首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor angiogenesis is the process by which new blood vessels are formed and enhance the oxygenation and growth of tumors. As angiogenesis is recognized as being a critical event in cancer development, considerable efforts have been made to identify inhibitors of this process. Cytostatic treatments that target the molecular events of the angiogenesis process have been developed, and have met with some success. However, it is usually difficult to preclinically assess the effectiveness of targeted therapies, and apparently promising compounds sometimes fail in clinical trials.We have developed a multiscale mathematical model of angiogenesis and tumor growth. At the molecular level, the model focuses on molecular competition between pro- and anti-angiogenic substances modeled on the basis of pharmacological laws. At the tissue scale, the model uses partial differential equations to describe the spatio-temporal changes in cancer cells during three stages of the cell cycle, as well as those of the endothelial cells that constitute the blood vessel walls.This model is used to qualitatively assess how efficient endostatin gene therapy is. Endostatin is an anti-angiogenic endogenous substance. The gene therapy entails overexpressing endostatin in the tumor and in the surrounding tissue. Simulations show that there is a critical treatment dose below which increasing the duration of treatment leads to a loss of efficacy.This theoretical model may be useful to evaluate the efficacy of therapies targeting angiogenesis, and could therefore contribute to designing prospective clinical trials.  相似文献   

2.
Many proliferative diseases, most typically cancer, are driven by uncontrolled blood vessel growth. Genetic studies have been very helpful in unraveling the cellular and molecular players in pathological blood vessel formation and have provided opportunities to reduce tumor growth and metastasis. The fact that tumor vessels and normal blood vessels have distinct properties may help in designing more specific--and therefore safer--anti-angiogenic strategies. Such strategies may interfere with angiogenesis at the cellular or molecular level. Possible molecular targets include angiogenic growth factors and their receptors, proteinases, coagulation factors, junctional/adhesion molecules and extracellular matrix (ECM) components. Some anti-angiogenic drugs, i.e., vascular endothelial growth factor (VEGF) antibodies and VEGF receptor-2 (VEGFR-2) inhibitors, have progressed into clinical cancer trials. While the results of these trials support the potential of anti-angiogenic therapy to treat cancer, they also demonstrate the need for more effective and safer alternatives. Targeting placental growth factor (PlGF) or VEGFR-1 may constitute such an alternative since animal studies have proven their pleiotropic working mechanism and attractive safety profile. Together, these insights may bring anti-angiogenic drugs closer from bench to bedside.  相似文献   

3.
Blocking tumor angiogenesis is an important goal of cancer therapy, but clinically approved anti-angiogenic agents suffer from limited efficacy and adverse side effects, fueling the need to identify alternative angiogenesis regulators. Tumor endothelial marker 8 (TEM8) is a highly conserved cell surface receptor overexpressed on human tumor vasculature. Genetic disruption of Tem8 in mice revealed that TEM8 is important for promoting tumor angiogenesis and tumor growth but dispensable for normal development and wound healing. The induction of TEM8 in cultured endothelial cells by nutrient or growth factor deprivation suggests that TEM8 may be part of a survival response pathway that is activated by tumor microenvironmental stress. In preclinical studies, antibodies targeted against the extracellular domain of TEM8 inhibited tumor angiogenesis and blocked the growth of multiple human tumor xenografts. Anti-TEM8 antibodies augmented the activity of other anti-angiogenic agents, vascular targeting agents and conventional chemotherapeutic agents and displayed no detectable toxicity. Thus, anti-TEM8 antibodies provide a promising new tool for selective blockade of neovascularization associated with cancer and possibly other angiogenesis-dependent diseases.  相似文献   

4.
Blocking tumor angiogenesis is an important goal of cancer therapy, but clinically approved anti-angiogenic agents suffer from limited efficacy and adverse side effects, fueling the need to identify alternative angiogenesis regulators. Tumor endothelial marker 8 (TEM8) is a highly conserved cell surface receptor overexpressed on human tumor vasculature. Genetic disruption of Tem8 in mice revealed that TEM8 is important for promoting tumor angiogenesis and tumor growth but dispensable for normal development and wound healing. The induction of TEM8 in cultured endothelial cells by nutrient or growth factor deprivation suggests that TEM8 may be part of a survival response pathway that is activated by tumor microenvironmental stress. In preclinical studies, antibodies targeted against the extracellular domain of TEM8 inhibited tumor angiogenesis and blocked the growth of multiple human tumor xenografts. Anti-TEM8 antibodies augmented the activity of other anti-angiogenic agents, vascular targeting agents and conventional chemotherapeutic agents and displayed no detectable toxicity. Thus, anti-TEM8 antibodies provide a promising new tool for selective blockade of neovascularization associated with cancer and possibly other angiogenesis-dependent diseases.  相似文献   

5.
T Oikawa 《Human cell》1998,11(4):201-206
Tumor-related angiogenes is expected to become an important target for improving treatment of cancer, because it plays key roles in tumor growth, invasion and metastasis. We considered that the successful development of such angiostatic treatment depended entirely upon the development of useful anti-angiogenic agents, and attempted to find novel angiogenesis inhibitors by using three in vivo assays, based on an idea of ours. As a result we have demonstrated that different types of agents with low molecular weight including microbial metabolites, cell differentiation modulators like retinoids and steroids, exhibit anti-angiogenic activity, anti-metastatic activity and/or antitumor activity. Taken these findings, an ideal anti-angiogenic agent is discussed.  相似文献   

6.
Angiogenesis is a multi-step process regulated by pro- and anti-angiogenic factors. Inhibition of angiogenesis is a potential anti cancer treatment strategy that is now investigated clinically. In addition, advances in the understanding of the angiogenic process have led to the development of new angiogenesis therapies for ischemic heart disease.Currently, researchers search for objective measures that indicate pharmacological responses to pro- and anti-angiogenic drugs and therefore, there is a great interest in techniques to visualize angiogenesis noninvasively. As CD13 is selectively expressed in angiogenic blood vessels, it can serve as a target for molecular imaging tracers to noninvasively visualize angiogenic processes in animal models and patients. Here, an overview on the currently used CD13 targeted molecular imaging probes for noninvasive visualization of angiogenesis is given.  相似文献   

7.
Vascular integrins are essential regulators and mediators of physiological and pathological angiogenesis, including tumor angiogenesis. Integrins provide the physical interaction with the extracellular matrix (ECM) necessary for cell adhesion, migration and positioning, and induce signaling events essential for cell survival, proliferation and differentiation. Integrins preferentially expressed on neovascular endothelial cells, such as alphaVbeta3 and alpha5beta1, are considered as relevant targets for anti-angiogenic therapies. Anti-integrin antibodies and small molecular integrin inhibitors suppress angiogenesis and tumor progression in many animal models, and are currently tested in clinical trials as anti-angiogenic agents. Cyclooxygense-2 (COX-2), a key enzyme in the synthesis of prostaglandins and thromboxans, is highly up-regulated in tumor cells, stromal cells and angiogenic endothelial cells during tumor progression. Recent experiments have demonstrated that COX-2 promotes tumor angiogenesis. Chronic intake of nonsteroidal anti-inflammatory drugs and COX-2 inhibitors significantly reduces the risk of cancer development, and this effect may be due, at least in part, to the inhibition of tumor angiogenesis. Endothelial cell COX-2 promotes integrin alphaVbeta3-mediated endothelial cell adhesion, spreading, migration and angiogenesis through the prostaglandin-cAMP-PKA-dependent activation of the small GTPase Rac. In this article, we review the role of integrins and COX-2 in angiogenesis, their cross talk, and discuss implications relevant to their targeting to suppress tumor angiogenesis.  相似文献   

8.
Surrogate markers of tumoral angiogenesis   总被引:8,自引:0,他引:8  
BACKGROUND: Angiogenesis is a prerequisite for tumor growth and metastasis. Vascular cell adhesion molecule1 (VCAM-1) is expressed on endothelial cells as a result of vascular endothelial growth factor (VEGF) stimulation. PURPOSE: To determine if measurement in serum of VEGF or VCAM-1 provides an accurate measure of tumor angiogenesis. METHODS: VCAM-1 and VEGF were measured in the serum of women with early and advanced breast cancer by ELISA. Levels were compared to levels of VCAM-1 and VEGF in women with normal breasts and levels of the endothelial glycoprotein von Willebrand factor. Levels of VEGF and VCAM-1 in women with early breast cancer were correlated with established clinicopathological prognostic markers and intratumoral microvessel density (IMD). RESULTS: In early breast cancer serum VCAM-1 correlated closely with the microvessel density in tumors (r=0.61, p<0.001). Women with lymph node-positive and high-grade tumors had higher levels of serum VCAM-1 than women with lymph node-negative and low-grade tumors. Serum VEGF demonstrated no correlation with established prognostic features or IMD. Levels of VCAM-1 and VEGF were raised in women with advanced breast cancer. CONCLUSION: Serum VCAM-1 is a surrogate marker of angiogenesis in breast cancer and its measurement may help in the assessment of antiangiogenic drugs currently in phase II trials.  相似文献   

9.
Shibuya M 《BMB reports》2008,41(4):278-286
Angiogenesis, the formation of blood vessels, is essential for preparing a closed circulatory system in the body, and for supplying oxygen and nutrition to tissues. Major diseases such as cancer, rheumatoid arthritis, and atherosclerosis include pathological angiogenesis in their malignant processes, suggesting anti-angiogenic therapy to be a new strategy for suppression of diseases. However, until the 1970s, the molecular basis of angiogenesis was largely unknown. In recent decades, extensive studies have revealed a variety of angiogenic factors and their receptors, including vascular endothelial growth factor (VEGF)-VEGFRs, Angiopoietin-Tie, Ephrin-EphRs and Delta-Notch to be the major regulators of angiogenesis in vertebrates. VEGF and its receptors play a central role in physiological as well as pathological angiogenesis, and functional inhibitors of VEGF and VEGFRs such as anti-VEGF neutralizing antibody and small molecules that block the tyrosine kinase activity of VEGFRs have recently been approved for use to treat patients with colorectal, lung, renal and liver cancers. These drugs have opened a novel field of cancer therapy, i.e. anti-angiogenesis therapy. However, as yet they cannot completely cure patients, and cancer cells could become resistant to these drugs. Thus, it is important to understand further the molecular mechanisms underlying not only VEGF-VEGFR signaling but also the VEGF-independent regulation of angiogenesis, and to learn how to improve anti-angiogenesis therapy.  相似文献   

10.
Inhibition of tumor angiogenesis is an attractive target in cancer therapy. In this context, receptor tyrosine kinases play a pivotal role. Extensive efforts have been made to identify and develop small-molecule inhibitors of these central signaling proteins. Some of these compounds have already passed or are currently in clinical trials to investigate their applicability as anti-cancer drugs. However, the high expectations that are set in antiangiogenic therapy have not yet been accomplished. But there are also new and exciting opportunities for cancer treatment by combining antiangiogenic molecules with newly emerging therapeutics.  相似文献   

11.
Angiogenesis is a critical step in tumor development and more than 25 angiogenesis inhibitors are currently in clinical trials. Noninvasive in vivo imaging of angiogenesis represents a unique opportunity of repeatedly quantitating microvascular parameters prior to and during anti-angiogenic treatments. While several imaging tracers have been proposed for MR and nuclear imaging, there does not exist any consensus of what constitutes an ideal size of an imaging agent. A series of synthetic pegylated DOTA derivatized graft copolymers (30, 60, 120 kDa) were synthesized and their in vivo behavior tested in two breast cancer models differing in vascular endothelial growth factor (VEGF) expression. Polymers were labeled with different lanthanides (Eu, Gd, Dy) and absolute blood and tumor concentrations were determined by ICP-AES measurements. DOTA and the 30 kDa polymers underwent renal clearance resulting in low plasma levels. Slow leakage across neovasculature into tumor interstitium was clearly dependent on the molecular mass of all tested agents in MCF-7 tumors. However, a cutoff was observed with minimal extravasation occurring at and above 120 kDa in well differentiated MCF-7 tumors. VEGF overexpression caused detectable differences in extravasation of all polymers, including the 120 kDa compound. We conclude that large molecular weight contrast agents with a molecular mass of <120 kDa extravasate from experimental tumor neovasculature and may not be an accurate marker for measuring true blood volume fractions when in vivo imaging is performed in the steady state.  相似文献   

12.
Brain tumors exhibit marked and aberrant blood vessel formation indicating angiogenic endothelial cells as a potential target for brain tumor treatment. The brain tumor blood vessels are used for nutrient delivery, and possibly for cancer cell migration. The process of angiogenesis is complex and involves multiple players. The current angiogenesis inhibitors used in clinical trials mostly target single angiogenic proteins and so far show limited effects on tumor growth. Besides the conventional angiogenesis inhibitors, RNA-based inhibitors such as small-interfering RNAs (siRNAs) are being analyzed for their capacity to silence the message of proteins involved in neovascularization. More recently, a new family of non-coding RNAs, named angiomirs [microRNAs (miRNAs) involved in angiogenesis] has emerged. These small RNAs have the advantage over siRNAs in that they have the potential of silencing multiple messages at the same time and therefore they might become therapeutically relevant in a “one-hit multiple-target” context against brain tumor angiogenesis. In this review we will discuss the emerging technologies in anti-angiogenesis emphasizing on RNA-based therapeutics.  相似文献   

13.
Disappointing results from most late-stage clinical trials of cancer therapeutics indicate a need for improved and more-predictive animal tumor models. This insufficiency of models, combined with the advent of a class of drugs that target the tumor microenvironment rather than the tumor cell, presents new challenges for designing and interpreting preclinical efficacy studies. A comparison of the clinical efficacy of anti-angiogenic drugs with their corresponding preclinical studies over the past two decades offers many lessons that can inform and improve the design of experiments in existing mouse models. In addition, technological and logistical advances in mouse models of human cancer over the past five years have the potential to increase the clinical translatability of animal studies.  相似文献   

14.
BackgroundAngiogenesis is essential for tumor growth, proliferation and metastasis. Tumor-related angiogenesis is complex and involves multiple signaling pathways. Controlling angiogenesis is a promising strategy for limiting cancer progression.Scope of reviewSeveral receptor tyrosine kinases influence the angiogenic response via multiple signaling molecules and pathways. Understanding the functional interaction of kinases in the angiogenic process and development of resistance to kinase inhibition is essential for future successful therapeutic strategies.Major conclusionsStrategies that target receptor tyrosine kinases and other tumor microenvironment factors simultaneously, or sequentially, are required for achieving an efficient and robust anti-angiogenic response.General significanceUnderstanding the molecular mechanism of angiogenesis has improved, and has led, to the clinical development and approval of anti-angiogenic drugs. While many patients have benefited from these agents, their limited efficacy and the development of resistance remains a challenge. This review highlights current therapies and challenges associated with targeting angiogenesis in cancer.  相似文献   

15.
Surgery may be regarded as an angiogenesis-inducing condition since it evokes the release of many angiogenic factors. Regarding the mechanistic overlap between tumor-associated neovascularisation and (physiological) angiogenesis in response to injury and hypoxia, surgery may promote the uncontrolled growth of residual dormant tumor cells. With the advent of anti-angiogenic agents, surgeons will be faced with more patients undergoing surgery for primary and secondary tumors under anti-angiogenic treatment. This could present problems with regard to angiogenesis-dependent phenomena such as wound repair, healing of intestinal anastomoses and liver regeneration. In this review we will discuss these matters from a biomedical and clinical point of view.  相似文献   

16.
Surgery and angiogenesis   总被引:8,自引:0,他引:8  
Surgery may be regarded as an angiogenesis-inducing condition since it evokes the release of many angiogenic factors. Regarding the mechanistic overlap between tumor-associated neovascularisation and (physiological) angiogenesis in response to injury and hypoxia, surgery may promote the uncontrolled growth of residual dormant tumor cells. With the advent of anti-angiogenic agents, surgeons will be faced with more patients undergoing surgery for primary and secondary tumors under anti-angiogenic treatment. This could present problems with regard to angiogenesis-dependent phenomena such as wound repair, healing of intestinal anastomoses and liver regeneration. In this review we will discuss these matters from a biomedical and clinical point of view.  相似文献   

17.
The fact that proteins such as Ras require farnesylation to induce malignant transformation prompted many investigators to design farnesyl transferase inhibitors (FTI) as novel anticancer drugs. FTIs inhibit the growth of ras transformed cells in vitro and induce tumor regression in ras dependent tumor in vivo. Moreover, FTIs inhibit tumor progression in human tumor xenograft models. Currently, FTIs are undergoing phase I and II trials in various cancer types. They show impressive antitumour efficacy and they lack toxicity. Despite these promising results, the development of such molecules in hindered by the absence of appropriate clinical endpoints and of surrogate biological markers. Indeed, it seems likely that Ras is not the critical target of FTIs and that inhibition of the farnesylation of proteins such as RhoB, might also contribute to the observed antitumour properties. Identification of targets that underlie their biological effect is essential in order to predict and evaluate their efficacy.  相似文献   

18.
Primary sclerosing cholangitis is an enigmatic disease affecting the bile ducts, eventually leading to liver failure necessitating liver transplantation in many cases. There is currently no therapy that has proven to halt disease progression. One of the reasons for this is the lack of proper endpoints to measure the effect of medical intervention on the course of the disease. Relevant clinical endpoints such as death or liver transplantation occur too infrequently in this orphan disease to be used as endpoints in phase 2 or 3 trials. It is therefore of utmost importance to identify appropriate surrogate endpoints that are reasonably likely to measure true clinical benefit. This article will discuss a number of surrogate endpoints that are likely candidates to serve this role. This article is part of a Special Issue entitled: Cholangiocytes in Health and Diseaseedited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   

19.
Tissue inhibitors of metalloproteinases (TIMPs) regulate tumor growth, progression, and angiogenesis in a variety of experimental cancer models and in human malignancies. Results from numerous studies have revealed important differences between TIMP family members in their ability to inhibit angiogenic processes in vitro and angiogenesis in vivo despite their universal ability to inhibit matrix metalloproteinase (MMP) activity. To address these differences, a series of structure-function studies were conducted to identify and to characterize the anti-angiogenic domains of TIMP-2, the endogenous MMP inhibitor that uniquely inhibits capillary endothelial cell (EC) proliferation as well as angiogenesis in vivo. We demonstrate that the COOH-terminal domain of TIMP-2 (T2C) inhibits the proliferation of capillary EC at molar concentrations comparable with those previously reported for intact TIMP-2, while the NH2-terminal domain (T2N), which inhibits MMP activity, has no significant anti-proliferative effect. Interestingly, although both T2N and T2C inhibited embryonic angiogenesis, only T2C resulted in the potent inhibition of angiogenesis driven by the exogenous addition of angiogenic mitogen, suggesting that MMP inhibition alone may not be sufficient to inhibit the aggressive neovascularization characteristic of aberrant angiogenesis. We further mapped the anti-proliferative activity of T2C to a 24-amino acid peptide corresponding to Loop 6 of TIMP-2 and show that Loop 6 is a potent inhibitor of both embryonic and mitogen-stimulated angiogenesis in vivo. These findings demonstrate that TIMP-2 possesses two distinct types of anti-angiogenic activities which can be uncoupled from each other, the first represented by its MMP-dependent inhibitory activity which can inhibit only embryonic neovascularization and the second represented by an MMP-independent activity which inhibits both normal angiogenesis and mitogen-driven angiogenesis in vivo. In addition, we report, for the first time, the discovery of Loop 6 as a novel and potent inhibitor of angiogenesis.  相似文献   

20.
Tumor angiogenesis is essential for tumor growth and progression. Therefore, targeting tumor blood vessels is a promising approach for cancer therapy. Angiogenesis, the formation of blood vessels, is a multistep process, and strongly influenced by the microenvironment. There are no in vitro assays that can resemble this dynamic process in vivo. For this reason, animal models and imaging technologies are critical for studying tumor angiogenesis, identifying therapeutic targets as well as validating the targets. Non-invasive molecular imaging in animal models presents an unprecedented opportunity and ability for us to perform repetitive observations and analysis of the biological processes underlying tumor angiogenesis and tumor progression in living animals in real time. As we gain a better understanding of the fundamental molecular nature of cancer, these techniques will be an important adjunct in translating the knowledge into clinical practice. This important information may elucidate how the tumor blood vessels behave and respond to certain treatments and therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号