首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mammalian neocortical tissues were incubated in [14C]adenine-containing fluids and their newly-synthesized adenine derivatives examined after periods of superfusion. Increased [K+] released adenine derivatives from the tissues, a release diminished by homocysteine. Homocysteine acted also to diminish the tissue content of adenosine plus its metabolites hypoxanthine and inosine, while increasing that of S-adenosylhomocysteine. Hypoxia also increased the tissue content and the output of adenosine plus its metabolites, and again homocysteine augmented the S-adenosylhomocysteine. Glutamic acid also increased tissue content and output of adenosine and derivatives, an action diminished by homocysteine and associated with augmented S-adenosylhomocysteine. Colchicine or dipyridamole did not prevent augmentation of S-adenosylhomocysteine by the reagents described; the sequence from adenosine phosphates to S-adenosylhomocysteine is concluded to be intracellular and not to involve extracellular formation of precursor adenosine. Adenosine displayed properties consistent with its being involved in two distinct categories of homeostasis, and also with its exerting an inhibitory tone in normal cerebral systems.  相似文献   

2.
Adenosine is rapidly metabolized by isolated rat livers. The major products found in the perfusate were inosine and uric acid while hypoxanthine could also be detected. S-Adenosylhomocysteine was also excreted when the liver was perfused with both adenosine and L-homocysteine. A considerable portion of the added adenosine was salvaged via the adenosine kinase reaction. The specific radioactivity of the resultant AMP reached 75–80% of the added [8-14C]adenosine within 90 min. When the liver was perfused with adenosine alone, hydrolysis of S-adenosyllhomosysteine, via S-adenosylhomocysteine hydrolase, appeared to be blocked resulting in the accumulation of this compound. As the intracellular level of S-adenosylhomocysteine increased, the rates of various methyltransferase reactions were reduced, resulting in elevated levels of intracellular S-adenosylmethionine. When the liver was perfused with normal plasma levels of methionine the S-adenosylmethionine : S-adenosylhomocysteine ratio was 5.3 and the half-life of the methyl groups was 32 min. Upon further addition of adenosien the S-adenosylmethionine : S-adenosylhomocysteine ratio shifted to 1.7 and the half-life of the methyl groups to 103 min. In the presence of adenosine and L-homocysteine such inordinate amounts of S-adenosylhomocysteine accumulated in the cell that methylation reactions were completely inhibited. Although adenine has been found to be a product of the S-adenosylhomocysteine hydrolase only trace quantities of this compound were detectable in the tissue after perfusing the liver with high concentrations of adenosine for 90 min.  相似文献   

3.
Preincubation with [14C] adenine labeled the nucleotide fraction of isolated cerebral tissues, which subsequently released 0.18% of their14C content per minute, a proportion increased threefold by electrical excitation. Of the14C released, 2–3% was as 5-adenine nucleotides and about 2% as cyclic adenosine 35-monophosphate (cAMP). Among the 5-nucleotides AMP greatly preponderated, and ATP and ADP were detected. When added to (unlabeled) incubating neocortical tissue, ATP and AMP yielded adenosine as the major product, with smaller quantities of inosine and hypoxanthine, to effluent fluids. cAMP so added yielded 5-nucleotides and the other compounds named; adenosine yielded mainly inosine and hypoxanthine. Results from these reactions and others in which theophylline was included led to the conclusion that an appreciable proportion of the effluent [14C] adenosine, inosine, and hypoxanthine derived from cAMP.  相似文献   

4.
Five enzymes concerned with the metabolism of adenine derivatives were assayed in seven regions of the rat brain. A region which included the hypothalamus had the highest AMP deaminase and adenosine deaminase activities, while its 5'-nucleotidase activities were relatively low. The enzymes named and also the uptake of [14C]adenine by incubated tissue samples were more active with hypothalamic than with neocortical tissues. On superfusion with glucose-bicarbonate saline after assimilating [14C]adenine, the hypothalamic tissues released about 0.2% of their 14C content per minute. This release was increased fourfold with electrical excitation but the presence of 0.25 μUM tetrodotoxin prevented most of this increase. The compounds released during superfusion and electrical stimulation were preponderantly hypoxanthine, inosine, and adenosine, with only small amounts of adenine nucleotides. The output of all these compounds increased during the period of stimulation and also the proportion of adenine nucleotides increased when stimulation was carried out in the presence of tetrodotoxin. The output of the nucleotides and adenosine increased more promptly when stimulated than did that of the other compounds named. The results are discussed in terms of the metabolic roles of the enzymes concerned, and in relation to whether the enzymes are acting on intracellular or extracellular substrates.  相似文献   

5.
Adenine nucleotides of guinea-pig neocortical tissues were labelled by incubation with [(14)C]adenine and excess of adenine was then removed by superfusion with precursor-free medium. Adenine derivatives released from the tissue during continued superfusion, including a period of electrical stimulation of the tissue, were collected by adsorption and examined after elution and concentration. The stimulation greatly increased the (14)C output, and material collected during and just after stimulation had a u.v. spectrum which indicated adenosine to be a major component. The additional presence of inosine and hypoxanthine was shown by chromatography and adenosine was identified also by using adenosine deaminase. Total adenine derivatives released from the tissue during a 10min period of stimulation were obtained as hypoxanthine, after deamination and hydrolysis of adenosine and inosine, and amounted to 159nmol/g of tissue. This corresponded to the release of approx. 7pmol/g of tissue per applied stimulus. The hypoxanthine sample derived from superfusate hypoxanthine, inosine and adenosine was of similar specific radioactivity to the sample of inosine separated chromatographically, and each was of higher specific radioactivity than the adenine nucleotides obtained by cold-acid extraction of the tissue.  相似文献   

6.
(1) Synaptosomal fractions from guinea pig neocortical dispersions prepared in sucrose solutions were deposited from saline media as ‘beds’ on nylon bolting cloth. When incubated with 0.5–10 μm -[14C]adenine or adenosine in glucose bicarbonate salines, uptake of 14C from adenosine proceeded at about four times the rate of uptake of [14C]adenine. This contrasted with the relative uptake of the two compounds to neocortical tissue slices or to beds made from mitochondrial fractions, where uptake was similar with the two precursors. Uptake of both precursors to synaptosome beds was much greater than uptake of inosine. (2) Synaptosome beds, [14C]adenosine-loaded, contained 88 per cent of the 14C as 5′-adenine nucleotides, the remainder being present as cyclic AMP, inosine, hypoxanthine and adenosine. When superfused, the 14C output consisted mainly of adenosine, inosine and hypoxanthine, with some 7 per cent of 5′-nucleotides and 4 per cent of cyclic AMP. (3) Electrical pulses and the addition of 50 mm -KCl each increased the efflux of 14C from superfused [14C]adenosine-loaded beds. The superfusates issuing after excitation contained the same 14C-labelled compounds as issued before, with a small increase in the proportional yield of adenosine. The additional output of 14C following electrical pulses was diminished by about 50 per cent by 0.5 μm -tetrodotoxin while that following KCl was not affected; it was however prevented when the superfusing fluids were free of Ca2+.  相似文献   

7.
1. Uptake of [(14)C]adenine and [(14)C]adenosine from surrounding fluids to guinea-pig cerebral tissues was measured during incubation in vitro. Output of (14)C-labelled compounds from the loaded tissues to superfusion fluids occurred on continued incubation, at about 0.2% of the tissue's content/min, and this rate was increased about fourfold by electrical excitation of the tissue. 2. The compounds released from the tissue to superfusion fluids included adenine, adenosine, inosine and hypoxanthine with small amounts of nucleotides. Output of all these compounds, except adenine, increased on excitation. Media depleted of oxygen or glucose also increased the output of (14)C-labelled derivatives from [(14)C]adenine-loaded tissues, and this augmented output was further increased by electrical stimulation. 3. [(14)C]Adenosine was found as the main product from [(14)C]ATP when this was added at low concentrations to fluids superfusing cerebral tissue. Metabolic and neurohumoural explanations of the liberation and action of adenosine derivatives in the tissue are discussed.  相似文献   

8.
Both ouabain, 0.1 mM, and veratridine, 0.05 mM, increased the release of14C-labeled compounds from rat cortical slices prelabeled with14C-adenine and incubated in vitro. The increment in radioactivity released by both depolarizing agents was almost entirely a result of increases in adenosine, inosine, and hypoxanthine. However, the distribution of these three compounds in the ouabain-induced efflux (adenosine, 12%; inosine, 51%; hypoxanthine, 36%) contrasted with that evoked by veratridine (adenosine, 42%; inosine, 15%; hypoxanthine, 38%). Phenytoin significantly reduced the efflux of14C-labeled compounds produced by both ouabain and veratridine, but phenobarbital had no effect. The intracortical injection of adenosine, inosine, and hypoxanthine has been shown to induce epileptiform discharges in rats, and it is suggested that the inhibitory effect of phenytoin on the release of adenine derivatives may play a role in its antiepileptic action.  相似文献   

9.
Five enzymes concerned with the metabolism of adenine derivatives were assayed in seven regions of the rat brain. A region which included the hypothalamus had the highest AMP deaminase and adenosine deaminase activities, while its 5'-nucleotidase activities were relatively low. The enzymes named and also the uptake of [14C]adenine by incubated tissue samples were more active with hypothalamic than with neocortical tissues. On superfusion with glucose-bicarbonate saline after assimilating [14C]adenine, the hypothalamic tissues released about 0.2 per cent of their 14C content per minute. This release was increased fourfold with electrical excitation but the presence of 0.25 muM tetrodotoxin prevented most of this increase. The compounds released during superfusion and electrical stimulation were preponderantly hypoxanthine, inosine, and adenosine, with only small amounts of adenine nucleotides. The output of all these compounds increased during the period of stimulation and also the proportion of adenine nucleotides increased when stimulation was carried out in the presence of tetrodotoxin. The output of the nucleotides and adenosine increased more promptly when stimulated than did that of the other compounds named. The results are discussed in terms of the metabolic roles of the enzymes concerned. and in relation to whether the enzymes are acting on intracellular or extracellular substrates.  相似文献   

10.
Abstract: The incorporation of [14C]adenosine into various metabolites was studied in a hippocampal slice preparation in order to assess the extent of adenosine metabolism via synthesis of S -adenosylhomocysteine, a potent inhibitor of transmethylation reactions. Highest incorporation of 14C occurred into nucleotides, with only a few percent being recovered in inosine + hypoxanthine, S -adenosylhomocysteine, and the free adenosine pool. Labeling of S -adenosylhomocysteine did not significantly increase with higher concentrations of added adenosine despite greater accumulation of free [14C]adenosine in the tissue. Addition of l -homocysteine significantly increased the labelling of S -adenosylhomocysteine. The results indicate that S -adenosylhomocysteine synthesis is a minor pathway of adenosine metabolism in brain tissue under steady-state conditions. Further, changes in adenosine concentration, without a concomitant change in l -homocysteine availability, are unlikely to lead to a significant accumulation of S -adenosylhomocysteine. S -Adenosylhomocysteine is therefore not likely to play a significant role in mediating the biological effects of adenosine in the CNS via inhibition of transmethylations.  相似文献   

11.
Ribose 1-phosphate has been measured in rat tissues by an enzymatic radioactive assay. The sugar phosphate is converted into [14C]inosine via the two following combined reactions: ribose 1-phosphate + [14C]adenine ? [14C]adenosine + phosphate (adenosine phosphorylase); [14C]adenosine + H2O → [14C]inosine + NH3 (adenosine deaminase). Tissue extracts are incubated in the presence of excess [14C]adenine. The radioactivity of inosine, separated by a thin-layer chromatographic system, is a measure of ribose 1-phosphate present in tissue extracts. Liver was found to contain the highest level of ribose 1-phosphate (ca. 800 nmol/g wet wt).  相似文献   

12.
The intracellular concentration of the cosubstrate 5-phosphoribosyl 1-pyrophosphate (PRPP) may be rate-limiting for the reactions, catalysed by hypoxanthine phosphoribosyltransferase, by which mammalian cells convert the purine bases hypoxanthine, xanthine, and guanine to their ribonucleotide derivatives. The rate of conversion of [14C]hypoxanthine to radioactive phosphorylated products by intact human diploid skin fibroblasts was measured in the presence of compounds previously reported to alter PRPP concentration in a variety of cell types Methylene blue, previously reported to increase PRPP concentration in a variety of cultured cells including skin fibroblasts, increased product formation from hypoxanthine, with maximum effect following 60 min preincubation with 0.4 mM. Incubation with adenine, orotic acid, allopurinol, or adenosine has been shown to decrease PRPP concentration. Of these compounds, only adenine and adenosine decreased the rate of ribonucleotide synthesis from hypoxanthine in cultured skin fibroblasts. This decrease probably resulted from decreased PRPP synthesis rather than increased PRPP utilization. The reaction products isolated from cells following incubation with either [14C]adenine or [14C]adenosine included adenosine monophosphate and adenosine diphosphate, both inhibitors of PRPP synthetase.  相似文献   

13.
The intracellular concentration of the cosubstrate 5-phosphoribosyl 1-pyrophosphate (PRPP) may be rate-limiting for the reactions, catalysed by hypoxanthine phosphoribosyltransferase, by which mammalian cells convert the purine bases hypoxanthine, xanthine, and guanine to their ribonucleotide derivatives. The rate of conversion of [14C]hypoxanthine to radioactive phosphorylated products by intact human diploid skin fibroblasts was measured in the presence of compounds previously reported to alter PRPP concentration in a variety of cell types Methylene blue, previously reported to increase PRPP concentration in a variety of cultured cells including skin fibroblasts, increased product formation from hypoxanthine, with maximum effect following 60 min preincubation with 0.4 mM. Incubation with adenine, orotic acid, allopurinol, or adenosine has been shown to decrease PRPP concentration. Of these compounds, only adenine and adenosine decreased the rate of ribonucleotide synthesis from hypoxanthine in cultured skin fibroblasts. This decrease probably resulted from decreased PRPP synthesis rather than increased PRPP utilization. The reaction products isolated from cells following incubation with either [14C]adenine or [14C]adenosine included adenosine monophosphate and adenosine diphosphate, both inhibitors of PRPP synthetase.  相似文献   

14.
Toxoplasma gondii, growing exponentially in heavily infected mutant Chinese hamster ovary cells that had a defined defect in purine biosynthesis, did not incorporate [U-14C]glucose or [14C]formate into the guanine or adenine of nucleic acids. Intracellular parasites therefore must be incapable of synthesizing purines and depend on their host cells for them. Extracellular parasites, which are capable of limited DNA and RNA synthesis, efficiently incorporated adenosine nucleotides, adenosine, inosine, and hypoxanthine into their nucleic acids; adenosine 5′-monophosphate was the best utilized precursor. Extracellular parasites incubated with ATP labeled with 3H in the purine base and 32P in the α-phosphate incorporated the purine ring 50-fold more efficiently than they did the α-phosphate. Thus, ATP is largely degraded to adenosine before it can be used by T. gondii for nucleic acid synthesis. Two pathways for the conversion of adenosine to nucleotides appear to exist, one involving adenosine kinase, the other hypoxanthine—guanine phosphoribosyl transferase. In adenosine kinase-less mutant parasites, the efficiency of incorporation of ATP or adenosine was reduced by 75%, which indicates the adenosine kinase pathway was predominant. Extracellular parasites incorporated ATP into both the adenine and the guanine of their nucleic acids, so ATP from the host cell could supply the entire purine requirement of T. gondii. However, ATP generated by oxidative phosphorylation in the host cell is not essential for parasites because they grew normally in a cell mutant that was deficient in aerobic respiration and almost completely dependent upon glycolysis.  相似文献   

15.
Katahira R  Ashihara H 《Planta》2006,225(1):115-126
To find general metabolic profiles of purine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, we looked at the in situ metabolic fate of various 14C-labelled precursors in disks from growing potato tubers. The activities of key enzymes in potato tuber extracts were also studied. Of the precursors for the intermediates in de novo purine biosynthesis, [14C]formate, [2-14C]glycine and [2-14C]5-aminoimidazole-4-carboxyamide ribonucleoside were metabolised to purine nucleotides and were incorporated into nucleic acids. The rates of uptake of purine ribo- and deoxyribonucleosides by the disks were in the following order: deoxyadenosine > adenosine > adenine > guanine > guanosine > deoxyguanosine > inosine > hypoxanthine > xanthine > xanthosine. The purine ribonucleosides, adenosine and guanosine, were salvaged exclusively to nucleotides, by adenosine kinase (EC 2.7.1.20) and inosine/guanosine kinase (EC 2.7.1.73) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Inosine was also salvaged by inosine/guanosine kinase, but to a lesser extent. In contrast, no xanthosine was salvaged. Deoxyadenosine and deoxyguanosine, was efficiently salvaged by deoxyadenosine kinase (EC 2.7.1.76) and deoxyguanosine kinase (EC 2.7.1.113) and/or non-specific nucleoside phosphotransferase (EC 2.7.1.77). Of the purine bases, adenine, guanine and hypoxanthine but not xanthine were salvaged for nucleotide synthesis. Since purine nucleoside phosphorylase (EC 2.4.2.1) activity was not detected, adenine phosphoribosyltransferase (EC 2.4.2.7) and hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) seem to play the major role in salvage of adenine, guanine and hypoxanthine. Xanthine was catabolised by the oxidative purine degradation pathway via allantoin. Activity of the purine-metabolising enzymes observed in other organisms, such as purine nucleoside phosphorylase (EC 2.4.2.1), xanthine phosphoribosyltransferase (EC 2.4.2.22), adenine deaminase (EC 3.5.4.2), adenosine deaminase (EC 3.5.4.4) and guanine deaminase (EC 3.5.4.3), were not detected in potato tuber extracts. These results suggest that the major catabolic pathways of adenine and guanine nucleotides are AMP → IMP → inosine → hypoxanthine → xanthine and GMP → guanosine → xanthosine → xanthine pathways, respectively. Catabolites before xanthosine and xanthine can be utilised in salvage pathways for nucleotide biosynthesis.  相似文献   

16.
In order to examine the biosynthesis, interconversion, and degradation of purine and pyrimidine nucleotides in white spruce cells, radiolabeled adenine, adenosine, inosine, uracil, uridine, and orotic acid were supplied exogenously to the cells and the overall metabolism of these compounds was monitored. [8‐14C]adenine and [8‐14C]adenosine were metabolized to adenylates and part of the adenylates were converted to guanylates and incorporated into both adenine and guanine bases of nucleic acids. A small amount of [8‐14C]inosine was converted into nucleotides and incorporated into both adenine and guanine bases of nucleic acids. High adenosine kinase and adenine phosphoribosyltransferase activities in the extract suggested that adenosine and adenine were converted to AMP by these enzymes. No adenosine nucleosidase activity was detected. Inosine was apparently converted to AMP by inosine kinase and/or a non‐specific nucleoside phosphotransferase. The radioactivity of [8‐14C]adenosine, [8‐14C]adenine, and [8‐14C]inosine was also detected in ureide, especially allantoic acid, and CO2. Among these 3 precursors, the radioactivity from [8‐14C]inosine was predominantly incorporated into CO2. These results suggest the operation of a conventional degradation pathway. Both [2‐14C]uracil and [2‐14C]uridine were converted to uridine nucleotides and incorporated into uracil and cytosine bases of nucleic acids. The salvage enzymes, uridine kinase and uracil phosphoribosyltransferase, were detected in white spruce extracts. [6‐14C]orotic acid, an intermediate of the de novo pyrimidine biosynthesis, was efficiently converted into uridine nucleotides and also incorporated into uracil and cytosine bases of nucleic acids. High activity of orotate phosphoribosyltransferase was observed in the extracts. A large proportion of radioactivity from [2‐14C]uracil was recovered as CO2 and β‐ureidopropionate. Thus, a reductive pathway of uracil degradation is functional in these cells. Therefore, white spruce cells in culture demonstrate both the de novo and salvage pathways of purine and pyrimidine metabolism, as well as some degradation of the substrates into CO2.  相似文献   

17.
The uptake and metabolism of [14C]- or [3H]adenosine have been studied in suspensions of washed platelets and in platelet rich plasma. The appearance of radio-activity in the platelets and the formation of radioactive adenosine metabolites have been used to determine the uptake. Adenosine is transported into human blood platelets by two different systems: a low Km system (9.8 μM) which is competitively inhibited by papaverine, and a high Km system (9.4 mM) which is competitively inhibited by adenine. Adenosine transported via the low Km system is probably directly incorporated into adenine nucleotides, while adenosine transported through the high Km system arrives unchanged inside the platelet and is then converted into inosine and hypoxanthine or incorporated into adenine nucleotides.  相似文献   

18.
The evoked release of purines from rabbit retinae preloaded with [3H]adenosine was studied in vitro. Potassium (8.6–43.6 mM) and ouabain (1 or 10 μM) increased the release of radioactivity in a concentration-dependent manner. The K+-evoked release was significantly reduced when the superfusion was carried out at 2–4°C. The effect of K+ (8.6, 13.6 and 23.6 mM) and of ouabain (1 μM) were completely abolished when the retinae were superfused with a Ca2+-free medium containing 0.1 mM EGTA. Calcium removal only partially reduced the effect of higher K+ and ouabain concentrations (43.6 mM and 10 μM, respectively). Further, the effect of K+ was found to be independent of extracellular Ca2+ when retinae were pretreated with ouabain for 30 min. Stimulation of the retina with light flashes induced a small, persistent increase in the release of radioactivity observable for several minutes after the end of stimulation.The superfusate contained mainly hypoxanthine and inosine. There were no significant changes in the relative proportions of the different purine compounds released before or in response to either K+ (23.6 mM) or ouabain (10 μM) stimulation. Potassium stimulation significantly increased the release of adenosine, inosine and hypoxanthine. Addition of the adenosine deaminase inhibitor, erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), significantly increased the relative proportions of released endogenous adenosine and inosine.The results indicate that K+ stimulation induces the release of purines from the rabbit retina by a Ca2+- and energy-dependent process. Light flashes also induce a purine release. The results suggest an active role for adenosine in retinal neurotransmission.  相似文献   

19.
—Adenine nucleotides of guinea-pig neocortical tissues were labelled by prior incubation with [14C]adenine and excess of adenine was then removed by superfusion with precursor-free media. During continued superfusion labelled adenine derivatives were released at a stable rate of about 0·05 per cent of the tissue 14C/min and this rate was increased about five-fold by electrical stimulation. Various compounds, including some known to increase the cyclic AMP content of cerebral tissues, were examined for action on the release of [14C]adenine derivatives from the tissue and also on the rates of lactate production by the tissue, both before and during electrical excitation. The tissue content of adenine nucleotides following exposure of the tissue to these compounds was also determined. Noradrenaline, γ-aminobutyrate and acetylcholine together with carbamoylcholine at the concentrations examined were without effect on the release of 14C compounds from the tissue. Also, noradrenaline and γ-aminobutyrate caused no alteration in lactate production but brought about some decrease in the adenylate energy charge of the tissue. Histamine, 100 μm , brought about a small but consistent increase (35 per cent) both in release of 14C-compounds and lactate output, while reducing the adenylate energy charge of the tissues. l -Glutamate at 5 mm decreased the tissue adenylate energy charge to a greater extent than did histamine; it increased the release of 14C-compounds seven to eight-fold and similarly increased the tissues' rates of lactate production. Lower concentrations of glutamate had smaller effects. In those cerebral tissues whose cyclic AMP content is increased by l -glutamate, the increase is probably brought about by intermediation of released adenosine.  相似文献   

20.
The transport of purine derivatives into vacuoles isolated from Saccharomyces cerevisiae was studied. Vacuoles which conserved their ability to take up purine compounds were prepared by a modification of the method of polybase-induced lysis of spheroplasts.Guanosine > inosine = hypoxanthine > adenosine were taken up with decreasing initial velocities, respectively; adenine was not transported.Guanosine and adenosine transporting systems were saturable, with apparent Km values 0.63 mM and 0.15 mM respectively, while uptake rates of inosine and of hypoxanthine were linear functions of their concentrations.Adenosine transport in vacuoles appeared strongly dependent on the growth phase of the cell culture.The system transporting adenosine was further characterized by its pH dependency optimum of 7.1 and its sensitivity to inhibition by S-adenosyl-l-methionine.In the absence of adenosine in the external medium, [14C]adenosine did not flow out from preloaded vacuoles. However, in the presence of external adenosine, a very rapid efflux of radioactivity was observed, indicating an exchange mechanism for the observed adenosine transport in the vacuoles.In isolated vacuoles the only purine derivative accumulated was found to be S-adenosyl-l-homocysteine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号