首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different models of gene family evolution have been proposed to explain the mechanism whereby gene copies created by gene duplications are maintained and diverge in function. Ohta proposed a model which predicts a burst of nonsynonymous substitutions following gene duplication and the preservation of duplicates through positive selection. An alternative model, the duplication–degeneration–complementation (DDC) model, does not explicitly require the action of positive Darwinian selection for the maintenance of duplicated gene copies, although purifying selection is assumed to continue to act on both copies. A potential outcome of the DDC model is heterogeneity in purifying selection among the gene copies, due to partitioning of subfunctions which complement each other. By using the dN/dS () rate ratio to measure selection pressure, we can distinguish between these two very different evolutionary scenarios. In this study we investigated these scenarios in the -globin family of genes, a textbook example of evolution by gene duplication. We assembled a comprehensive dataset of 72 vertebrate -globin sequences. The estimated phylogeny suggested multiple gene duplication and gene conversion events. By using different programs to detect recombination, we confirmed several cases of gene conversion and detected two new cases. We tested evolutionary scenarios derived from Ohtas model and the DDC model by examining selective pressures along lineages in a phylogeny of -globin genes in eutherian mammals. We did not find significant evidence for an increase in the ratio following major duplication events in this family. However, one exception to this pattern was the duplication of -globin in simian primates, after which a few sites were identified to be under positive selection. Overall, our results suggest that following gene duplications, paralogous copies of -globin genes evolved under a nonepisodic process of functional divergence.[Reviewing Editor: Martin Kreitman]  相似文献   

2.
Summary WhenKlebsiella aerogenes was grown in continuous culture with xylitol, an unnatural pentitol, as the growth limiting substrate, the structural gene which codes for ribitol dehydrogenase, an enzyme which gratuitously catalyzes the oxidation of xylitol to D-xylulose, was duplicated. It appears that the duplication mechanism only duplicates the gene which is subjected to selective pressure and not any of the other closely linked genes. The degree to which the ribitol dehydrogenase gene is duplicated does not appear to be strictly correlated with the ability to grow faster on xylitol. Duplication mutants do, in fact, grow faster than their parent strain, but when challenged to grow at even higher growth rates there is a catabolic repression of enzyme activity. Thus a situation is created in which a structural gene is duplicated in response to selective pressure; these mutants can grow faster on the new substrate, but faster growth results in a silencing of a portion of the genes by catabolite repression.  相似文献   

3.
The evolutionary dynamics of duplicated protein-encoding genes (PEGs) is well documented. However, the evolutionary patterns and consequences of duplicated MIRNAs and the potential influence on the evolution of their PEG targets are poorly understood. Here, we demonstrate the evolution of plant MIRNAs subsequent to a recent whole-genome duplication. Overall, the retention of MIRNA duplicates was correlated to the retention of adjacent PEG duplicates, and the retained MIRNA duplicates exhibited a higher level of interspecific preservation of orthologs than singletons, suggesting that the retention of MIRNA duplicates is related to their functional constraints and local genomic stability. Nevertheless, duplication status, rather than local genic collinearity, was the primary determinant of levels of nucleotide divergence of MIRNAs. In addition, the retention of duplicated MIRNAs appears to be associated with the retention of their corresponding duplicated PEG targets. Furthermore, we characterized the evolutionary novelty of a legume-specific microRNA (miRNA) family, which resulted from rounds of genomic duplication, and consequent dynamic evolution of its NB-LRR targets, an important gene family with primary roles in plant-pathogen interactions. Together, these observations depict evolutionary patterns and novelty of MIRNAs in the context of genomic duplication and evolutionary interplay between MIRNAs and their PEG targets mediated by miRNAs.  相似文献   

4.

Background

Gene duplication is an important mechanism that can lead to the emergence of new functions during evolution. The impact of duplication on the mode of gene evolution has been the subject of several theoretical and empirical comparative-genomic studies. It has been shown that, shortly after the duplication, genes seem to experience a considerable relaxation of purifying selection.

Results

Here we demonstrate two opposite effects of gene duplication on evolutionary rates. Sequence comparisons between paralogs show that, in accord with previous observations, a substantial acceleration in the evolution of paralogs occurs after duplication, presumably due to relaxation of purifying selection. The effect of gene duplication on evolutionary rate was also assessed by sequence comparison between orthologs that have paralogs (duplicates) and those that do not (singletons). It is shown that, in eukaryotes, duplicates, on average, evolve significantly slower than singletons. Eukaryotic ortholog evolutionary rates for duplicates are also negatively correlated with the number of paralogs per gene and the strength of selection between paralogs. A tally of annotated gene functions shows that duplicates tend to be enriched for proteins with known functions, particularly those involved in signaling and related cellular processes; by contrast, singletons include an over-abundance of poorly characterized proteins.

Conclusions

These results suggest that whether or not a gene duplicate is retained by selection depends critically on the pre-existing functional utility of the protein encoded by the ancestral singleton. Duplicates of genes of a higher biological import, which are subject to strong functional constraints on the sequence, are retained relatively more often. Thus, the evolutionary trajectory of duplicated genes appears to be determined by two opposing trends, namely, the post-duplication rate acceleration and the generally slow evolutionary rate owing to the high level of functional constraints.
  相似文献   

5.
Summary In Aspergillus nidulans expression of the acetamidase structural gene, amdS, is under the control of at least four regulatory genes including the trans-acting amdA regulatory gene. A cis-acting mutation (amdI66) consisting of an 18 by duplication in the 5 region of the amdS gene results in very high levels of acetamidase activity but only in strains carrying semi-dominant mutations in the amdA gene. In selecting for increased amdS expression in an amdI66 amdA strain, an A. nidulans strain with a mutation in the 5 region of the amdS gene was isolated. The nucleotide sequence was determined of the region containing the mutation, designated amdI666. The mutant strain carries three tandem copies of the 18 by sequence that is duplicated in the amdI66 mutation. Thus, from a strain carrying a duplication of an apparent regulatory protein binding site with little effect on gene expression, a strain has been derived that carries a triplication of the site with consequent major effects on regulation. The multiple copies of regulatory sites present in many genes may have been generated by a similar mechanism.  相似文献   

6.
    
In a previous study, we isolated genomic clones encoding core 2-1,6-N-acetylglucosaminyltransferase (C2GnT) and blood group IGnT and proposed that these two genes were produced from a common ancestral gene by duplication, diversion and intron insertion. In the present study, we have isolated a pseudogene which is highly related to the gene ofC2GnT. The sequence analysis of this pseudogene indicated that the pseudogene was produced by duplication of a common precursor gene forC2GnT. These results taken together strongly suggest that the ancestral gene was first duplicated and one of the duplicated genes directly evolved into theIGnT gene. The other duplicated gene was further duplicated to produce theC2GnT gene and the pseudogene.  相似文献   

7.

Background

Most eukaryotic genomes have undergone whole genome duplications during their evolutionary history. Recent studies have shown that the function of these duplicated genes can diverge from the ancestral gene via neo- or sub-functionalization within single genotypes. An additional possibility is that gene duplicates may also undergo partitioning of function among different genotypes of a species leading to genetic differentiation. Finally, the ability of gene duplicates to diverge may be limited by their biological function.

Methodology/Principal Findings

To test these hypotheses, I estimated the impact of gene duplication and metabolic function upon intraspecific gene expression variation of segmental and tandem duplicated genes within Arabidopsis thaliana. In all instances, the younger tandem duplicated genes showed higher intraspecific gene expression variation than the average Arabidopsis gene. Surprisingly, the older segmental duplicates also showed evidence of elevated intraspecific gene expression variation albeit typically lower than for the tandem duplicates. The specific biological function of the gene as defined by metabolic pathway also modulated the level of intraspecific gene expression variation. The major energy metabolism and biosynthetic pathways showed decreased variation, suggesting that they are constrained in their ability to accumulate gene expression variation. In contrast, a major herbivory defense pathway showed significantly elevated intraspecific variation suggesting that it may be under pressure to maintain and/or generate diversity in response to fluctuating insect herbivory pressures.

Conclusion

These data show that intraspecific variation in gene expression is facilitated by an interaction of gene duplication and biological activity. Further, this plays a role in controlling diversity of plant metabolism.  相似文献   

8.

Background

Intrinsically disordered regions are enriched in short interaction motifs that play a critical role in many protein-protein interactions. Since new short interaction motifs may easily evolve, they have the potential to rapidly change protein interactions and cellular signaling. In this work we examined the dynamics of gain and loss of intrinsically disordered regions in duplicated proteins to inspect if changes after genome duplication can create functional divergence. For this purpose we used Saccharomyces cerevisiae and the outgroup species Lachancea kluyveri.

Principal Findings

We find that genes duplicated as part of a genome duplication (ohnologs) are significantly more intrinsically disordered than singletons (p<2.2e-16, Wilcoxon), reflecting a preference for retaining intrinsically disordered proteins in duplicate. In addition, there have been marked changes in the extent of intrinsic disorder following duplication. A large number of duplicated genes have more intrinsic disorder than their L. kluyveri ortholog (29% for duplicates versus 25% for singletons) and an even greater number have less intrinsic disorder than the L. kluyveri ortholog (37% for duplicates versus 25% for singletons). Finally, we show that the number of physical interactions is significantly greater in the more intrinsically disordered ohnolog of a pair (p = 0.003, Wilcoxon).

Conclusion

This work shows that intrinsic disorder gain and loss in a protein is a mechanism by which a genome can also diverge and innovate. The higher number of interactors for proteins that have gained intrinsic disorder compared with their duplicates may reflect the acquisition of new interaction partners or new functional roles.  相似文献   

9.

Background

Polyploid species contribute to Oryza diversity. However, the mechanisms underlying gene and genome evolution in Oryza polyploids remain largely unknown. The allotetraploid Oryza minuta, which is estimated to have formed less than one million years ago, along with its putative diploid progenitors (O. punctata and O. officinalis), are quite suitable for the study of polyploid genome evolution using a comparative genomics approach.

Results

Here, we performed a comparative study of a large genomic region surrounding the Shattering4 locus in O. minuta, as well as in O. punctata and O. officinalis. Duplicated genomes in O. minuta have maintained the diploid genome organization, except for several structural variations mediated by transposon movement. Tandem duplicated gene clusters are prevalent in the Sh4 region, and segmental duplication followed by random deletion is illustrated to explain the gene gain-and-loss process. Both copies of most duplicated genes still persist in O. minuta. Molecular evolution analysis suggested that these duplicated genes are equally evolved and mostly manipulated by purifying selection. However, cDNA-SSCP analysis revealed that the expression patterns were dramatically altered between duplicated genes: nine of 29 duplicated genes exhibited expression divergence in O. minuta. We further detected one gene silencing event that was attributed to gene structural variation, but most gene silencing could not be related to sequence changes. We identified one case in which DNA methylation differences within promoter regions that were associated with the insertion of one hAT element were probably responsible for gene silencing, suggesting a potential epigenetic gene silencing pathway triggered by TE movement.

Conclusions

Our study revealed both genetic and epigenetic mechanisms involved in duplicated gene silencing in the allotetraploid O. minuta.  相似文献   

10.
We have isolated a region containing the immunoglobulin kappa chain joining segments from a liver DNA library of the Australian rat Rattus villosissimus, and determined its nucleotide sequence. While the laboratory rat (Rattus norvegicus) had previously been shown to contain three recently duplicated copies of J 2, R. villosissimus has only two. Furthermore, all three copies of J 2 in R. norvegicus share an 11 by deletion in their 5 flanking regions which is not evident in either copy of J 2 in R. villosissimus. This suggests that the initial duplication events occurred separately in the two lineages, and were followed by a second duplication in R. norvegicus, all three duplications having occurred within the last 6–12 million years (although more complicated schemes involving gene conversion events cannot be excluded). These results indicate that there is a high degree of plasticity in this region of the genome, and that selective forces must exist which have maintained the number of expressible J segments in humans (5) and rodents (4–6) within their narrow range.  相似文献   

11.
A burst of evolutionary duplication upon land colonization seems to have led to the large superfamily of cytochromes P450 in higher plants. Within this superfamily some clans and families are heavily duplicated. Others, such as genes involved in the phenylpropanoid pathway have led to fewer duplication events. Eight coding sequences belonging to the CYP98 family reported to catalyze the 3-hydroxylation step in this pathway were isolated from Triticum aestivum (wheat) and expressed in yeast. Comparison of the catalytic properties of the recombinant enzymes with those of CYP98s from other plant taxa was coupled to phylogenetic analyses. Our results indicate that the unusually high frequency of gene duplication in the wheat CYP98 family is a direct or indirect result from ploidization. While ancient duplication led to evolution of enzymes with different substrate preferences, most of recent duplicates underwent silencing via degenerative mutations. Three of the eight tested CYP98s from wheat have phenol meta-hydroxylase activity, with p-coumaroylshikimate being the primary substrate for all of these, as it is the case for CYP98s from sweet basil and Arabidopsis thaliana. However, CYP98s from divergent taxa have acquired different additional subsidiary activities. Some of them might be significant in the metabolism of various free or conjugated phenolics in different plant species. One of the most significant is meta-hydroxylation of p-coumaroyltyramine, predominantly by the wheat enzymes, for the synthesis of suberin phenolic monomers. Homology modeling, confirmed by directed mutagenesis, provides information on the protein regions and structural features important for some observed changes in substrate selectivity. They indicate that the metabolism of quinate ester and tyramine amide of p-coumaric acid rely on the same recognition site in the protein.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

12.
The proportion of non-tandem duplicated loci detected by DNA hybridization and the segregation of RFLPs using 90 independent randomly isolated cDNA probes was estimated by segregation analysis to be 17%. The 14 cDNA probes showing duplicate loci in progeny derived from a cross between Arabidopsis-thaliana ecotypes Columbia x Landsberg erecta detected an average of 3.6 loci per probe (ranging from 2 to 6). The 50 loci detected with these 14 probes were arranged on a genetic map of 587 cM and assigned to the five A. Thaliana chromosomes. An additional duplicated locus was detected in progeny from a cross between Landsberg erecta x Niederzenz. The majority of duplicated loci were on different chromosomes, and when linkage between duplicate locus pairs was detected, these loci were always separated by at least 15 cM. When partial nucleotide sequence data were compared with GENBANK databases, the identities of 2 cDNA clones which recognized duplicate unlinked sequences in the A. Thaliana genome were determined to encode a chlorophyll a/b-binding protein and a beta-tubulin. Of the 8 loci carrying beta-tubulin genes 6 were placed on the genetic map. These results imply that gene duplication has been an important factor in the evolution of the Arabidopsis genome.  相似文献   

13.

Background

Human gene duplicates have been the focus of intense research since the development of array-based and targeted next-generation sequencing approaches in the last decade. These studies have primarily concentrated on determining the extant copy-number variation from a population-genomic perspective but lack a robust evolutionary framework to elucidate the early structural and genomic characteristics of gene duplicates at emergence and their subsequent evolution with increasing age.

Results

We analyzed 184 gene duplicate pairs comprising small gene families in the draft human genome with 10 % or less synonymous sequence divergence. Human gene duplicates primarily originate from DNA-mediated events, taking up genomic residence as intrachromosomal copies in direct or inverse orientation. The distribution of paralogs on autosomes follows random expectations in contrast to their significant enrichment on the sex chromosomes. Furthermore, human gene duplicates exhibit a skewed gradient of distribution along the chromosomal length with significant clustering in pericentromeric regions. Surprisingly, despite the large average length of human genes, the majority of extant duplicates (83 %) are complete duplicates, wherein the entire ORF of the ancestral copy was duplicated. The preponderance of complete duplicates is in accord with an extremely large median duplication span of 36 kb, which enhances the probability of capturing ancestral ORFs in their entirety. With increasing evolutionary age, human paralogs exhibit declines in (i) the frequency of intrachromosomal paralogs, and (ii) the proportion of complete duplicates. These changes may reflect lower survival rates of certain classes of duplicates and/or the role of purifying selection. Duplications arising from RNA-mediated events comprise a small fraction (11.4 %) of all human paralogs and are more numerous in older evolutionary cohorts of duplicates.

Conclusions

The degree of structural resemblance, genomic location and duplication span appear to influence the long-term maintenance of paralogs in the human genome. The median duplication span in the human genome far exceeds that in C. elegans and yeast and likely contributes to the high prevalence of complete duplicates relative to structurally heterogeneous duplicates (partial and chimeric). The relative roles of regulatory sequence versus exon-intron structure changes in the acquisition of novel function by human paralogs remains to be determined.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1827-3) contains supplementary material, which is available to authorized users.  相似文献   

14.
Summary We have developed a procedure for determining the rates of mitotic recombination of an interrupted duplication created by integration of transforming plasmid sequences at the benA, beta-tubulin, locus of Aspergillus nidulans. Transformation of a strain carrying a benomyl-resistant benA allele with plasmid AIpGM4, which carries the wild-type benA allele and the pyr4 (orotidine-5-phosphate decarboxylase) gene of Neurospora crassa, creates an interrupted duplication with plasmid sequences flanked by two benA alleles, one wild type and one benomyl resdistant. Such transformants will not grow in the presence of high levels of benomyl. Mitotic recombination causes the loss of the wild-type benA allele or conversion of the wild-type to the mutant allele resulting in nuclei carrying only the benomylresistant allele. Conidia containing such nuclei can be selected on media with high benomyl allowing easy quantitation of mitotic recombination. We found that the rate of recombination giving rise to benomyl-resistant conidia was 4.6×10-4. Reciprocal recombination leading to benomyl-resistant conidia lacking plasmid sequences occurred at a rate of 2.0×10-4 and gene conversion leading to benomylresistant conidia occurred at a rate of 2.6×10-4. We selected for reciprocal recombination leading to loss of pyr4 sequences on 5-fluoro-orotic acid and used this selection for two-step gene replacement of a mutant benA allele with the wild-type allele.  相似文献   

15.
16.
Patterns of network connection of members of multigene families were examined for two biological networks: a genetic network from the yeast Saccharomyces cerevisiae and a protein–protein interaction network from Caenorhabditis elegans. In both networks, genes belonging to gene families represented by a single member in the genome (“singletons”) were disproportionately represented among the nodes having large numbers of connections. Of 68 single-member yeast families with 25 or more network connections, 28 (44.4%) were located in duplicated genomic segments believed to have originated from an ancient polyploidization event; thus, each of these 28 loci was thus presumably duplicated along with the genomic segment to which it belongs, but one of the two duplicates has subsequently been deleted. Nodes connected to major “hubs” with a large number of connections, tended to be relatively sparsely interconnected among themselves. Furthermore, duplicated genes, even those arising from recent duplication, rarely shared many network connections, suggesting that network connections are remarkably labile over evolutionary time. These factors serve to explain well-known general properties of biological networks, including their scale-free and modular nature. [Reviewing Editor : Dr. Manyuan Long]  相似文献   

17.
DNA-degrading enzymes of 24.0 kDa and 27.0 kDa were observed to have different activities in two common wheat (Triticum aestivum L.) cultivars, Wichita and Cheyenne. A substrate-based SDS-PAGE assay revealed that these two enzymes were much more active in Wichita than in Cheyenne. Genes controlling the activities of these two enzymes were localized on chromosome 2D by testing DNA-degrading activities in reciprocal chromosome substitution lines between Wichita and Cheyenne. While the allele on Wichita chromosome 2D stimulated the activities of the 24.0- and 27.0-kDa enzymes in Cheyenne, the allele on Cheyenne chromosome 2D did not reduce the activities of the 24-kDa and 27-kDa enzymes in Wichita. Whether these genes code for the DNA-degrading enzymes themselves or for factors that regulate the enzyme activities remains unknown.This work was supported in part by USDA-Competitive Research Grants Office grant No. 90-37140-5426 to P.S.B. Contribution from Agricultural Research Division, University of Nebraska. Journal Series Number 10304  相似文献   

18.

Background

PCR amplification is an important step in the preparation of DNA sequencing libraries prior to high-throughput sequencing. PCR amplification introduces redundant reads in the sequence data and estimating the PCR duplication rate is important to assess the frequency of such reads. Existing computational methods do not distinguish PCR duplicates from “natural” read duplicates that represent independent DNA fragments and therefore, over-estimate the PCR duplication rate for DNA-seq and RNA-seq experiments.

Results

In this paper, we present a computational method to estimate the average PCR duplication rate of high-throughput sequence datasets that accounts for natural read duplicates by leveraging heterozygous variants in an individual genome. Analysis of simulated data and exome sequence data from the 1000 Genomes project demonstrated that our method can accurately estimate the PCR duplication rate on paired-end as well as single-end read datasets which contain a high proportion of natural read duplicates. Further, analysis of exome datasets prepared using the Nextera library preparation method indicated that 45–50% of read duplicates correspond to natural read duplicates likely due to fragmentation bias. Finally, analysis of RNA-seq datasets from individuals in the 1000 Genomes project demonstrated that 70–95% of read duplicates observed in such datasets correspond to natural duplicates sampled from genes with high expression and identified outlier samples with a 2-fold greater PCR duplication rate than other samples.

Conclusions

The method described here is a useful tool for estimating the PCR duplication rate of high-throughput sequence datasets and for assessing the fraction of read duplicates that correspond to natural read duplicates. An implementation of the method is available at https://github.com/vibansal/PCRduplicates.
  相似文献   

19.

Background

Gene duplication provides opportunities for lineage diversification and evolution of developmental novelties. Duplicated genes generally either disappear by accumulation of mutations (nonfunctionalization), or are preserved either by the origin of positively selected functions in one or both duplicates (neofunctionalization), or by the partitioning of original gene subfunctions between the duplicates (subfunctionalization). The Pax2/5/8 family of important developmental regulators has undergone parallel expansion among chordate groups. After the divergence of urochordate and vertebrate lineages, two rounds of independent gene duplications resulted in the Pax2, Pax5, and Pax8 genes of most vertebrates (the sister group of the urochordates), and an additional duplication provided the pax2a and pax2b duplicates in teleost fish. Separate from the vertebrate genome expansions, a duplication also created two Pax2/5/8 genes in the common ancestor of ascidian and larvacean urochordates.

Results

To better understand mechanisms underlying the evolution of duplicated genes, we investigated, in the larvacean urochordate Oikopleura dioica, the embryonic gene expression patterns of Pax2/5/8 paralogs. We compared the larvacean and ascidian expression patterns to infer modular subfunctions present in the single pre-duplication Pax2/5/8 gene of stem urochordates, and we compared vertebrate and urochordate expression to infer the suite of Pax2/5/8 gene subfunctions in the common ancestor of olfactores (vertebrates + urochordates). Expression pattern differences of larvacean and ascidian Pax2/5/8 orthologs in the endostyle, pharynx and hindgut suggest that some ancestral gene functions have been partitioned differently to the duplicates in the two urochordate lineages. Novel expression in the larvacean heart may have resulted from the neofunctionalization of a Pax2/5/8 gene in the urochordates. Expression of larvacean Pax2/5/8 in the endostyle, in sites of epithelial remodeling, and in sensory tissues evokes like functions of Pax2, Pax5 and Pax8 in vertebrate embryos, and may indicate ancient origins for these functions in the chordate common ancestor.

Conclusion

Comparative analysis of expression patterns of chordate Pax2/5/8 duplicates, rooted on the single-copy Pax2/5/8 gene of amphioxus, whose lineage diverged basally among chordates, provides new insights into the evolution and development of the heart, thyroid, pharynx, stomodeum and placodes in chordates; supports the controversial conclusion that the atrial siphon of ascidians and the otic placode in vertebrates are homologous; and backs the notion that Pax2/5/8 functioned in ancestral chordates to engineer epithelial fusions and perforations, including gill slit openings.  相似文献   

20.
The binding of -chymotrypsin to black-eyed pea trypsin/chymotrypsin inhibitor (BTCI) has been studied using the inhibitory activity against the enzyme and the formation of the complex enzyme/inhibitor followed by measurements of fluorescence polarization. Apparent equilibrium constants were estimated for several temperatures and the values obtained range from 0.32 × 107 to 1.36 × 107 M–1. The following values were found from van't Hoff plots: H vh ° = 10.8 kcal mol-1 (from inhibitory assays) and 11.1 kcal mol–1 (from fluorescence polarization); S° = 67.9 and = 67.8 kcal K–1 mol–1, respectively. Calorimetric binding enthalpy was determined (corrected for the ionization heat of the buffer) and the resulting value was H cal ° = 4.9 kcal mol-1. These results indicate that the binding of chymotrypsin to BTCI is an entropically driven process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号