proteins in brain endothelial cells with the development of the blood-brain barrier in mouse, quail, and chick embryos. Using histochemical methods, alkaline phosphatase activity was found to be present in all species and appeared around embryonic Days 17 (mouse), 14 (quail), and 12 (chick). Butyrylcholinesterase activity was found in the mouse and quail but not the chick brain vasculature, and appeared around Days 17 (mouse) and 15 (quail). gamma-Glutamyltranspeptidase activity was demonstrated histochemically in mouse but not in chick and quail brain capillaries, beginning at Day 15. Transferrin receptor was localized on brain endothelium in all species by immunofluorescence methods using monoclonal antibodies. It appeared at Days 15 and 11 in mouse and chick embryonic brain, respectively. The staining of all markers in embryonic brain was compared with adult brain endothelium and the leptomeningeal blood vessels. The expression of these proteins was correlated with the development of the blood-brain barrier by studying the permeability of brain endothelium for the protein horseradish peroxidase during mouse embryogenesis. Vessels in the telencephalon were found to become impermeable around Day 16 of development. Taken together the results of previous investigations and those presented here, we conclude that a number of proteins are sequentially expressed in brain endothelial cells correlating in time with the formation of the blood-brain barrier in different species.  相似文献   

19.
Purinergic P2X receptors, when activated under pathological conditions, participate in induction of the inflammatory response and/or cell death. Both neuroinflammation and neurodegeneration represent hallmarks of multiple sclerosis (MS), an autoimmune disease of the central nervous system. In the current study, we examined whether P2X7R is expressed in brain microvasculature of rats subjected to experimental autoimmune encephalomyelitis (EAE) and explore possible relationships with blood-brain barrier (BBB) protein—claudin-5 after administration of P2X7R antagonist—Brilliant Blue G (BBG). Capillary fraction isolated from control and EAE rat brains was subjected to immunohistochemical and Western blot analyses. We document the presence of P2X7R in brain capillaries isolated from brain tissue of EAE rats. P2X7R is found to be localized on the abluminal surface of the microvessels and is co-expressed with PDGFβR, a marker of pericytes. We also show over-expression of this receptor in isolated capillaries during the course of EAE, which is temporally correlated with a lower protein level of PDGFβR, as well as claudin-5, a tight junction-building protein. Administration of a P2X7R antagonist to the immunized rats significantly reduced clinical signs of EAE and enhances protein expression of both claudin-5 and PDGFβR. These results indicate that P2X7 receptor located on pericytes may contribute to pathological mechanisms operated during EAE in cerebral microvessels influencing the BBB integrity.  相似文献   

20.
The brain capillary endothelium is a formidable barrier to entry of foreign chemicals into the central nervous system (CNS). For the most part it poorly distinguishes between therapeutics and neurotoxins and thus the blood-brain barrier both protects the brain from toxic chemicals and limits our ability to treat a variety of CNS disorders. Two elements underlie the barrier function of the brain capillary endothelium: 1). a physical barrier comprised of tight junctions, which form an effective seal to intercellular diffusion, and the cells themselves, which exhibit a low rate of endocytosis, and 2). a metabolic/active barrier, comprised of specific membrane transporters expressed by the endothelial cells. We have recently developed an experimental system based on confocal microscopy to study mechanisms of transport in freshly isolated brain capillaries. Here I review studies demonstrating a major role for the ATP-driven, xenobiotic export pump, p-glycoprotein, in barrier function and recent experiments showing that transient inhibition of pump function can have substantial benefit for chemotherapy in an animal model of brain cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号