首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously we have shown that arachidonic acid (AA) plus zinc or cyclo (his-pro) (CHP) plus zinc improve clinical signs of diabetes in streptozotocin-induced diabetic rats. Since streptozotocin destroys pancreatic beta-cells, we hypothesize that the effect of either AA or CHP, plus zinc on glucose metabolism is via mobilization of intracellular zinc which in turn stimulates glucose uptake by peripheral tissues. We now report the relationship between zinc and AA and between zinc and CHP in controlling zinc influx and efflux across hindlimb muscle cells isolated from three-month old rats. Although CHP increased muscle zinc influx in a dose-dependent manner, AA was not effective. However, AA was more effective in stimulating zinc efflux than CHP. We have previously demonstrated that AA stimulates intestinal zinc uptake and absorption, and now present evidence that CHP also influences intestinal zinc transport. These results suggest that both AA and CHP affect glucose uptake in muscle cells via stimulating intestinal zinc absorption and muscle cell zinc flux.  相似文献   

2.
A novel black tea decoction containing vanadate has successfully replaced insulin in a rat model of insulin-dependent diabetes but is untested in non-insulin-dependent diabetic animals. A tea-vanadate decoction (TV) containing 30 or 40 mg sodium orthovanadate was administered by oral gavage to two groups of Zucker diabetic fatty rats and a conventional water vehicle containing 30 or 40 mg of sodium orthovanadate to two others. In the latter group receiving the 30-mg dose, vanadate induced diarrhea in 50% of the rats and death in 10%. In contrast, TV-treated rats had no incidence of diarrhea and no deaths. Symptoms were more severe in both groups with higher vanadate doses, so these were discontinued. After approximately 16 weeks, the level of vanadium in plasma and tissue extracts was negligible in a further group of untreated rats but highly elevated after vanadate treatment. Vanadium levels were not significantly different between the TV-treated diabetic rats and the diabetic rats given vanadate in a water vehicle. Over the 115 days of the study, blood glucose levels increased from approximately 17 to 25 mmol/L in untreated diabetic rats. This was effectively lowered (to <10 mmol/L) by TV treatment. Fasting blood glucose levels were 5, 7, and 20 mmol/L in control (nondiabetic, untreated), TV-treated and untreated diabetic rats, respectively. Rats required treatment with TV for only approximately 50% of the days in the study. Increase in body mass during the study was significantly lower in untreated diabetic rats (despite higher food intake) than the other groups. Body mass gain and food intake were normal in TV-treated rats. Water intake was 28 mL/rat daily in control rats, 130 mL/rat daily in untreated diabetic rats, and 52 mL/rat daily in TV-treated diabetic rats. Plasma creatinine and aspartate aminotransferase levels were significantly depressed in untreated diabetic rats, and TV treatment normalized this. Our results demonstrate that a novel oral therapy containing black tea and vanadate possesses a striking capacity to regulate glucose and attenuates complications in a rat model of type II diabetes.  相似文献   

3.
4.
Diabetes mellitus is associated to a reduction of antioxidant defenses that leads to oxidative stress and complications in diabetic individuals. The present study was undertaken to investigate the effect of selenium on blood biochemical parameters, antioxidant enzyme activities, and tissue zinc levels in alloxan-induced diabetic rats fed a zinc-deficient diet. The rats were divided into two groups; the first group was fed a zinc-sufficient diet, while the second group was fed a zinc-deficient diet. Half of each group was treated orally with 0.5 mg/kg sodium selenite. Tissue and blood samples were taken from all animals after 28 days of treatment. At the end of the experiment, the body weight gain and food intake of the zinc-deficient diabetic animals were lower than that of zinc-adequate diabetic animals. Inadequate dietary zinc intake increased glucose, lipids, triglycerides, urea, and liver lipid peroxidation levels. In contrast, serum protein, reduced glutathione, plasma zinc and tissue levels were decreased. A zinc-deficient diet led also to an increase in serum glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, and liver glutathione-S-transferase and to a decrease in serum alkaline phosphatase activity and glutathione peroxidase. Selenium treatment ameliorated all the values approximately to their normal levels. In conclusion, selenium supplementation presumably acting as an antioxidant led to an improvement of insulin activity, significantly reducing the severity of zinc deficiency in diabetes.  相似文献   

5.
Zinc has a role in the synthesis, storage, and secretion of insulin, and has been suggested to be beneficial when used in the diabetic state. Effect of zinc intake in pregnant rats has been studied here on diabetized offspring. Pregnant rats were divided in two groups; the control group received normal food and water, and the experimental group received zinc sulfate during pregnancy and 3 weeks after offspring birth. Male offspring from the control (C) and experimental (E) groups were divided each in three groups: C1, fed with normal food and water; C2, diabetized with alloxan; C3, received zinc sulfate; E1, fed with normal food and water; E2, diabetized with alloxan; and E3, receiving zinc sulfate. After 30 days, the histological changes of pancreatic tissues were investigated by light microscopy. Body weight, blood glucose, serum insulin levels, food intake, water intake, and urine quantity were also compared between the groups. Water intake and urine quantity were decreased significantly (p?<?0.01and p?<?0.001) in E2 (experimental diabetic group) in comparison with C2 (control diabetic group), but there was no significant difference in the body weight in C2 in comparison with E2, while blood glucose was decreased significantly (p?<?0.001) and blood insulin level was increased significantly (p?<?0.01) in E2 in comparison with C2. Microscopic evaluation of pancreas showed that E2 were protected against alloxan-induced beta-cell degeneration. In conclusion, this work showed that maternal zinc intake may influence subsequent deleterious effects of diabetes on alloxan-diabetized offspring.  相似文献   

6.
V Chen  S E Downing 《Life sciences》1991,49(12):857-864
The effects of reduced dietary fat intake on plasma lipid levels were examined in diabetic rats. One week after induction of diabetes (D) with streptozotocin (65 mg/kg, iv), the animals were fed food pellets consisting of 1.5% (D1.5), 2.5% (D2.5) or 5% (D5) fat for two weeks. Irrespective of the diets, both food and water consumed by untreated diabetic rats were 2- to 5-fold greater respectively compared to normal. Plasma glucose concentrations were also similarly increased. Plasma and skeletal muscle lipid levels were significantly greater than controls in D2.5 and D5, but not in the D1.5 group. Plasma and muscle lipid concentrations correlated directly with fat consumption. In D5 rats receiving insulin treatment, plasma glucose and lipid concentrations were comparable to control values. These findings indicate that the degree of hyperlipidemia in chronically diabetic rats is directly related to dietary fat intake. They also demonstrate that dietary interventions can modulate some of the metabolic abnormalities in diabetes.  相似文献   

7.
Previous studies suggest a protective effect of vitamin D3 on zinc deficiency-induced insulin secretion and on pancreas β-cell function. The aim of this study was to investigate the effect of vitamin D on blood biochemical parameters, tissue zinc and liver glutathione in diabetic rats fed a zinc-deficient diet. For that purpose, Alloxan-induced diabetic rats were divided into four groups. The first group was fed a zinc-sufficient diet while the second group was fed a zinc-deficient diet. The third and fourth groups received zinc-sufficient or zinc-deficient diets plus oral vitamin D3 for 27 days. At the end of the experiment, blood, femur, pancreas, kidney and liver samples were taken from all rats. The serum, femur, pancreas, kidney and liver zinc concentrations, liver glutathione, serum alkaline phosphatase activity, daily body weight gain and food intake were lower in the zinc-deficient rats in comparison with those receiving adequate amounts of zinc. These values were increased in the zinc-deficient group that was supplemented with vitamin D3. The serum total cholesterol, triglycerides, total protein, urea, glutamate oxaloacetate transaminase, glutamate pyruvate transaminase and blood glucose values were higher in rats fed a zinc adequate diet, but their concentrations were decreased by vitamin D3 supplementation. The serum total protein levels were not changed by zinc deficiency and vitamin D3 supplementation. These results suggest that vitamin D3 modulates tissue zinc, liver glutathione and blood biochemical values in diabetic rats fed a zinc-deficient diet.  相似文献   

8.
Clinical and preclinical studies have shown that diabetic individuals present more depressive behaviors than non-diabetic individuals. Taurine, one of the most abundant free amino acids in the central nervous system, modulates a variety of biological functions and acts as an agonist at GABAA receptors. Our objective was to assess the antidepressant effect of taurine in diabetic rats. Additionally, we studied the effect of taurine on weight gain, water and food intake, and blood glucose levels in diabetic and non-diabetic rats. Male Wistar rats were divided into control (CTR) and streptozotocin-induced diabetic (STZ) groups and were administered daily 0, 25, 50 or 100?mg/kg of taurine (n?=?10 per subgroup) intraperitoneally. After 28?days of treatment, the animals were exposed to the forced swimming test, and their behaviors were recorded. Weight gain, water and food intake, and blood glucose levels were measured weekly. Our results showed that STZ rats had a higher immobility duration than CTR rats, and taurine decreased this depressive-like behavior in STZ rats at doses of 25 and 100?mg/kg. Both of these doses of taurine also decreased water intake and improved weight gain in STZ rats. All doses of taurine decreased the water intake in CTR rats. Taurine, at a dose of 100?mg/kg, decreased food intake and blood glucose levels in STZ rats. Because taurine is a GABA agonist and both amino acids are lower in the plasma of diabetic and depressive individuals, we hypothesize that taurine may represent a new adjuvant drug for the treatment of depression in diabetic individuals.  相似文献   

9.
The aim of this work was to investigate the biochemical and histological effects of vanadyl sulfate on blood glucose, urea, and creatinine in serum and nonenzymatic glycosylation and glutathione levels in kidney tissue of normal and streptozotocin (65 mg/kg) diabetic rats. Vanadyl sulfate was administered by gavage at a dose of 100 mg/kg. After 60 d of treatment, serum urea, creatinine, and blood glucose levels significantly increased in the diabetic group but not so in the vanadyl sulfate, which showed significantly reduced serum urea and blood glucose levels and a nonsignificant reduction of serum creatinine levels. Nonenzymatic glycosylation was increased and the glutathione level was decreased in the kidney tissue of diabetic rats. Treatment with vanadyl sulfate reversed these effects. Degenerative changes were detected in diabetic animals by electron and light microscopy. Although there are individual differences in diabetic animals given vanadium, some reduction of degenerative changes were observed.  相似文献   

10.
These studies examine the effect of cholesterol feeding in normal rats and in rats with streptozotocin-induced diabetes mellitus. Four groups were studied: normal rats fed either a standard rat chow or a standard rat chow supplemented with cholesterol and diabetic rats fed standard chow or standard chow plus cholesterol. Diabetic rats fed a standard diet excreted more creatinine and urea in the urine, had higher levels of blood urea nitrogen, and lower serum albumin levels than rats fed standard diet plus cholesterol. Blood glucose levels were similar in the two groups; however, diabetic rats given cholesterol had a greater body weight at the end of the study than diabetic rats eating standard chow. Urine volumes and sodium and potassium excretion in the urine were greater in diabetic rats fed a standard diet than in those fed a high cholesterol diet. Diabetic rats fed a standard diet had distinctive renal lesions characterized by swelling of tubular epithelial cells with clearing of cytoplasm. The nephron segments involved by this striking vacuolar change were the distal convoluted tubule and the thick limbs of Henle's loop. These lesions were identical to those described by Armanni-Ebstein in severely glycosuric patients. These lesions were not observed in any of the animals of the other three groups (including diabetic rats fed a high cholesterol diet). Glomeruli were normal in animals of all groups. Thus, cholesterol administration prevents the development of the Armanni-Ebstein lesions in diabetic rats despite persistent hyperglycemia. The mechanism by which cholesterol administration prevents the accumulation of glycogen in distal tubule cells has not been elucidated. It is suggested that glycogen accumulation in distal tubular segments may explain the greater urine volumes, natriuresis, kaliuresis, and proteinuria observed in diabetic animals fed a standard diet when compared with rats fed the same diet plus cholesterol.  相似文献   

11.
Effects of either a single dose or a long-term administration of an alpha-glucosidase inhibitor, acarbose, on blood glucose, cholesterol concentrations in serum lipoprotein fractions, triglycerides and free fatty acids were examined in streptozotocin-induced diabetic rats. In experiment 1, starch loading tests were performed with or without adding acarbose. The addition of acarbose (0.75 mg per kg of body weight or over) significantly reduced the elevation of blood glucose levels. In experiment 2, the animals were divided into three groups: Group A fed on a control diet, Group B fed on a diet containing 5 mg acarbose in 100 g of diet and Group C fed on a diet containing 20 mg acarbose in 100 g of diet. The food intake in Group C was significantly reduced by 22% as compared to Group A, while the food intake in Group B showed no change. The high dose of acarbose showed a tendency to lower fasting blood glucose levels, but the difference was statistically insignificant. However, postprandial glucose levels in Group C at each period examined and in Group B at 30 days were significantly lower than the counterparts in Group A. Acarbose caused a dose-dependent decrease in serum total cholesterol levels and HDL-cholesterol: total cholesterol ratios were elevated in Group B and C. Serum triglyceride levels in Group B and C were extremely lower than those in Group A on and after 20 days. These results indicate that the addition of acarbose to the diet induces a decrease in postprandial blood glucose levels and simultaneously causes an improvement in lipid metabolism of streptozotocin-induced diabetic rats.  相似文献   

12.
目的:建立一种2型糖尿病伴发高血压大鼠的模型。方法:65只SD雄性大鼠,随机分为正常对照组、1% NaCl饮水组、20 mg/kg STZ-1% NaCl组、30 mg/kg STZ-1% NaCl组、40 mg/kg STZ-1% NaCl组(n=13)。除正常对照组大鼠普通饮食喂养外,其余各组大鼠以高脂饲料4周+普通饲料结合1% NaCl饮水9周喂养。第4周末链脲霉素(STZ)组大鼠分别腹腔注射STZ (20 mg/kg、30 mg/kg、40 mg/kg)。实验周期13周。检测大鼠一般状况、体重、平均摄食量、血糖、血压、血脂和血浆胰岛素水平。结果:与正常对照组和1% NaCl饮水组比较,在STZ注射后仅30 mg/kg STZ-1% NaCl组、40 mg/kg STZ-1% NaCl组大鼠体重减少(P<0.05)、平均食量、空腹和随机血糖均增加(P<0.05);第4周起血压显著升高(P<0.05),收缩压均值达到150 mmHg进入高血压期,并在其后5周(实验结束前)稳定于150~170 mmHg;第9周血浆胰岛素水平升高(P<0.05),血浆甘油三酯(TG)水平下降(P<0.05)。结论:高脂饲料喂养4周+腹腔注射STZ 30~40 mg/kg结合1% NaCl饮水喂养,能诱导出2型糖尿病伴发高血压的大鼠模型。  相似文献   

13.
Dams with 7 pups each were randomly assigned to two different diets. Twelve dams were fed a normal (20%) protein diet and were divided into two groups of 4 and 8 animals. Pups from group 1 (n = 28) were injected with citrate buffer as a control. Pups from group 2 (n = 56) were injected with streptozotocin. Twelve additional dams were fed a 40% protein diet. They were also divided into two groups of 4 and 8 animals. Pups from group 3 (n = 28) were injected with citrate buffer as a control. Pups from group 4 (n = 56) were injected with streptozotocin. Forty-eight hours later, diabetic status was determined using Dextrostix. On Day 15, pups were injected with [14C]proline to determine collagen synthesis and 45Ca to study mineralization. After the pups were killed, blood glucose levels were determined. Then mandibles were removed. Milk from each dam was also collected after injection of oxytocin. At the time of killing, blood glucose levels in diabetic pups were less than earlier levels, though still higher than those of controls on either diet. The weights of body and mandible, collagen contents, and the total calcium contents in the diabetic group were in general less than those of the nondiabetic group on the 20 and 40% protein diets. 45Ca uptake in the diabetic group was significantly increased compared with those of the nondiabetic rats on both diets. The percentage reduction in the mandibles of diabetic rats from those of nondiabetic rats on the 40% protein diets was consistently less than that of animals on the 20% protein diets. The higher protein contents of the maternal milk in the 40% protein group may partly be responsible for the smaller impairment of mandibular development in the diabetic over nondiabetic animals. It is concluded that maternal low-carbohydrate high-protein diets will play indirectly a beneficial role in the development of the mandibles of diabetic newborns.  相似文献   

14.
The amount of glycogen and its synthesis from glucose was studied in white muscle (extensor digitorum longus -- EDL) and red muscle (soleus -- SOL) of normal rats and rats with alloxan diabetes by the anthrone method. The amount of glycogen was higher in the white muscle of normal rats, both after a 24 hours' fast (0.37+/-0.02 mg/g as against 0.29+/-0.01 mg/g in the SOL) and with feeding ad libitium (0.72+/-0.05 mg/g as against 0.58+/-0.03 mg/g in the SOL). After a 24 hours' fast, the glycogen content of both muscles was non-significantly higher in alloxan-diabetic rats than in normal animals, whereas in diabetic animals fed ad libitum it was significantly lower than in normal rats fed in the same manner (0.54+/-0.07 mg/g in the EDL and 0.33+/-0.03 mg/g in the SOL). The difference between the glycogen content of the white and red muscle of diabetic rats was also in favour of the white muscle. Muscle glycogenesis from intragastrically administered glucose was higher in the red muscle in all the experimental groups. In normal fed ad libitum the glycogen content of the EDL did not change after glucose administration, but in the SOL it rose from 0.58+/-0.03 to 0.83+/-0.05 mg/g. In fasting (24 hours) normal rats it rose sharply in both muscles, from 0.037+/-0.02 to 0.57+/-0.03 mg/g in the EDL and from 0.29+/-0.01 to 0.87+/-0.06 mg/g in the SOL. In fasting (24 hours) diabetic animals, the glycogen content rose after glucose in the SOL only, from 0.36+/-0.01 to 0.66+/-0.06 mg/g. The differences found in glycogen synthesis in the white and red muscle of normal and diabetic rats are discussed mainly from the aspect of the existence of a relationship between the glycogen concentration and glycogen synthetase activity.  相似文献   

15.
Diabetes is characterized by elevated blood glucose levels and disturbed homeostasis of metabolic enzymes in whole-body. This study aimed to investigate the effect of ginger administration on altered blood glucose levels, intra- and extra-mitochondrial enzymes and tissue injuries in streptozotocin (STZ)-induced diabetic rats. Wistar strain rats (n = 30) were equally divided into 5 groups: normal control (NC), ginger treated (Gt, 200 mg/kg b.w. orally/30 days), diabetic control (DC, 50 mg/kg b.w.), diabetic plus ginger treated (D + Gt) and diabetic plus glibenclamide treated (D + Gli) groups. We found highly elevated blood glucose levels in the diabetic group, and the glucose levels were significantly (P < 0.001) lowered by ginger administration. Activities of intra- and extra-mitochondrial enzymes such as glucose-6-phosphate dehydrogenase (G6PD), succinate dehydrogenase (SDH), malate dehydrogenase (MDH) and glutamate dehydrogenase (GDH) were significantly (P < 0.01) decreased in the kidneys of the diabetic rats, while this was significantly reversed by 30 days of ginger treatment. We also observed consistent renal tissue damages in the diabetic rats; however, these injuries recovered in the ginger-treated diabetic rats as shown in histopathological studies. In this study, we demonstrated that an ethanolic extract of ginger could lower the blood glucose levels as well as improve activities of intra- and extra-mitochondrial enzymes in diabetic rats. Our results suggest that ginger extracts could be used as a nephro-protective supplement particularly to reverse diabetic-induced complications.  相似文献   

16.
In recent years, the role of free radical damage consequent to oxidative stress is widely discussed in diabetic complications. In this aspect, the protection of cell integrity by trace elements is a topic to be investigated. Vanadium is a trace element believed to be important for normal cell function and development. The aim of the present study was to investigate the effect of vanadyl sulfate supplementation on the antioxidant system in the muscle tissue of diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ, 65 mg/kg body weight) to male Swiss albino rats. The rats were randomly divided into 4 groups: Group I, control; Group II, vanadyl sulfate control; Group III, STZ-diabetic untreated; Group IV, STZ-diabetic treated with vanadyl sulfate. Vanadyl sulfate (100 mg/kg) was given daily by gavage for 60 days. At the last day of the experiment, rats were killed, muscle tissues were taken, homogenized in cold saline to make a 10% (w/v) homogenate. Body weights and blood glucose levels were estimated at 0, 30 and 60th days. Antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST), as well as carbonic anhydrase (CA), myeloperoxidase (MPO) activities and protein carbonyl content (PCC) were determined in muscle tissue. Vanadyl sulfate administration improved the loss in body weight due to STZ-induced diabetes and decreased the rise in blood glucose levels. It was shown that vanadium supplementation to diabetic rats significantly decrease serum antioxidant enzyme levels, which were significantly raised by diabetes in muscle tissue showing that this trace element could be used as preventive for diabetic complications.  相似文献   

17.
The effect of parenteral zinc on tissue metallothionein (MT) was studied in normal and streptozotocin-induced diabetic rats. The accumulation of Zn-MT in liver and pancreas of normal and diabetic rats following the administration (ip) of various amounts of zinc was not different. Renal Zn-MT was higher in the diabetic group, and this was not changed by zinc injection. Although diabetic rats, relative to normal, possessed a markedly higher concentration of Cu-MT in kidney initially, this difference decreased considerably after zinc injection. The ratio of Cu-MT to cytosolic Cu in kidney was not affected by parenteral zinc and was highest in diabetic rats. Zinc injection markedly reduced food intake, water consumption, and urine output in both normal and diabetic rats. Blood glucose of diabetic rats also decreased 24 h after zinc administration. Our results indicate that relative to normal, MT and zinc metabolism are different in kidney, and to some extent liver, but not different in the pancreas of the chemically induced diabetic rat.  相似文献   

18.
Dichloroacetate (DCA) was administered orally to normal (nondiabetic) and streptozotocin-diabetic rats in a dose of 1000 mg/day/kg rat wt. One group of diabetic animals received DCA both orally and intraperitoneally. DCA therapy lowered the blood glucose values of diabetic animals but did not alter values in nondiabetic rats. The hepatic activity of glucokinase and pyruvate kinase were significantly lower in both DCA-treated nondiabetic and DCA-treated diabetic animals than values observed for untreated animals. However, DCA therapy was accompanied by remarkable increases in the activities of glucose-6-phosphate dehydrogenase and malic enzyme in both nondiabetic and diabetic animals. Glucose-6-phosphate dehydrogenase was 3-fold higher in DCA-treated nondiabetic animals whereas malic enzyme activity was 10-fold higher in the treated animals than observed in the untreated animals. Similar changes, although smaller in magnitude, were observed for these enzymes in the DCA-treated diabetic animals. Although DCA therapy was accompanied by a significant increase in the wet weights of the liver for both nondiabetic and diabetic animals, no morphological changes were seen by light or electron microscopy. Our observations coupled with those of previous investigators suggest that DCA therapy may have an important role in pyruvate metabolism and may lower the blood glucose concentration by inhibiting hepatic gluconeogenesis.  相似文献   

19.
Fruit from Lycium barbarum L. in the family Solanaceae is well-known in traditional Chinese herbal medicine. Lycium barbarum polysaccharides (LBP) have been identified as one of the active ingredients responsible for its biological activities. We isolated polysaccharides from dried Lycium barbarum fruits by boiling water extraction. In the study, 50 animals were divided into two groups: a nondiabetic control (n = 10) and a diabetic group (n = 40). Diabetes was induced by a single injection of streptozotocin (50 mg/kg BW; Sigma, USA) freshly dissolved in a 0.1 mol/L citrate buffer (pH 4.5) into the intraperitonium. The normal control rats and the untreated diabetic control rats were only injected with the citrate buffer. Treated diabetic rats were administrated with LBP in drinking water through oral gavage for 30 days. At the end of experiment, oxidative indice in blood, liver and kidney of all groups were examined. The results show that administration of LBP can restore abnormal oxidative indice near normal levels. Therefore, we may assume that LBP is effective in the protection of liver and kidney tissue from the damage of STZ-induced diabetic rats and that the LBP may be of use as a antihyperglycemia agent.  相似文献   

20.
Reactive oxygen species may be actively involved in the genesis of various pathological states such as ischemia-reperfusion injury, cancer, and diabetes. Our objective was to determine if subacute treatment with combined antioxidants quercetin and coenzyme Q(10) (10 mg/kg/day ip for 14 days) affects the activities of antioxidant enzymes in normal and 30-day streptozotocin-induced diabetic Sprague-Dawley rats. Quercetin treatment raised blood glucose concentrations in normal and diabetic rats, whereas treatment with coenzyme Q(10) did not. Liver, kidney, heart, and brain tissues were excised and the activities of catalase, glutathione reductase, glutathione peroxidase, superoxide dismutase, and concentrations of oxidized and reduced glutathione were determined. In the liver of diabetic rats, superoxide dismutase, glutathione peroxidase, and levels of both oxidized and reduced glutathione were significantly decreased from the nondiabetic control, and these effects were not reversed when antioxidants were administered. In kidney, glutathione peroxidase activity was significantly elevated in the diabetic rats as compared to nondiabetic rats, and antioxidant treatment did not return the enzyme activity to nondiabetic levels. In heart, catalase activity was increased in diabetic animals and restored to normal levels after combined treatment with quercetin and coenzyme Q(10). Cardiac superoxide dismutase was lower than normal in quercetin- and quercetin + coenzyme Q(10)-treated diabetic rats. There were no adverse effects on oxidative stress markers after treatment with quercetin or coenzyme Q(10) singly or in combination. In spite of the elevation of glucose, quercetin may be effective in reversing some effects of diabetes, but the combination of quercetin + coenzyme Q(10) did not increase effectiveness in reversing effects of diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号