首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Components of kinin-forming systems operating at inflammatory sites are likely to interact with elastase that is released by recruited neutrophils and may, at least temporarily, constitute the major proteolytic activity present at these sites. The aim of this work was to determine the effect of kininogen degradation by human neutrophil elastase (HNE) on kinin generation by tissue and plasma kallikreins. We show that the digestion of both low molecular mass (LK) and high molecular mass (HK) forms of human kininogen by HNE renders them essentially unsusceptible to processing by human urinary kallikrein (tissue-type) and also significantly quenches the kinin release from HK by plasma kallikrein. Studies with synthetic model heptadecapeptide substrates, ISLMKRPPGFSPFRSSR and SLMKRPPGFSPFRSSRI, confirmed the inability of tissue kallikrein to process peptides at either termini of the internal kinin sequence, while plasma kallikrein was shown to release the kinin C-terminus relatively easily. The HNE-generated fragments of kininogens were separated by HPLC and the fractions containing internal kinin sequences were identified by a kinin-specific immunoenzymatic test after trypsin digestion. These fractions were analyzed by electrospray-ionization mass spectrometry. In this way, multiple peptides containing the kinin sequence flanked by only a few amino acid residues at each terminus were identified in elastase digests of both LK and HK. These results suggest that elastase may be involved in quenching the kinin-release cascade at the late stages of the inflammatory reaction.  相似文献   

2.
We have shown recently that kinins are generated during experimentally induced allergic rhinitis in man, and have demonstrated that substrates for kinin-forming enzymes are provided during the allergic response by a transudation of kininogens from plasma into nasal secretions. In light of this increased vascular permeability during the allergic reaction, we have extended our studies on the mechanisms of kinin formation to examine the potential involvement of plasma kallikrein. Allergic individuals (n = 7) and nonallergic controls (n = 7) were challenged intranasally with an allergen, and nasal lavages, obtained before and after challenge, were assayed for immunoreactive human plasma kallikrein/prekallikrein (iHPK). Post-challenge iHPK values were significantly elevated (p less than 0.01) in the allergic group (353 +/- 394 ng/ml; x +/- SD) as compared to the nonallergics (19 +/- 22 ng/ml), and correlated with increases in kinins, histamine, and N-alpha-tosyl-L-arginine methyl esterase (TAME-esterase) activity and with the onset of clinical symptoms. Gel filtration studies revealed that plasma prekallikrein is activated during the allergic response and contributes to kinin formation prior to interaction with plasma protease inhibitors. We also show that the majority of the TAME-esterase activity detected in nasal secretions during the allergic response is due to activities consistent with a plasma kallikrein/alpha 2-macroglobulin complex and with mast cell tryptase.  相似文献   

3.
Studies suggest that the actions of insulin on glucose metabolism may be mediated through activation of a membrane-bound serine protease with properties similar to a kallikrein-like enzyme. Also, bradykinin, a vasoactive product of kallikrein's action upon kininogen substrates, increases glucose uptake when infused into the human forearm. To determine whether a kallikrein or a kinin directly affects cellular glucose metabolism or participates in mediating insulin's actions, we studied their effects on isolated rat soleus muscle. Although trypsin (1.34 microM) increased incorporation of glucose into muscle glycogen to the same extent as insulin (200 mu units/ml), a purified rat tissue (urinary) kallikrein (0.4-1.34 microM) produced no such effect. Furthermore, the tissue kallikrein inhibitor, aprotinin, or a polyclonal kallikrein antiserum did not inhibit the action of insulin on incorporation of glucose into muscle glycogen. Treatment of the muscle preparation with bradykinin (1nM - 10 microM) did not result in any change in basal or insulin-stimulated (20 - 2000 mu units/ml) entry of glucose into glycogen or the glycolytic pathway. Bradykinin (1nM - 10 microM) also did not influence basal or insulin-stimulated (1000 mu units/ml) initial rates of glucose transport. These studies suggest that the previously observed in vivo effects of bradykinin on peripheral glucose uptake are probably mediated by changes in tissue perfusion rather than direct kinin effects on skeletal muscle, and that the putative membrane serine protease involved in the insulin-effector system is not tissue kallikrein.  相似文献   

4.
Two peptides exhibiting kinin activity in an isolated rat uterus assay were purified from pasteurized skim bovine milk. The amino acid sequence of the more prominent peptide was found to be that of bradykinin. Partially purified kinin preparations were also obtained from N-tosyl-L-phenylalanyl chloromethyl ketone-treated trypsin digests of non-fat dry milk and insoluble lactalbumin. The application of fast atom bombardment/mass spectrometry permitted detection of the bradykinin protonated molecular ion in each of these samples. Collision-activated decomposition of the ion of m/z 1061 confirmed it to be the protonated molecular ion of bradykinin. Fast atom bombardment/mass spectrometry analysis further confirmed the occurrence of bradykinin in a pancreatic kallikrein digest of a partially purified bovine milk kininogen preparation. In apparent contrast with bovine plasma kininogens, the forms of kininogen which occur in milk include a high Mr kininogen (Mr greater than 68,000) and a low Mr kininogen (Mr 16,000-17,000). Kinin formation from the high Mr kininogen is catalyzed by porcine pancreatic kallikrein or trypsin.  相似文献   

5.
Macrophages at an inflammatory site release massive amounts of proteolytic enzymes, including lysosomal cysteine proteases, which colocalize with their circulating, tight-binding inhibitors (cystatins, kininogens), so modifying the protease/antiprotease equilibrium in favor of enhanced proteolysis. We have explored the ability of human cathepsins B, K and L to participate in the production of kinins, using kininogens and synthetic peptides that mimic the insertion sites of bradykinin on human kininogens. Although both cathepsins processed high-molecular weight kininogen under stoichiometric conditions, only cathepsin L generated significant amounts of immunoreactive kinins. Cathepsin L exhibited higher specificity constants (kcat/Km) than tissue kallikrein (hK1), and similar Michaelis constants towards kininogen-derived synthetic substrates. A 20-mer peptide, whose sequence encompassed kininogen residues Ile376 to Ile393, released bradykinin (BK; 80%) and Lys-bradykinin (20%) when incubated with cathepsin L. By contrast, cathepsin K did not release any kinin, but a truncated kinin metabolite BK(5-9) [FSPFR(385-389)]. Accordingly cathepsin K rapidly produced BK(5-9) from bradykinin and Lys-bradykinin, and BK(5-8) from des-Arg9-bradykinin, by cleaving the Gly384-Phe385 bond. Data suggest that extracellular cysteine proteases may participate in the regulation of kinin levels at inflammatory sites, and clearly support that cathepsin K may act as a potent kininase.  相似文献   

6.
Focused microwave irradiation was employed to stabilize endogenous whole rat brain bradykinin levels prior to a simple extraction procedure. Skull microwave exposure (2450 MHz, 3.8 kW., 2.45 sec) resulted in inactivation to less than 5% of control of whole brain kallikrein and kininase activity. Using this adequate exposure duration whole rat brain kinin levels as measured by a sensitive radio-immunoassay were approximately 0.6 pmol/g (wet weight). Further purification of irradiated brain extracts using HPLC revealed that immunoreactive kinin eluted as a single peak that co-chromatographed with authentic bradykinin. Microwave fixation duration of 1.25 sec yielded greatly increased levels of immunoreactive kinin which following HPLC purification eluted in two peaks, corresponding to authentic bradykinin and T-kinin, respectively. The tissue injury resulting from incomplete microwave fixation resulted in the release of kinins. This excess immunoreactive kinin may be derived from cerebral blood, since the predominant form of kinin-generating protein in plasma is T-kininogen.  相似文献   

7.
Submandibular gland kallikrein [EC 3.4.21.8] of male Sprague-Dawley rats was purified by chromatography on soybean trypsin inhibitor (SBTI)-CH-Sepharose 4B, DEAE-Sephadex A-50, aprotinin-CH-Sepharose 4B and Sephadex G-100 columns and preparative isoelectrofocusing. The molecular weight of the kallikrein was estimated to be 30,000 by Sephadex G-100 gel filtration and 29,000 by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Isoelectric points ranged from pH 3.55 to 4.30. The kinin formed at pH 8 by this kallikrein from bovine low molecular weight (LMW) kininogen showed the same behavior as lysyl-bradykinin on HPLC in a solution of ammonium biphosphate containing acetonitrile. At physiological pH, this kallikrein also generated angiotensin II, a potent vasopressor, from human plasma protein. Rat submandibular gland kallikrein differs from tonin in the isoelectric point, the optimal pH for angiotensin II formation and the type of kinin formed. The tissue kallikrein might play a role in the regulation of local blood flow in view of its ability to form both vasoconstrictive and vasodilatory peptides.  相似文献   

8.
We have previously demonstrated that a mixture of bradykinin and lysylbradykinin is generated in nasal secretions during the immediate allergic response to allergen. The present studies were performed to determine whether glandular kallikrein plays a role in kinin formation during the allergic reaction. Allergic individuals (n = 7) and nonallergic controls (n = 7) were challenged intranasally with appropriate allergen, and nasal lavages obtained before and after challenge were assayed for immunoreactive glandular kallikrein as well as for histamine, kinins, and N-alpha-tosyl-L-arginine methyl esterase (TAME-esterase) activity. The increase in postchallenge immunoreactive glandular kallikrein levels above baseline was significantly greater (p less than 0.01) for the allergic group (16.3 +/- 14 ng/ml; means +/- SD) than for the nonallergic controls (1.0 +/- 1.9 ng/ml). Increased levels of immunoreactive glandular kallikrein correlated with increases in kinins, histamine, and TAME-esterase activity and with the onset of clinical symptoms. Characterization of immunoreactive glandular kallikrein purified from postchallenge lavages by immunoaffinity chromatography confirmed the identity of this material as an authentic glandular kallikrein on the basis of its inhibition by protease inhibitors and by monospecific antibody to tissue kallikrein, its chromatographic behavior on gel filtration, and its ability to generate lysylbradykinin from highly purified human low m.w. kininogen. The specific activity of this purified material, in terms of kinin generation from kininogen, was very similar to that for authentic glandular kallikrein, suggesting that most if not all of the immunoreactive material purified from nasal lavages represented active enzyme. Inhibition studies by using pooled postchallenge lavages suggest that the majority of the kinin generating activity in these samples was due to glandular kallikrein. We conclude, therefore, that glandular kallikrein is secreted during the allergic response and can contribute to the formation of the lysylbradykinin produced during the allergic reaction.  相似文献   

9.
A new protease has been purified to homogeneity from rat submandibular gland homogenate by using DEAE-Sephadex chromatography, chromatofocusing, aprotinin-Sepharose affinity chromatography, and high-performance liquid chromatography. The enzyme has been named esterase B, since it represents the second major esterolytic peak on DEAE-Sephadex chromatography of submandibular gland homogenate. It is an acidic protein (pI = 4.45) with an apparent molecular weight of 27 000. It is heat-stable and has an optimum pH of 9.5. Esterase B hydrolyzed the synthetic substrates tosyl-L-arginine methyl ester and Val-Leu-Arg-p-nitroanilide (S2266). It also cleaved dog plasma kininogen to produce a kinin, identified as bradykinin on reverse-phase high-performance liquid chromatography. Esterase B, however, is only a weak kininogenase, since it had only 5% of the kininogenase activity of equimolar concentrations of glandular kallikrein and had no effect on rat mean blood pressure or on the isolated rat uterus. Esterase B activated plasminogen and had caseinolytic activity. It was inhibited by aprotinin, soybean trypsin inhibitor, lima bean trypsin inhibitor, phenylmethanesulfonyl fluoride, antipain, leupeptin, and p-tosyl-L-lysine chloromethyl ketone. On double immunodiffusion, when reacted with kallikrein and tonin antisera, esterase B showed partial identity with kallikrein but not with tonin. On immunoelectrophoresis against kallikrein antisera, esterase B formed a precipitin arc at a position different from that of kallikrein. Esterase B appears to be a trypsin-like serine protease having some homology with glandular kallikrein.  相似文献   

10.
Clostridiopeptidase B (EC 3.4.22.8) was not inhibited by stoichiometric amounts of lima bean trypsin inhibitor, ovomucoid trypsin inhibitor, Kuntiz bovine trypsin inhibotor, Kunitz soybean trypsin inhibitor or ovoinhibitor. Activity was diminished at relatively high concentrations of the three latter inhibitors. Human plasma alpha 2-macroglobulin inhibited both the amidase and protease activity of the enzyme. Rat and dog plasmas contained high molecular weight inhibitors, presumably macroglobulins as well. Inhibition by this component was greater in rat plasma than in dog plasma, which may be related to the observation that clostridiopeptidase B-induced generation of kinin activity is indirect in the former plasma, but direct in the later. Leupeptin (N-acetyl-L-leucyl-L-leucyl-L-argininal) and antipain ([S)-1-carboxy-2-phenylethyl] carbamoyl-L-arginyl-L-valyl-L-argininal) inhibited clostridiopeptidase B (Ki of 2 . 10(-8) and 3 . 10(-8) M, respectively). They were potent inhibitors of clostridiopeptidase B-induced kinin release in dog plasma.  相似文献   

11.
Vibrio mimicus, a causative agent of gastroenteritis, has also been reported to attribute to extraintestinal infections. Recently we have purified a metalloprotease produced by the pathogen: however, the role of the protease in V. mimicus infection has not been documented. The V. mimicus protease (VMP) was found to enhance vascular permeability and form edema when injected into the dorsal skin of guinea pig and rat. The permeability enhancement by VMP was observed in a dose-dependent manner in both guinea pig and rat skin. In guinea pig, an inhibitor of the angiotensin-converting enzyme was found to augment the permeability enhancement reaction. The permeability enhancement was significantly blocked by soybean trypsin inhibitor (SBTI), an inhibitor of plasma kallikrein reaction. In vitro conversion of plasma prekallikrein to kallikrein by VMP was also noted. In rat skin, the permeability enhancement reaction was not blocked by antihistamine or SBTI. However, the reaction was partially blocked when a mixture of antihistamine and SBTI was administered with VMP. It is apparent from the study that in guinea pig skin, VMP enhances vascular permeability through activation of plasma kallikrein-kinin system which generates bradykinin, whereas in addition to the activation of plasma kallikrein-kinin cascade in the case of rat, stimulation of histamine release from mast cells and other unknown mechanism seem to be also a cause of the permeability enhancement reaction. These results suggest that VMP may play a role in extraintestinal infections with edema caused by the pathogen.  相似文献   

12.
The effect of various proteases (kallikrein, plasmin, and trypsin) on sperm phospholipase A2 activity (PA2: EC 3.1.1.4) has been studied. The addition of trypsin to spermatozoa, isolated and washed in the presence of the protease inhibitor benzamidine, increased PA2 activity optimally with trypsin concentrations of 1.0–1.5 units/assay. In kinetic studies, all of the above proteases stimulated the deacylation of phosphatidylcholine (PC); in fresh spermatozoa, trypsin showed a higher activation potential than kallikrein or plasmin. In the presence of benzamidine, the activity remained at basal levels. Endogenous protease activity due to acrosin (control) resulted in an increase in PC deacylation compared to the basal level. The maximum activation time of PA2 activity by proteases was 30 min. Natural protease inhibitors (soybean trypsin inhibitor and aprotinin) kept the PA2 activity at basal levels and a by-product of kallikrein, bradykinin, did not significantly affect the control level. Protein extracts of fresh spermatozoa exhibited the same pattern of PA2 activation upon the addition of proteases, thus indicating that the increase in PA2 activity was not merely due to the release of the enzyme from the acrosome. All of these findings suggest the presence of a precursor form of phospholipase A2 that can be activated by endogenous proteases (acrosin) as well by exogenous proteases present in seminal plasma and in follicular fluid (plasmin, kallikrein). Thus, this interrelationship of proteases and prophospholipase A2 could activate a dormant fusogenic system: the resulting effect would lead to membrane fusion by lysolipids, key components in the acrosome reaction.  相似文献   

13.
We examined whether Brown Norway rat plasma (BN/May Pfd f) contains alpha 1-cysteine proteinase inhibitor (alpha 1-CPI), also called major acute phase alpha 1-protein or T-kininogen. T-kininogen is a low molecular weight kininogen from which kinin can be released by trypsin but not by kallikreins. The BN plasma reacted with rabbit anti-alpha 1-CPI gamma globulins. Purified alpha 1-CPI released a kinin-like activity with trypsin and with homogenate of salivary glands, as Brown Norway rat plasma did. High concentration of added rat urine induced a small release (10%) of kinin from alpha 1-CPI. Preincubation of Brown Norway rat plasma with rabbit anti-rat alpha 1-CPI gamma-globulins nearly suppressed the kinin-forming substrate of trypsin in this plasma. These results indicated that plasma of our Brown Norway rats contains only alpha 1-CPI as kinin-forming substrate. This plasma contains low amount of alpha 2-macroglobulin, while its content in orosomucoid and haptoglobin was a little larger than that of Wistar rat plasma.  相似文献   

14.
Purification and properties of rat stomach kallikrein   总被引:2,自引:0,他引:2  
Kallikrein (EC 3.4.21.8) was purified from rat stomach by column chromatography on p-aminobenzamidine-Sepharose, DEAE-Sephadex A-50 and Sephadex G-150 and by isoelectric focusing, measuring its activities to hydrolyse L-prolyl-L-phenylalanyl-L-arginine-4-methyl-coumaryl-7-amide and to release kinin from heat-treated rat plasma. the purified stomach kallikrein showed a single band on polyacrylamide gel electrophoresis at pH 7.0. Its molecular weight was calculated to be 29 000 by gel-filtration on a column of Sephadex G-50. The kallikrein was stable between pH 6-11 and hydrolyzed L-prolyl-L-phenylalanyl-L-arginine-4-methyl-coumaryl-7-amide optimally at pH 11.0. The L-prolyl-L-phenylalanyl-L-arginine-4-methyl-coumaryl-7-amide hydrolyzing activity of rat stomach kallikrein was inhibited by diisopropyl fluorophosphate and Trasylol, but not by trypsin inhibitors from soybean, lima bean and ovomucoid. These properties of rat stomach kallikrein are different from those of partially purified rat plasma kallikrein, but similar to those of glandular kallikreins from other species. From these results, it was concluded that kallikrein is present in rat stomach and that it can be classified as a glandular kallikrein.  相似文献   

15.
Human urinary active kallikrein and prokallikrein were separated on DEAE-cellulose and octyl-Sepharose columns and both purified to homogeneity by affinity chromatography, gel filtration and hydrophobic h.p.l.c. Prokallikrein was monitored during purification by trypsin activation followed by determination of both amidase and kininogenase activity. After trypsin activation, purified prokallikrein had a specific kininogenase activity of 39.4 micrograms of bradykinin equivalent/min per mg and amidase activity of 16.5 mumol/min per mg with D-Val-Leu-Arg-7-amino-4-trifluoromethylcoumarin. Purified active kallikrein had a specific activity of 47 micrograms of bradykinin/min per mg. The molecular mass of prokallikrein was 48 kDa on electrophoresis and 53 kDa on gel filtration whereas active kallikrein gave values of 46 kDa and 53 kDa respectively. Antisera to active and prokallikrein were obtained. In double immunodiffusion and immunoelectrophoresis, antiserum to active kallikrein reacted with active and pro-kallikrein. Antiserum to prokallikrein contained antibodies to determinants not found in active kallikrein, presumably due to the presence of the activation peptide in the proenzyme. Human prokallikrein can be activated by thermolysin, trypsin and human plasma kallikrein. Activation of 50% of the prokallikrein (1.35 microM) was achieved in 30 min with 25 nM-thermolysin, 78 nM-trypsin or 180 nM-human plasma kallikrein. Thus thermolysin was the most effective activator. Thermolysin activated prokallikrein by releasing active kallikrein with N-terminal Ile1-Val2. Thus human tissue (glandular) prokallikrein can be activated by two types of enzymes: serine proteinases, which cleave at the C-terminus of basic amino acids, and by a metalloproteinase that cleaves at the N-terminus of hydrophobic amino acids.  相似文献   

16.
A tissue kallikrein from human seminal plasma was isolated by immunoaffinity chromatography and characterized. Its molecular mass was determined by gel filtration to be approximately 40000 Da. The enzyme preparation liberates kinin from human HMW kininogen (specific activity: 0.594 HMW kininogen-U/mg), lowers the blood pressure of dogs after intravenous injection (specific activity: 1740 biol. kallikrein unit/mg) and is strongly inhibited by aprotinin but not by soybean trypsin inhibitor. N alpha-Acetyl-L-phenylalanyl-L-arginine ethyl ester, D-valyl-L-leucyl-L-agrine ethyl ester and N-benzyloxycarbonyl-L-tyrosine p-nitrophenyl ester are cleaved with identical rates by the enzyme from human seminal plasma and human urinary kallikrein.  相似文献   

17.
The influence of the hyaluronan-binding protease (PHBSP), a plasma enzyme with FVII- and pro-urokinase-activating potency, on components of the contact phase (kallikrein/kinin) system was investigated. No activation or cleavage of the proenzymes involved in the contact phase system was observed. The pro-cofactor high molecular weight kininogen (HK), however, was cleaved in vitro by PHBSP in the absence of any charged surface, releasing the activated cofactor and the vasoactive nonapeptide bradykinin. Glycosoaminoglycans strongly enhanced the reaction. The cleavage was comparable to that of plasma kallikrein, but clearly different from that of coagulation factor FXIa. Upon extended incubation with PHBSP, the light chain was further processed, partially removing about 60 amino acid residues from the N-terminus of domain D5 of the light chain. These cleavage site(s) were distinct from plasma kallikrein or FXIa cleavage sites. PHBSP and, more interestingly, also plasma kallikrein could cleave low molecular weight kininogen in vitro, indicating that domains D5H and D6H are no prerequisite for kininogen cleavage. PHBSP was also able to release bradykinin from HK in plasma where the pro-cofactor circulates predominantly in complex with plasma kallikrein or FXI. In conclusion, PHBSP represents a novel kininogen-cleaving and bradykinin-releasing enzyme in plasma that shares significant catalytic similarities with plasma kallikrein. Since they are structurally unrelated in their heavy chains (propeptide), their similar in vivo catalytic activities might be directed at distinct sites where PHBSP could induce processes that are related to the kallikrein/kinin system.  相似文献   

18.
Epithelial Na Channels (ENaC) are responsible for the apical entry of Na(+) in a number of different epithelia including the renal connecting tubule and cortical collecting duct. Proteolytic cleavage of γ-ENaC by serine proteases, including trypsin, furin, elastase, and prostasin, has been shown to increase channel activity. Here, we investigate the ability of another serine protease, tissue kallikrein, to regulate ENaC. We show that excretion of tissue kallikrein, which is secreted into the lumen of the connecting tubule, is stimulated following 5 days of a high-K(+) or low-Na(+) diet in rats. Urinary proteins reconstituted in a low-Na buffer activated amiloride-sensitive currents (I(Na)) in ENaC-expressing oocytes, suggesting an endogenous urinary protease can activate ENaC. We next tested whether tissue kallikrein can directly cleave and activate ENaC. When rat ENaC-expressing oocytes were exposed to purified tissue kallikrein from rat urine (RTK), ENaC currents increased threefold in both the presence and absence of a soybean trypsin inhibitor (SBTI). RTK and trypsin both decreased the apparent molecular mass of cleaved cell-surface γ-ENaC, while immunodepleted RTK produced no shift in apparent molecular mass, demonstrating the specificity of the tissue kallikrein. A decreased effect of RTK on Xenopus ENaC, which has variations in the putative prostasin cleavage sites in γ-ENaC, suggests these sites are important in RTK activation of ENaC. Mutating the prostasin site in mouse γ-ENaC (γRKRK186QQQQ) abolished ENaC activation and cleavage by RTK while wild-type mouse ENaC was activated and cleaved similar to that of the rat. We conclude that tissue kallikrein can be a physiologically relevant regulator of ENaC activity.  相似文献   

19.
Aeromonas sobria causes septic shock, a condition associated with high mortality. To study the mechanism of septic shock by A. sobria infection, we examined the vascular leakage (VL) activity of A. sobria serine proteinase (ASP), a serine proteinase secreted by this pathogen. Proteolytically active ASP induced VL mainly in a bradykinin (BK) B(2) receptor-, and partially in a histamine-H(1) receptor-dependent manner in guinea pig skin. The ASP VL activity peaked at 10 min to 1.8-fold of the initial activity with an increased BK B(2) receptor dependency, and attenuated almost completely within 30 min. ASP produced VL activity from human plasma apparently through kallikrein/kinin system activation, suggesting that ASP can generate kinin in humans. Consistent with the finding that a major part of the ASP-induced VL was reduced by a potent kallikrein inhibitor, soybean trypsin inhibitor that does not affect ASP enzymatic activity, ASP activated prekallikrein but not factor XII to generate kallikrein in a dose- and incubation time-dependent manner. ASP produced more VL activity directly from human low m.w. kininogen than high m.w. kininogen when both were used at their normal plasma concentrations. Intra-arterial injection of ASP into guinea pigs lowered blood pressure specifically via the BK B(2) receptor. These data suggest that ASP induces VL through prekallikrein activation and direct kinin release from kininogens, which is a previously undescribed mechanism of A. sobria virulence and could be associated with the induction of septic shock by infection with this bacterium. ASP-specific inhibitors, and kinin receptor antagonists, might prove useful for the treatment or prevention of this fatal disease.  相似文献   

20.
A serine proteinase inhibitor isolated from Leucaena leucocephala seeds (LlTI) was purified to homogeneity by acetone fractionation, ion exchange chromatography, gel filtration and reverse phase chromatography (HPLC). SDS-PAGE indicated a protein with M(r) 20000 and two polypeptide chains (alpha-chain, M(r) 15000, and beta-chain, M(r) 5000), the sequence being determined by automatic Edman degradation and by mass spectroscopy. LlTI is a 174 amino acid residue protein which shows high homology to plant Kunitz inhibitors, especially those double chain proteins purified from the Mimosoideae subfamily. LlTI inhibits plasmin (K(i) 3.2 x 10(-10) M), human plasma kallikrein (K(i) 6.3 x 10(-9) M), trypsin (K(i) 2.5 x 10(-8) M) and chymotrypsin (K(i) 1.4 x 10(-8) M). Factor XIIa activity is inhibited but K(i) was not determined, and factor Xa, tissue kallikrein and thrombin are not inhibited by LlTI. The action of LlTI on enzymes that participate in the blood clotting extrinsic pathway is confirmed by the prolongation of activated partial thromboplastin time, used as clotting time assay. The inhibition of the fibrinolytic activity of plasmin was confirmed on the hydrolysis of fibrin plates. LlTI inhibits kinin release from high molecular weight kininogen by human plasma kallikrein in vitro and, administered intravenously, causes a decrease in paw edema induced by carrageenin or heat in male Wistar rats. In addition, lower concentrations of bradykinin were found in limb perfusion fluids of LlTI-treated rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号