首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mass spectrometry technologies for proteomics.   总被引:1,自引:0,他引:1  
In the late 1980s, the advent of soft ionization techniques capable of generating stable gas phase ions from thermally unstable biomolecules, namely matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI), laid the way for the development of a set of powerful alternatives to the traditional Edman chemistry for the structural characterization of peptides and proteins. The rapid protein identification capabilities that, coupled with two-dimensional gel electrophoresis, provided insights into all sorts of biological systems since the dawn of proteomics and have been exploited in the last few years for the development of more powerful and automatable gel-free strategies, mainly based on multidimensional chromatographic separations of peptides from proteolytic digests. In parallel to the evolution of ion sources, mass analysers and scan modes, the invention of new elegant biochemical strategies to fractionate or simplify highly complex mixtures, or to introduce isotopic labels in peptides in a variety of ways now makes also possible large-scale, high-coverage quantitative studies in a wide dynamic range. In this review, we provide the fundamental concepts of mass spectrometry (MS) and describe the technological progress of MS-based proteomics since its earliest days. Representative literature examples of their true power, either when employed as exploratory or as targeted techniques, is provided as well.  相似文献   

2.
Introduction: Analysis of histone post-translational modifications (PTMs) by mass spectrometry (MS) has become a fundamental tool for the characterization of chromatin composition and dynamics. Histone PTMs benchmark several biological states of chromatin, including regions of active enhancers, active/repressed gene promoters and damaged DNA. These complex regulatory mechanisms are often defined by combinatorial histone PTMs; for instance, active enhancers are commonly occupied by both marks H3K4me1 and H3K27ac. The traditional bottom-up MS strategy identifies and quantifies short (aa 4–20) tryptic peptides, and it is thus not suitable for the characterization of combinatorial PTMs.

Areas covered: Here, we review the advancement of the middle-down MS strategy applied to histones, which consists in the analysis of intact histone N-terminal tails (aa 50–60). Middle-down MS has reached sufficient robustness and reliability, and it is far less technically challenging than PTM quantification on intact histones (top-down). However, the very few chromatin biology studies applying middle-down MS resulting from PubMed searches indicate that it is still very scarcely exploited, potentially due to the apparent high complexity of method and analysis.

Expert commentary: We will discuss the state-of-the-art workflow and examples of existing studies, aiming to highlight its potential and feasibility for studies of cell biologists interested in chromatin and epigenetics.  相似文献   


3.
Peptide fractionation is extremely important in proteomics approaches. Full proteome characterization is desired from complex organisms, and with growing interest in post-translational modifications an extended protein sequence coverage is required. Peptide fractionation techniques have the great challenge of feeding current mass spectrometers in a way in which these issues are met. Peptide fractionation can be divided into three simple components: the column characteristics; the mobile phase; and peptide properties (charge, polarity, hydrophobicity and size). The current challenges are in the combination of these three components to allow comprehensive proteomics studies to be improved.  相似文献   

4.
Introduction: Advances in mass spectrometry-based proteomic technologies are enhancing studies of viral pathogenesis. Identification and quantification of host and viral proteins and modifications in cells and extracellular fluids during infection provides useful information about pathogenesis, and will be critical for directing clinical interventions and diagnostics.

Areas covered: Herein we review and discuss a broad range of global proteomic studies conducted during viral infection, including those of cellular responses, protein modifications, virion packaging, and serum proteomics. We focus on viruses that impact human health and focus on experimental designs that reveal disease processes and surrogate markers.

Expert commentary: Global proteomics is an important component of systems-level studies that aim to define how the interaction of humans and viruses leads to disease. Viral-community resource centers and strategies from other fields (e.g., cancer) will facilitate data sharing and platform-integration for systems-level analyses, and should provide recommended standards and assays for experimental designs and validation.  相似文献   


5.
The study of signal transduction provides fundamental information regarding the regulation of all biologic processes that support the normal function of life. Functional proteomics, a rapidly emerging discipline that aims to understand the expression, function and regulation of the entire set of proteins in a given cell type, tissue or organism, offers unprecedented opportunity for signal transduction research in terms of understanding cellular behavior and regulation at the systems level. Indeed, swift progress in the area of proteomics has demonstrated the major impact of proteomic approaches on signal transduction and biomedical research. In this review, recent and innovative applications of functional proteomics in determining changes in protein contents, modifications, activities and interactions underpinning signaling transduction pathways are discussed.  相似文献   

6.
蒲强  罗嘉  沈林園  李学伟  张顺华  朱砺 《遗传》2015,37(4):327-335
蛋白质翻译后修饰(Post-translational modifications, PTMs)在生命体中具有十分重要的作用。生命有机体中常见的PTMs有磷酸化、酰化、糖基化、泛素化、乙酰化、氧化和甲基化等。文章主要介绍了蛋白质组学在肉制品科学方面的应用、PTMs的主要内容以及分析蛋白修饰特性常见技术的发展,总结了PTMs对肌肉生理特性的影响和蛋白质组学方法在肉质蛋白质修饰研究中的重要性及前景,讨论了利用蛋白质修饰组学技术研究肌肉熟化过程中品质特性变化的特点。  相似文献   

7.
The scientific community has shown great interest in the field of mass spectrometry-based proteomics and peptidomics for its applications in biology.Proteomics technologies have evolved to produce larg...  相似文献   

8.
9.
Introduction: Protein prenylation is a ubiquitous covalent post-translational modification characterized by the addition of farnesyl or geranylgeranyl isoprenoid groups to a cysteine residue located near the carboxyl terminal of a protein. It is essential for the proper localization and cellular activity of numerous proteins, including Ras family GTPases and G-proteins. In addition to its roles in cellular physiology, the prenylation process has important implications in human diseases and in the recent years, it has become attractive target of inhibitors with therapeutic potential.

Areas covered: This review attempts to summarize the basic aspects of prenylation integrating them with biological functions in diseases and giving an account of the current status of prenylation inhibitors as potential therapeutics. We also summarize the methodologies for the characterization of this modification.

Expert commentary: The growing body of evidence suggesting an important role of prenylation in diseases and the subsequent development of inhibitors of the enzymes responsible for this modification lead to the urgent need to identify the full spectrum of prenylated proteins that are altered in the disease or affected by drugs. Proteomic tools to analyze prenylated proteins are recently emerging, thanks to the advancement in the field of mass spectrometry coupled to enrichment strategies.  相似文献   


10.
Viruses have coevolved with their hosts, acquiring strategies to subvert host cellular pathways for effective viral replication and spread. Human cytomegalovirus (HCMV), a widely-spread β-herpesvirus, is a major cause of birth defects and opportunistic infections in HIV-1/AIDS patients. HCMV displays an intricate system-wide modulation of the human cell proteome. An impressive array of virus–host protein interactions occurs throughout the infection. To investigate the virus life cycle, proteomics has recently become a significant component of virology studies. Here, we review the mass spectrometry-based proteomics approaches used in HCMV studies, as well as their contribution to understanding the HCMV life cycle and the virus-induced changes to host cells. The importance of the biological insights gained from these studies clearly demonstrate the impact that proteomics has had and can continue to have on understanding HCMV biology and identifying new therapeutic targets.  相似文献   

11.
ABRF-PRG04: differentiation of protein isoforms.   总被引:1,自引:1,他引:0  
Accurate protein identification sometimes requires careful discrimination between closely related protein isoforms that may differ by as little as a single amino acid substitution or post-translational modification. The ABRF Proteomics Research Group sent a mixture of three picomoles each of three closely related proteins to laboratories who requested it in the form of intact proteins, and participating laboratories were asked to identify the proteins and report their results. The primary goal of the ABRF-PRG04 Study was to give participating laboratories a chance to evaluate their capabilities and practices with regards to sample fractionation (1D- or 2D-PAGE, HPLC, or none), protein digestion methods (in-solution, in-gel, enzyme choice), and approaches to protein identification (instrumentation, use of software, and/or manual techniques to facilitate interpretation), as well as determination of amino acid or post-translational modifications. Of the 42 laboratories that responded, 8 (19%) correctly identified all three isoforms and N-terminal acetylation of each, 16 (38%) labs correctly identified two isoforms, 9 (21%) correctly identified two isoforms but also made at least one incorrect identification, and 9 (21%) made no correct protein identifications. All but one lab used mass spectrometry, and data submitted enabled a comparison of strategies and methods used.  相似文献   

12.
We present a large-scale top-down proteomics (TDP) study of plant leaf and chloroplast proteins, achieving the identification of over 4700 unique proteoforms. Using capillary zone electrophoresis coupled with tandem mass spectrometry analysis of offline size-exclusion chromatography fractions, we identify 3198 proteoforms for total leaf and 1836 proteoforms for chloroplast, with 1024 and 363 proteoforms having post-translational modifications, respectively. The electrophoretic mobility prediction of capillary zone electrophoresis allowed us to validate post-translational modifications that impact the charge state such as acetylation and phosphorylation. Identified modifications included Trp (di)oxidation events on six chloroplast proteins that may represent novel targets of singlet oxygen sensing. Furthermore, our TDP data provides direct experimental evidence of the N- and C-terminal residues of numerous mature proteoforms from chloroplast, mitochondria, endoplasmic reticulum, and other sub-cellular localizations. With this information, we suggest true transit peptide cleavage sites and correct sub-cellular localization signal predictions. This large-scale analysis illustrates the power of top-down proteoform identification of post-translational modifications and intact sequences that can benefit our understanding of both the structure and function of hundreds of plant proteins.  相似文献   

13.
The strong need for quantitative information in proteomics has fueled the development of mass spectrometry-based analytical methods that are able to determine protein abundances. This article reviews mass spectrometry experiments aimed at providing an absolute quantification of proteins. The experiments make use of the isotope-dilution concept by spiking a known amount of synthetic, isotope-labeled reference peptide into the analyte sample. Quantification is achieved by comparing the mass spectrometry signal intensities of the reference with an endogenous peptide that is generated upon proteolytic cleavage of the target protein. In an analogous manner, the level of post-translational modification at a distinct residue within a target protein can be determined. Among the strengths of absolute quantification are low detection limits reaching subfemtomole levels, a high dynamic range spanning approximately five orders of magnitude, low requirements for sample clean-up, and a fast and straightforward method development. Recent studies have demonstrated the compatibility of absolute quantification with various mass spectrometry readout techniques and sample purification steps such as 1D gel electrophoresis, size-exclusion chromatography, isoelectric peptide focusing, strong cation exchange and reversed phase or affinity chromatography. Under ideal conditions, quantification errors and coefficients of variation below 5% have been reported. However, the fact that at the start of the experiment the analyte is a protein and the internal standard is a peptide, severe quantification errors may result due to the selection of unsuitable reference peptides and/or imperfect protein proteolysis. Within the ensemble of mass spectrometry-based quantification methods, absolute quantification is the method of choice in cases where absolute numbers, many repetitive experiments or precise levels of post-translational modifications are required for a few, preselected species of interest. Consequently, prominent application areas include biomarker quantification, the study of post-translational modifications such as phosphorylation or ubiquitination and the comparison of concentrations of interacting proteins.  相似文献   

14.
Redox post-translational modifications on cysteine thiols (redox PTMs) have profound effects on protein structure and function, thus enabling regulation of various biological processes. Redox proteomics approaches aim to characterize the landscape of redox PTMs at the systems level. These approaches facilitate studies of condition-specific, dynamic processes implicating redox PTMs and have furthered our understanding of redox signaling and regulation. Mass spectrometry (MS) is a powerful tool for such analyses which has been demonstrated by significant advances in redox proteomics during the last decade. A group of well-established approaches involves the initial blocking of free thiols followed by selective reduction of oxidized PTMs and subsequent enrichment for downstream detection. Alternatively, novel chemoselective probe-based approaches have been developed for various redox PTMs. Direct detection of redox PTMs without any enrichment has also been demonstrated given the sensitivity of contemporary MS instruments. This review discusses the general principles behind different analytical strategies and covers recent advances in redox proteomics. Several applications of redox proteomics are also highlighted to illustrate how large-scale redox proteomics data can lead to novel biological insights.  相似文献   

15.
Xin Chen  Ying Ge 《Proteomics》2013,13(17):2563-2566
Top‐down MS‐based proteomics has gained a solid growth over the past few years but still faces significant challenges in the LC separation of intact proteins. In top‐down proteomics, it is essential to separate the high mass proteins from the low mass species due to the exponential decay in S/N as a function of increasing molecular mass. SEC is a favored LC method for size‐based separation of proteins but suffers from notoriously low resolution and detrimental dilution. Herein, we reported the use of ultrahigh pressure (UHP) SEC for rapid and high‐resolution separation of intact proteins for top‐down proteomics. Fast separation of intact proteins (6–669 kDa) was achieved in < 7 min with high resolution and high efficiency. More importantly, we have shown that this UHP‐SEC provides high‐resolution separation of intact proteins using a MS‐friendly volatile solvent system, allowing the direct top‐down MS analysis of SEC‐eluted proteins without an additional desalting step. Taken together, we have demonstrated that UHP‐SEC is an attractive LC strategy for the size separation of proteins with great potential for top‐down proteomics.  相似文献   

16.
Today, proteomics usually compares clinical samples by use of bottom-up profiling with high resolution mass spectrometry, where all protein products of a single gene are considered as an integral whole. At the same time, proteomics of proteoforms, which considers the variety of protein species, offers the potential to discover valuable biomarkers. Proteoforms are protein species that arise as a consequence of genetic polymorphisms, alternative splicing, post-translational modifications and other less-explored molecular events. The comprehensive observation of proteoforms has been an exclusive privilege of top-down proteomics. Here, we review the possibilities of a bottom-up approach to address the microheterogeneity of the human proteome. Special focus is given to shotgun proteomics and structure-based bioinformatics as a source of hypothetical proteoforms, which can potentially be verified by targeted mass spectrometry to determine the relevance of proteoforms to diseases.  相似文献   

17.
蛋白质的C末端在蛋白质进行各项生命活动过程中都起着极其重要的作用。它不仅标志着DNA转录翻译成蛋白质过程的初步完成,更是参与和调控了蛋白质的各种生理功能。研究蛋白质的C末端不仅有利于完整蛋白质的鉴定,对于在分子水平理解蛋白质的信号传导和生化功能是十分必要的。文中结合我们的研究工作,综述了近年来基于生物质谱的蛋白质C末端研究的相关进展,包括了C末端的识别、鉴定以及蛋白质C末端肽段富集的新方法和新技术。  相似文献   

18.
All cells incur DNA damage from exogenous and endogenous sources and possess pathways to detect and repair DNA damage. Post-translational modifications (PTMs), in the past 20 years, have risen to ineluctable importance in the study of the regulation of DNA repair mechanisms. For example, DNA damage response kinases are critical in both the initial sensing of DNA damage as well as in orchestrating downstream activities of DNA repair factors. Mass spectrometry-based proteomics revolutionized the study of the role of PTMs in the DNA damage response and has canonized PTMs as central modulators of nearly all aspects of DNA damage signaling and repair. This review provides a biologist-friendly guide for the mass spectrometry analysis of PTMs in the context of DNA repair and DNA damage responses. We reflect on the current state of proteomics for exploring new mechanisms of PTM-based regulation and outline a roadmap for designing PTM mapping experiments that focus on the DNA repair and DNA damage responses.  相似文献   

19.
翻译后修饰蛋白质组学研究的技术策略   总被引:2,自引:0,他引:2  
 蛋白质组学早期研究的绝大部分工作是在关注细胞不同生长时期或是疾病、分裂素刺激下的蛋白质表达水平变化.然而,许多至关重要的生命进程不仅由蛋白质的相对丰度控制,更重要的是被那些时空特异分布的可逆翻译后修饰控制的,揭示翻译后修饰发生规律是理解蛋白质复杂多样的生物功能的一个重要前提.由于翻译后修饰蛋白质在样本中含量低且动态范围广,其相关研究极具挑战性,亲和富集、多维分离等技术与生物质谱的结合为翻译后修饰蛋白质组学的发展提供了契机,目前,已进行规模化研究的蛋白质翻译后修饰主要有四大类,其中磷酸化和糖基化研究较多.本文针对大规模翻译后的修饰蛋白质的分析策略和技术路线,如蛋白质的磷酸化修饰, 糖基化修饰, 泛素化修饰,基于蛋白质氧化还原状态进行的氧化还原修饰和其它修饰像乙酰化、甲基化、脂基化修饰等进行了综述.  相似文献   

20.
As a complementary approach to 2D-PAGE, multidimensional liquid chromatography (MDLC) separation methods have been widely applied in all kinds of biological sample investigations. MDLC coupled with mass spectrometry is playing an important role in proteome research owing to its high speed, high resolution and high sensitivity. Among MDLC strategies, ion-exchange chromatography together with reversed-phase LC is still a most widely used chromatography in proteome analysis; other chromatographic methods are also frequently used in protein prefractionations. Recent MDLC technologies and applications to a variety of proteome analyses have achieved great development. The diversity of combinations of different chromatography modes to set up MDLC systems was demonstrated and discussed. Novel developments of MDLC techniques such as ultra-pressure system, array-based separation and monolithic material are also included in this article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号