首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amylase digestibility of high-amylose maize starches has been compared before and after thermo-mechanical processing. Starches were analysed for enzyme-resistant starch yield, apparent amylose content, crystallinity (X-ray diffraction), and molecular order (NMR and FTIR), both before and after treatment with α-amylase. All samples had significant (>10%) enzyme-resistant starch levels irrespective of the type and extent of thermal or enzymic processing. Molecular or crystalline order was not a pre-requisite for enzyme resistance. Near-amorphous forms of high amylose maize starches are likely to undergo recrystallisation during the enzyme-digestion process. The mechanism of enzyme resistance of granular high-amylose starches is found to be qualitatively different to that for processed high-amylose starches. For all samples, measured levels of enzyme resistance are due to the interruption of a slow digestion process, rather than the presence of completely indigestible material.  相似文献   

2.
The amylose to amylopectin ratios in six maize starch samples of differing amylose contents were measured by enzymatic debranching, followed by high performance size exclusion chromatography (HPSEC). The molecular size of amyloses, estimated by -log Kwav, shows progressive decrease with the increase in amylose content in maize starches. The gel permeation chromatographs of the corresponding amylopectins, debranched with isoamylase, showed bimodal distributions containing long and short chains. The average chain length of amylopectin has a correlation with amylose content. The correlation coefficients between amylose content and average chain length, long chain length, weight ratio and the mole ratio of long and short chain length, were 0.97, 0.92, 0.96, 0.94 respectively. The maize starch with the highest amylose content has the lowest amylose molecular size and the longest chains, with a high ratio of long to short chains in its amylopectin fraction. Comparing the values of amylose content determined by HPSEC of starch or debranched starch with those of the iodinecomplex method, we conclude that long chains of amylopectin in high amylose starches contribute significantly to apparent amylose content.  相似文献   

3.
The aim of the present work was to investigate the effect of physical structures on the properties of starch granules. Starches with a high amylopectin content possessing A- and B-type crystallinity were chosen for the study. The gelatinization temperature decreased in the following order: maize (A) > potato (B) > wheat (A) > barley (A), which did not reflect a correlation with the type of crystallinity. Low values of gelatinization temperature were accompanied with high free surface energy of the crystallites. It is proposed that these data are caused by different types of imperfections in starch crystals. Annealing resulted in an enhancement of the gelatinization temperature and a decrease of the free surface energy of the crystallites for all starches reflecting a partial improvement of crystalline perfection. A limited acid hydrolysis (lintnerization) of the starches decreased the gelatinization temperature because of a partial disruption of the crystalline lamellae and an increase of the amount of defects on the edges of the crystallites. Annealing of the lintnerized starches improved the structure of maize and potato starch, giving them similar structural and physicochemical parameters, which was opposite the behavior of the annealed sample from wheat. The possible nature of removable and nonremovable defects inside the crystalline region of the starch granules is discussed. It is concluded that, besides the allomorphic A- and B-types of crystal packing, physical defects in the crystals possess a major impact on starch gelatinization.  相似文献   

4.
The molecular structure of starch granules formed in suspension-cultured cells of Ipomoea cordatotriloba Denn. was characterized by its chain length distribution, which was compared to those of the starches from the root and leaf of the original plant. The cultured cell starches were spherical and had a very small granule size (about 2 μm). The debranched starches roughly separated into three fractions during gel-permeation chromatography, and the fractions were defined as Fr.1, 2, and 3, respectively. The chain length distribution of the debranched cultured cell starch showed that the high molecular weight fraction (Fr.1), referred to as an amylose fraction, was much less than those of the root and leaf starches. The ratio of the two lower fractions (Fr.3/Fr.2) of the cultured cell starch, which was mainly derived from unit chains of amylopectin, was greatest among the starches, suggesting that the amylopectin from the cultured cell starch has much shorter unit chains. By X-ray diffraction analysis, it was found that both cultured cell and leaf starch granules have low crystallinity.  相似文献   

5.
The amount of B-type crystallinity in compression-moulded, glycerol-plasticised potato starches was strongly dependent on both the properties of the potato starch used and the applied processing conditions. The presence of amylose and the morphology of the potato starch used, but also processing parameters such as moulding temperature and water content during moulding affected the amount of B-type crystallinity in the materials and thus the ultimate mechanical properties of the plasticised starches. This indicated that the direct relation between composition and physical properties of processed starches is not always valid; processing parameters are important tools for controlling the physical properties of processed starches as they influence the amount of B-type crystallinity in the material. It was shown that the total amount of B-type crystallinity in the glycerol-plasticised potato starches should be considered as a summation of residual amylopectin crystallinity and recrystallisation of both amylose and amylopectin, being strongly dependent on the applied processing conditions. In order to explain the observed amount of B-type crystallinity in these starches, partial (co-)crystallisation of both amylose and amylopectin should occur at high moulding temperatures. The measured mechanical properties of the plasticised potato starches correlated well with the amount of B-type crystallinity observed in the materials.  相似文献   

6.
Ageing of gelatinised and partly gelatinised potato starch and wheat starch were investigated in the presence of plasticisers with increasing size and number of OH groups (ethylene glycol, glycerol, threitol, xylitol, glucose, and for potato starch also maltose). The influences of these plasticisers and of granular remnants (ghosts) on recrystallisation were determined by using X-ray diffraction. Recrystallisation of potato starch samples in the presence of plasticisers resulted in crystallinity indices of 0.5. The largest reduction in potato starch recrystallisation is found for threitol (4 OH) and xylitol (5 OH). In the plasticiser range examined, the crystallisation inducing effect of granular potato starch remnants is reduced better when the plasticiser contains more OH groups. Wheat starch recrystallises to a lesser extent than potato starch, resulting in crystallinity indices of 0.4. The results for wheat starch do not show clear trends for the influences of plasticiser size and of ghosts. The difference in behaviour of the two starches is probably caused by wheat starch having shorter amylopectin chains. Resulting from these shorter amylopectin chains, the remaining structure in wheat starch ghosts may resemble A-type crystallinity, making it more difficult to form B-type crystals. Alternatively, the trends as found for potato starch may occur, but are less manifest for wheat starch, due to the lower total extent of recrystallisation. Solid state CP/MAS NMR spectra of the wheat starch samples containing ethylene glycol were obtained, in order to compare completely and partly gelatinised systems. The spectra were identical, confirming that the ghost structures do not influence wheat starch recrystallisation. Apparently, wheat starch ghosts do not act as nuclei for crystallisation.

Similarly, the influence of various malto-oligosaccharides in combination with granular remnants (ghosts) was investigated on wheat starch ageing. Gelatinised and partly gelatinised wheat starch were plasticised with maltose, maltotriose, maltotetraose, maltopentaose or maltohexaose. This resulted in crystallinity indices of 0.2, with the largest reduction in recrystallisation for maltotriose and maltotetraose. No trend was found for the influence of ghosts. The presence of ghosts did not influence the 13C solid state HP/DEC NMR spectra. Less recrystallisation took place than with the previously mentioned smaller plasticisers that resulted in crystallinity indices of 0.4. The finding that maltose was able to reduce retrogradation better than glucose could be of practical importance.  相似文献   


7.
The granular structure and gelatinisation properties of starches from a range of pea seed mutants were studied. Genes which affect the supply of substrate during starch synthesis (rb, rug3, rug4) affected the total crystallinity and possibly increased the content of A polymorphs in the starch. Conversely, genes directly affecting the synthesis of starch polymers (r, rug5, lam) increased the content of B polymorphs, but had a minimal effect on total crystallinity. During gelatinisation, starches from the rb, rug3, rug4 and lam mutants had narrow endothermic peaks which were similar to starch from the wild-type, although all the starches had different peak temperatures and enthalpy changes. Starches from r and rug5 mutants were very different to all other starches, having a very wide transition during gelatinisation. In addition, the amylopectin in starch from these mutants had altered chain lengths for those parts of the polymer which form the ordered structures in the granule.  相似文献   

8.
The molecular structure and physicochemical properties of acid–alcohol treated maize and potato starches (0.36% HCl in methanol at 25 °C for 1–15 days) were investigated. The yields of the modified starches were ranging from 91 to 100%. The average granule size of modified starches decreased slightly. The solubility of starches increased with the increase of treatment time, and the pasting properties confirmed the high solubility of modified starches. The gelatinization temperatures and range of gelatinization increased with the increase of treatment time except To (onset temperature) of maize starch. Molecular structures of modified starches suggested the degradation of starches occurred mostly within the first 5 days of treatment, and degradation rate of potato starch was higher than maize starch both in amylopectin and in amylose. Maize starch was found less susceptible to acid–alcohol degradation than potato starch.  相似文献   

9.
Structural basis for the slow digestion property of native cereal starches   总被引:3,自引:0,他引:3  
Native cereal starches are ideal slowly digestible starches (SDS), and the structural basis for their slow digestion property was investigated. The shape, size, surface pores and channels, and degree of crystallinity of starch granules were not related to the proportion of SDS, while semicrystalline structure was critical to the slow digestion property as evidenced by loss of SDS after cooking. The high proportion of SDS in cereal starches, as compared to potato starch, was related to their A-type crystalline structure with a lower degree of perfection as indicated by a higher amount of shortest A chains with a degree of polymerization (DP) of 5-10. The A-type amorphous lamellae, an important component of crystalline regions of native cereal starches, also affect the amount of SDS as shown by a reduction of SDS in lintnerized maize starches. These observations demonstrate that the supramolecular A-type crystalline structure, including the distribution and perfection of crystalline regions (both crystalline and amorphous lamellae), determines the slow digestion property of native cereal starches.  相似文献   

10.
The effect of UV-irradiation on four different types of native starch (corn, waxy corn, wheat and potato) have been investigated. Although the changes in the chemical structure of starch specimens were small, indicating good photostability, the samples lost adsorbed water and their crystallinity degree decreased after irradiation. Moreover, a drop in average molecular weight occurred in samples (with the exception of potato starch) as a result of main chain scission. The variations in the properties of investigated specimens of various origin were related to the differences in their structure and macromolecular arrangement. The lowest photostability among the four starches was exhibited by potato starch.  相似文献   

11.
Comparative studies of native maize starches with different amylose contents were carried out using X-ray powder diffraction. The results show a transition of crystalline type from A through C to B, accompanying a decrease in degree of crystallinity from 41.8% to 17.2% across a range of apparent amylose content from 0% to 84%. Hydration induces an increase in degree of granule crystallinity, but does not change the transition of crystal type. Progressively from A-type to C-type, crystallinity decreases rapidly with an increase in amylose content. From C-type to B-type, overall crystallinity decreases more slowly. The crystal type is strongly dependent on amylose content and on average chain length of the respective amylopectin. Waxy A-types have an average chain length of about 20, while in high amylose B-types this rises to ≈35. The proportion of short chains (10–13 glucose units) appears to affect crystal type significantly. Some V-type material was detected at high amylose levels. The proportion of this increased after prolonged exposure of the granules to iodine vapour. Implications for the arrangement of starch components in the granule are discussed.  相似文献   

12.
Starch isolated from mature Ginkgo biloba seeds and commercial normal maize starches were subjected to α-amylolysis and acid hydrolysis. Ginkgo starch was more resistant to pancreatic α-amylase hydrolysis than the normal maize starch. The chain length distribution of debranched amylopectin of the starches was analyzed by using high performance anion-exchange chromatography equipped with an amyloglucosidase reactor and a pulsed amperometric detector. The chain length distribution of ginkgo amylopectin showed higher amounts of both short and long chains compared to maize starch. Naegeli dextrins of the starches prepared by extensive acid hydrolysis over 12 days demonstrated that ginkgo starch was more susceptible than normal maize to acid hydrolysis. Ginkgo dextrins also demonstrate a lower concentration of singly branched chains than maize dextrins, and unlike maize dextrin, debranched ginkgo shows no multiple branched chains. The ginkgo starch displayed a C-type X-ray diffraction pattern, compared to an A-type pattern for maize. Ginkgo starch and maize starch contained 24.0 and 17.6% absolute amylose contents, respectively.  相似文献   

13.
Native and high pressure-treated (water suspensions, 650 MPa) waxy maize starch, containing mainly amylopectin, and Hylon VII, rich in amylose, were studied for their ability to generate free radicals upon thermal treatment at 180–230 °C. The electron paramagnetic resonance (EPR) spectroscopy was used to characterize the nature, number and stability of radicals. Various stable and short living (stabilized by N-tert-butyl-α-phenylnitrone (PBN) spin trap) radical species were formed. It was found, that at given conditions the waxy maize starch reveals higher ability to generate radicals, than Hylon VII. The presence of water and high pressure pretreatment of starches, both resulted in the reduction of the amount of thermally generated radicals. The decrease in crystallinity of waxy maize starch and of Hylon VII, occurring upon high pressure treatment, leads to the increase of the relative amount of fast rotating component in the EPR spectrum of both types of starches.  相似文献   

14.
The objective of this study was to examine the composition and branch chain lengths of alfalfa (Medicago sativa L.) taproot starch during starch utilization and reaccumulation in response to defoliation. Genotypes were propagated vegetatively and well-established plants were sampled at defoliation and at weekly intervals thereafter. Starch granules from root tissues were dispersed in dimethyl sulfoxide and starch components separated using gel permeation chromatography. Root starches also were debranched enzymically, and branch chain lengths were examined. Results indicate that, irrespective of starch concentration, starch from taproots of the high starch genotype was composed of approximately 80% high molecular weight starch with I2-Kl absorbance characteristics similar to amylopectin. The remaining 20% of the starch was low molecular weight with I2-Kl absorbance characteristics similar to amylose. Starches of the low starch genotype contained approximately 85% high molecular weight polysaccharide at high root starch concentrations (>50 grams per kilogram). At low root starch concentrations (<10 grams per kilogram), starch from the low starch genotype had nearly equal proportions of low and high molecular weight polysaccharide. The I2-Kl absorbance properties of the low molecular weight starches from roots of the low starch genotype indicated that some branching may be present. The distribution of chain lengths from amylopectin did not change during starch degradation and reaccumulation for the high starch genotype. In the low starch genotype, the proportion of low molecular weight branches having a degree of polymerization between 1 and 30 was decreased at the very low starch concentrations observed on the 14th day of regrowth. Higher concentrations and/or quantities of starch in roots of the high starch genotype were not associated with greater rate of herbage regrowth, when compared to the low starch genotype.  相似文献   

15.
This work focuses on the effect of annealing and pressure on microstructures of starch, in particular the crystal structure and crystallinity to further explore the mechanisms of annealing and pressure treatment. Cornstarches with different amylose/amylopectin ratios were used as model materials. Since the samples covered both A-type (high amylopectin starch: waxy and maize) and B-type (high amylose starch: G50 and G80) crystals, the results can be used to clarify some previous confusion. The effect of annealing and pressure on the crystallinity and double helices were investigated by X-ray diffraction (XRD) and 13C CP/MAS NMR spectroscopy. The crystal form of various starches remained unchanged after annealing and pressure treatment. XRD detection showed that the relative crystallinity (RC) of high amylopectin starches was increased slightly after annealing, while the RC of high amylose-rich starches remained unchanged. NMR measurement supported the XRD results. The increase can be explained by the chain relaxation. XRD results also indicated that some of the fixed region in crystallinity was susceptible to outside forces. The effect of annealing and pressure on starch gelatinization temperature and enthalpy are used to explore the mechanisms.  相似文献   

16.
粉末X射线衍射图谱计算植物淀粉结晶度方法的探讨   总被引:6,自引:0,他引:6  
徐斌  满建民  韦存虚 《植物学报》2012,47(3):278-285
植物淀粉有A-型、B-型和C-型3种晶体。以水稻(Oryza sativa)、马铃薯(Solanum tuberosum)、豌豆(Pisum sativum) 和莲藕(Nelumbo nucifera)淀粉为材料, 利用粉末X-射线衍射仪(XRD)调查了不同晶体类型淀粉的波谱特征, 探讨XRD波谱相对结晶度的计算方法。软件峰拟合法、软件曲线法、直线作图法和曲线作图法均可用于计算淀粉XRD波谱的相对结晶度, 以曲线作图法计算结果较为可靠。利用曲线作图法得出的结果表明, 稻米淀粉的结晶度与直链淀粉含量呈显著线性负相关, 酸解莲藕淀粉的结晶度与淀粉酸水解度呈显著线性正相关。酸水解使莲藕淀粉的C-型晶体转变为A-型晶体。上述研究结果为利用XRD分析植物淀粉晶体类型和计算相对结晶度提供了重要参考。  相似文献   

17.
Structural studies of starches with different water contents   总被引:1,自引:0,他引:1  
The proportion of double helices in starches from a series of pea [rb, rug4-b, rug3-a, and lam-c mutants, and the wild type (WT) parental line], potato and maize (normal and low amylose), and wheat (normal) lines, ranged from about 30-50% on a dry weight basis. In relatively dry starch powders, only about half of the double helices were in crystalline order, this proportion being higher for A-type than for B-type starches. Using starch from WT pea as an example, it was found that increasing water content results in an increase in total crystallinity. When the water content was raised to a level similar to that in excess water, the proportion of crystallinity was close to the proportion of double helices (DH). Measuring crystallinity in starches with a high water content is difficult using traditional methods such as x-ray diffraction. A method was developed, therefore, for determining starch structural characteristics in excess water by measuring the enthalpy of gelatinization transition in quasi-equilibrium differential scanning calorimetry (DSC) experiments. It is suggested that DH% = DeltaH(sp)/DeltaH(DH) x 100%, where DeltaH(sp) and DeltaH(DH) represent the specific enthalpies of gelatinisation transition, DeltaH(sp) being measured as J/g dry starch weight and DeltaH(DH) as J/g DH, in starch. Studies on potato and maize starches in excess water and in 0.6M KCl showed, respectively, that DeltaH(DH) was 36.3 and 35.6 J/g for B-type polymorphs and 33.0 and 35.0 J/g for A-type polymorphs. For C-type starches, such as those from pea, intermediate values of DeltaH(DH), related to the proportions A-/B-polymorphs, should be used. The type of crystallinity in starch can be determined by the shift in peak temperature for thermograms in excess water and in excess 0.6M KCl. For B-polymorphs this shift was found to be approximately 2-3 degrees C and for A-polymorphs approximately 7-12 degrees C. The ratio between ordered areas with both A- and B-polymorphs can be determined from the enthalpies of disruption of each area. These enthalpies can be obtained by deconvolution of bimodal thermograms produced by C-type starches in excess 0.6M KCl. This methodical approach can be applied to all starches that give a sharp gelatinisation thermogram in excess water. Using a range of methods, including DSC, it was found that starch granules from the mutant peas are constructed in a similar way to those from the WT, with B-polymorphs in the centre and A-polymorphs at the periphery of all granules. The proportion of A/B-polymorphs, however, differed between the mutants. It was found that in addition to increasing the total crystallinity, increasing the water content within the granules also resulted in an increase in the proportion of B-polymorphs.  相似文献   

18.
In this work, the chayote tuber starch (CHS) was isolated and its chemical composition and its physical and microscopic characteristics were determined, and compared with potato (PS) and maize (MS) starches. The starch content in chayote tubers (728 g kg−1 dry weight) was similar to potato tubers (700 g kg−1 dry weight), with a high level of purity (>98%), while its phosphorous content was higher (0.15%) than PS (0.08%) and MS (0.01%). Starch granules were oval, irregular, truncated and rounded with sizes between 7 and 50 μm with smooth surfaces. CHS dispersions (1% and 4%, w/w) showed higher viscosity (75 and 1715 mPa s), than PS (350% and 50% lower) and MS (715% and 600% lower). The gelatinization temperature (65 to 74 °C) was similar in CHS and PS. The pasting properties (RVA) of the starches suggest that CHS showed better characteristics than the commercial potato and maize starches. Therefore, CHS could be used as a thickening agent and a substitute to PS in food dispersions where a high viscosity is needed.  相似文献   

19.
The gelatinisation, pasting and retrogradation properties of three rye starches isolated using a proteinase-based procedure were investigated and compared to those of wheat starch isolated in a comparable way. On an average, the rye starch granules were larger than those of wheat starch. The former had very comparable gelatinisation temperatures and enthalpies, but slightly lower gelatinisation temperatures than wheat starch. Under standardised conditions, they retrograded to a lesser extent than wheat starch. The lower gelatinisation temperatures and tendencies of the rye starches to retrograde originated probably from their higher levels of short amylopectin (AP) chains [degree of polymerisation (DP) 6–12] and their lower levels of longer chains (DP 13–24) than observed for wheat starch. The rapid visco analysis differences in peak and end viscosities between the rye starches as well as between rye and wheat starches were at least partly attributable to differences in the levels of AP short chains and in average amylose molecular weight. The AP average chain lengths and exterior chain lengths were slightly lower for rye starches, while the interior chain lengths were slightly higher than those for wheat starch.  相似文献   

20.
Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) was used to study the external regions of starch granules. Native starches (wheat, potato, maize, waxy maize and amylomaize) were analysed and compared to gelatinised and acid-hydrolysed starches. The IR spectra of potato and amylomaize starches were closer to that of highly ordered acid-hydrolysed starch than the other starches. FTIR was not able to differentiate between A- and B-type crystallinity so the difference observed between starches was not related to this factor. The variation between starch varieties was interpreted in terms of the level of ordered structure present on the edge of starch granules with potato and amylomaize being more ordered on their outer regions. This could explain the high resistance of both these starches to enzyme hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号