首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hippocampal mossy fiber synaptosomes were used to investigate the role of arachidonic acid in the release of endogenous glutamate and the long-lasting facilitation of glutamate release associated with long-term potentiation. Exogenous arachidonate induced a dose-dependent efflux of glutamate from the hippocampal mossy fiber synaptosomes and this effect was mimicked by melittin. Neither treatment induced the release of occluded lactate dehydrogenase at the concentrations used in these experiments. In each case, removal of the biochemical stimulus allowed for glutamate efflux to return to spontaneous levels. However, there was a persistent effect of exposure to either arachidonate or melittin, since these compounds facilitated the glutamate release induced by the subsequent addition of 35 mM KCl. This facilitation of glutamate release resulted from an enhancement of both the magnitude and duration of the response to depolarization. Although exogenous prostanoids were also able to stimulate the release of glutamate, they appeared to play no direct role in secretion processes, since inhibition of eicosanoid synthesis potentiated the glutamate efflux in response to membrane depolarization or exogenous arachidonic acid. We suggest that the calcium-dependent accumulation of arachidonic acid in presynaptic membranes plays a central role in the release of endogenous glutamate and that the persistent effects of arachidonic acid may be related to the maintenance of long-term potentiation in the hippocampal mossy fiber-CA3 synapse.  相似文献   

2.
Exposure of brown fat cells to phenylephrine, an agonist of alpha-1 adrenergic receptors, activates a phospholipase A2 which releases arachidonic acid. Since receptor activation of phospholipase A2 requires calcium, experiments were undertaken to define more precisely the role played by calcium in the regulation of enzyme activity. In this study, adipocytes were loaded with the fluorescent calcium chelator quin2 in order to buffer intracellular calcium and block receptor stimulated changes in its concentration. When quin2 loaded adipocytes were incubated in buffer containing 0.10 mM calcium, the ability of phenylephrine to stimulate release of arachidonic acid was severely reduced. At an intracellular quin2 concentration of 6.6 mM stimulated arachidonic acid release was inhibited by more than 50% and at 13 mM it was completely blocked. In contrast, phenylephrine stimulation of inositol phosphate accumulation was unaffected by quin2. Quin2 also did not affect the liberation of arachidonic acid in response to exogenous phospholipase C, A23187 or forskolin. The intracellular calcium antagonist TMB-8 also inhibited phenylephrine-stimulation of arachidonic acid release and this effect was reversed by ionomycin. Basal phospholipase A2 activity was increased by introduction of high calcium concentrations into cells rendered permeable with digitonin, but phenylephrine still caused a further increase in enzyme activity. These findings show a selective inhibition of phenylephrine activation of phospholipase A2 by either the chelation of intracellular calcium with quin2 or by the calcium antagonist TMB-8 and suggest an essential role for intracellular calcium in alpha adrenergic stimulation of enzyme activity. However, because phenylephrine still stimulates enzyme activity in cells rendered permeable with digitonin, we suggest that the action of phenylephrine cannot be attributed solely to changes in intracellular calcium.  相似文献   

3.
Several age-related changes have been identified in rat hippocampus; among these are deficits in glutamate release and long-term potentiation in dentate gyrus. These deficits correlate with a decrease in the concentration of arachidonic acid in hippocampus. In this study, the effects of dietary supplementation for 8 weeks with omega -6 or omega -3 fatty acids were assessed in groups of aged and young rats. The data presented indicate that dietary supplementation in aged rats restored the concentrations of arachidonic acid and docosahexanoic acid in hippocampal preparations to those observed in tissue prepared from young rats. In parallel, aged rats which received the experimental diets sustained long-term potentiation in a manner indistinguishable from young rats. The evidence presented supports the view that an age-related increase in reactive oxygen species production is linked with the decrease in polyunsaturated fatty acids and that a diet enriched in eicosapentanoic acid has antioxidant properties which may play a key role in reversal of the observed age-related deficits.  相似文献   

4.
[3H]Arachidonic acid is released after stimulation of rabbit neutrophils with fMet-Leu-Phe or platelet-activating factor (PAF). The release is rapid and dose-dependent, and is inhibited in phorbol 12-myristate 13-acetate (PMA)-treated rabbit neutrophils. The protein kinase C (PKC) inhibitor 1-(5-isoquinoline-sulphonyl)-2-methylpiperazine (H-7) prevents this inhibition. In addition, PMA increases arachidonic acid release in H-7-treated cells stimulated with fMet-Leu-Phe. [3H]Arachidonic acid release, but not the rise in the concentration of intracellular Ca2+, is inhibited in pertussis-toxin-treated neutrophils stimulated with PAF. The diacylglycerol kinase inhibitor R59022 increases the concentration of diacylglycerol and potentiates [3H]arachidonic acid release in neutrophils stimulated with fMet-Leu-Phe. This potentiation is not inhibited by H-7. These results suggest several points. (1) A rise in the intracellular concentration of free Ca2+ is not sufficient for arachidonic acid release in rabbit neutrophils stimulated by physiological stimuli. (2) A functional pertussis-toxin-sensitive guanine nucleotide regulatory protein and/or one or more of the changes produced by phospholipase C activation are necessary for arachidonic acid release produced by physiological stimuli. (3) Agents that stimulate PKC potentiate arachidonic acid release, and this potentiation is not inhibited by H-7. These agents produce their actions in part by direct membrane perturbation.  相似文献   

5.
The detailed mechanisms underlying morphine-signaling pathways in platelets remain obscure. Therefore, we systematically examined the influence of morphine on washed human platelets. In this study, washed human platelet suspensions were used for in vitro studies. Furthermore, platelet thrombus formation induced by irradiation of mesenteric venules with filtered light in mice pretreated with fluorescein sodium was used for an in vivo thrombotic study. Morphine concentration dependently (0.6, 1, and 5 microM) potentiated platelet aggregation and the ATP release reaction stimulated by agonists (i.e., collagen and U46619) in washed human platelets. Yohimbine (0.1 microM), a specific alpha(2)-adrenoceptor antagonist, markedly abolished the potentiation of morphine in platelet aggregation stimulated by agonists. Morphine also potentiated phosphoinositide breakdown and intracellular Ca(2+) mobilization in human platelets stimulated by collagen (1 microg/ml). Moreover, morphine (0.6-5 microM) markedly inhibited prostaglandin E(1) (10 microM)-induced cyclic AMP formation in human platelets, while yohimbine (0.1 microM) significantly reversed the inhibition of cyclic AMP by morphine (0.6 and 1 microM) in this study. The thrombin-evoked increase in pH(i) was markedly potentiated in the presence of morphine (1 and 5 microM). Morphine (2 and 5 mg/g) significantly shortened the time require to induce platelet plug formation in mesenteric venules. We concluded that morphine may exert its potentiation in platelet aggregation by binding to alpha(2)-adrenoceptors in human platelets, with a resulting inhibition of adenylate cyclase, thereby reducing intracellular cyclic AMP formation followed by increased activation of phospholipase C and the Na(+)/H(+) exchanger. This leads to increased intracellular Ca(2+) mobilization, and finally potentiation of platelet aggregation and of the ATP release reaction.  相似文献   

6.
Previous investigations from this laboratory have indicated that arachidonic acid stimulates a rapid, dose-dependent and reversible increase in hPL release which is not dependent on cyclooxygenase or lipoxygenase metabolism. To investigate further the mechanism by which arachidonic acid stimulates the release of hPL, the effect of arachidonic acid on the release of 45Ca from perifused cells prelabelled with 45CaCl was examined in an enriched cell culture population of term human syncytiotrophoblast. Arachidonic acid (10-100 microM) stimulated a dose-dependent, rapid, and reversible increase in the release of both 45Ca and hPL from the perifused placental cells. On the other hand, palmitic acid had little effect on either hPL release or 45Ca release even at concentrations as high as 100 microM. Ionophore A23187 (1-10 microM) also stimulated a dose-dependent and reversible increase in hPL release. Since arachidonic acid increases the mobilization of cellular calcium, as reflected by the increased 45calcium efflux, and since an increase in the intracellular calcium concentration appears to stimulate an increase in hPL release, these results suggest that the stimulation of hPL release by arachidonic acid may be due, at lease in part, to the effects of the fatty acid on cellular calcium mobilization.  相似文献   

7.
N-Methyl-D-aspartate (NMDA) stimulated the release of endogenous dopamine from striatal slices prepared from adult Sprague-Dawley rats. A mixture of sodium fluoride and aluminum chloride (AlF4-) added to the slices significantly potentiated the NMDA-stimulated release of dopamine in a concentration- and time-dependent manner. The AlF4- mixture had no effect on the nonstimulated basal efflux of dopamine, and no increases in NMDA-stimulated release were observed when NaF was replaced with NaCl. Similarly, AlCl3 or a mixture of NaCl and AlCl3 had no effect on NMDA-stimulated release. The AlF(4-)-induced increase in NMDA-stimulated dopamine release was totally blocked by magnesium or the selective NMDA glycine antagonist 7-chlorokynurenic acid. Striatal slices depolarized with KCl (15 mM) also released dopamine and this release was similarly potentiated by AlF4-. However, KCl-stimulated dopamine release from striatal synaptosomes was not potentiated by concentrations of AlF4- that greatly increased release from striatal slices. NMDA did not stimulate the release of dopamine from striatal synaptosomes in the absence or presence of aluminum fluoride. Modulators of adenylate cyclase (forskolin) and protein kinase C (phorbol esters) did not enhance NMDA-stimulated dopamine release. The protein kinase C inhibitor H-7 also did not reduce the potentiating effects of AlF4-. The mixed cholinergic agonist carbachol and the calcium ionophore A23187 mimicked the AlF4- effect although the increase in NMDA-stimulated dopamine release produced by these agents was less than that seen with AlF4-.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Changes in phosphoinositide metabolism were examined in washed rabbit platelets stimulated with 0.5 microM-ADP, 50 microM-adrenaline, or ADP and adrenaline in combination. Adrenaline does not stimulate platelet aggregation when used alone, but does potentiate aggregation stimulated by ADP. In platelets prelabelled with [32P]Pi and [3H]glycerol, adrenaline was found to potentiate the ADP-induced changes in platelet phospholipids, causing larger increases in the amount and labelling of phosphatidylinositol 4-phosphate (PIP) and phosphatidic acid than was observed with ADP alone. The combination of ADP and adrenaline did not produce a greater decrease in phosphatidylinositol 4,5-bisphosphate (PIP2) than was produced by ADP alone. In platelets prelabelled with [3H]inositol, adrenaline potentiated the increases in labelling of inositol phosphate and inositol bisphosphate stimulated by ADP; no increase in inositol trisphosphate labelling was detected with ADP alone or with the combination of ADP and adrenaline. Phentolamine, an alpha-adrenergic-receptor antagonist, blocked potentiation by adrenaline of ADP-induced changes in phosphoinositide metabolism. Propranolol and sotalol, beta-adrenergic-receptor antagonists, augmented the potentiation; this is consistent with the concept that the effect of adrenaline is mediated by beta-adrenergic receptors. The effect of adrenaline on phosphoinositide metabolism appears to be to potentiate the mechanisms by which ADP causes turnover of PIP and possibly degradation of PI, rather than the mechanism by which PIP2 is decreased.  相似文献   

9.
We have been interested in the possibility that arachidonic acid or one of its 12-lipoxygenase metabolites may function as a retrograde messenger in long-term potentiation (LTP) in the dentate gyrus of the hippocampus. One criterion required of a retrograde messenger is that it stimulates presynaptic changes. Here, two possible presynaptic actions of arachidonic acid and its 12-lipoxygenase metabolites, 12-hydroxyeicosatetraenoic acid (HETE) and 12-hydroperoxyeicosatetraenoic acid (HPETE), are examined. We report that arachidonic acid, HETE, and HPETE significantly increase both K(+)-stimulated release of [3H]glutamate and [3H]inositol labelling of inositol phosphates in synaptosomes, whereas other biologically important fatty acids (oleic, palmitic, and stearic) failed to induce a similar response. The findings of these experiments are consistent with the hypothesis that arachidonic acid, HETE, or HPETE may play the role of a retrograde messenger in LTP.  相似文献   

10.
The relationship between nitrate which is formed from inhaled nitrogen dioxide, a common air pollutant, and changes in fatty acid metabolism of phosphatidylserine in rat erythrocytes has been examined. When erythrocytes were incubated at 37°C for 60 min with fatty acid, the incorporation rate of [1-14C]arachidonic acid and [9,10-3H]palmitic acid into phosphatidylserine was 15% (80 pmol/h per μmol lipid phosphorus) and 20% (12 pmol/h per μmol lipid phosphorus) of those into phosphatidylethanolamine, respectively. By the addition of 1.0 mM sodium nitrate or 0.5 μM ionophore A23187 to the incubation mixture, the rate of incorporation of both arachidonic acid and palmitic acid into phosphatidylethanolamine was stimulated 1.45-fold. On the other hand, the incorporation of palmitic acid into phosphatidylserine was little affected, while that of arachidonic acid was stimulated 1.35-fold. An increase in arachidonic acid of phosphatidylserine was also found by the addition of nitrate or ionophore A23187. This increase was dependent on the concentration of extracellular calcium and observed by the addition of other chaotropic anions in the order SCN >CIO4? > NO3?. It seems likely, therefore, that nitrate causes changes in erythrocyte membranes to facilitate calcium uptake. Increasing the concentration of intracellular calcium may cause stimulation of acyl-CoA:lysophospholipid acyltransferase and/or endogenous phospholipase A2.  相似文献   

11.
Human platelets were depleted of intracellular Ca2+ and then made selectively permeable to external Ca2+ by addition of the ionophore ionomycin. In this cell system a rapid release of arachidonic acid was seen in direct response to added Ca2+ at concentrations corresponding to cytosolic Ca2+ levels measured in thrombin-stimulated platelets. Thrombin and other activators of Ca2+/phospholipid-dependent protein kinase (C-kinase) potentiated the Ca2+-stimulated arachidonic acid release while exerting little or no effect in the absence of added Ca2+. Agents which increase (R59022) or decrease (isoquinolinesulphonylmethylpiperazine) the activation of C-kinase correspondingly enhanced or inhibited, respectively, the potentiation of arachidonic acid release caused by thrombin. These results support the hypothesis that arachidonic acid release in human platelets is regulated by a co-operative action between intracellular Ca2+ and C-kinase.  相似文献   

12.
Pancreatic beta-cells have ryanodine receptors but little is known about their physiological regulation. Previous studies have shown that arachidonic acid releases Ca(2+) from intracellular stores in beta-cells but the identity of the channels involved in the Ca(2+) release has not been elucidated. We studied the mechanism by which arachidonic acid induces Ca(2+) concentration changes in pancreatic beta-cells. Cytosolic free Ca(2+) concentration was measured in fura-2-loaded INS-1E cells and in primary beta-cells from Wistar rats. The increase of cytosolic Ca(2+) concentration induced by arachidonic acid (150microM) was due to both Ca(2+) release from intracellular stores and influx of Ca(2+) from extracellular medium. 5,8,11,14-Eicosatetraynoic acid, a non-metabolizable analogue of arachidonic acid, mimicked the effect of arachidonic acid, indicating that arachidonic acid itself mediated Ca(2+) increase. The Ca(2+) release induced by arachidonic acid was from the endoplasmic reticulum since it was blocked by thapsigargin. 2-Aminoethyl diphenylborinate (50microM), which is known to inhibit 1,4,5-inositol-triphosphate-receptors, did not block Ca(2+) release by arachidonic acid. However, ryanodine (100microM), a blocker of ryanodine receptors, abolished the effect of arachidonic acid on Ca(2+) release in both types of cells. These observations indicate that arachidonic acid is a physiological activator of ryanodine receptors in beta-cells.  相似文献   

13.
Muscarinic agonists stimulated arachidonic acid release from 10- to 32-fold in Chinese hamster ovary (CHO) cells transfected with muscarinic M1, M3 and M5 receptor subtypes. Muscarinic agonists liberated arachidonic acid from the cAMP-coupled M2 and M4 cells only in the presence of ATP. Partial agonists were less efficacious at liberating arachidonic acid than full agonists. The ability of muscarinic agonists to liberate arachidonic acid and stimulate phosphoinositide hydrolysis in the same CHO M1, M3 and M5 cells was well correlated; however, partial agonists were more efficacious at stimulating phosphoinositide hydrolysis than arachidonic acid release. The efficacy and potency of 13 muscarinic agonists to liberate arachidonic acid was characterised. Influx of external calcium was required for arachidonic acid release even after initiation of agonist-induced release. It is concluded that arachidonic acid release is a simple assay suitable for evaluation of muscarinic agonists, antagonists and the flux of external calcium into cells.  相似文献   

14.
The effect of dihydropyridine agonists and antagonists on neuronal voltage sensitive calcium channels was investigated. The resting intracellular calcium concentration of synaptosomes prepared from whole brain was 110 +/- 9 nM, as assayed by the indicator quin 2. Depolarisation of the synaptosomes with K+ produced an immediate increase in [Ca2+]i. The calcium agonist Bay K 8644 and antagonist nifedipine did not affect [Ca2+]i under resting or depolarising conditions. In addition, K+ stimulated 45Ca2+ uptake into synaptosomes prepared from the hippocampus was insensitive to Bay K 8644 and PY 108-068 in normal or Na+ free conditions. In neuronally derived NG108-15 cells the enantiomers of the dihydropyridine derivative 202-791 showed opposite effects in modulating K+ stimulated 45Ca2+ uptake. (-)-R-202-791 inhibited K+ induced 45Ca2+ uptake with an IC50 of 100 nM and (+)-S-202-791 enhanced K+ stimulated uptake with an EC50 of 80 nM. These results suggest that synaptosomal voltage sensitive calcium channels either are of a different type to those found in peripheral tissues and cells of neural origin or that expression of functional effects of dihydropyridines requires different experimental conditions to those used here.  相似文献   

15.
This study was undertaken to examine the role of phospholipase A2 and protein kinase C in the potentiation of beta-adrenoceptor-mediated cyclic AMP formation by alpha-adrenoceptors in rat cerebral cortical slices. Inhibition of arachidonic acid metabolism by a range of cyclooxygenase and lipoxygenase inhibitors had no effect on the potentiation of isoprenaline-stimulated cyclic AMP. Conversely, stimulation of leukotriene formation had no effect on the response to isoprenaline. The phospholipase A2 activator, melittin, stimulated cyclic AMP and potentiated the effect of isoprenaline, but these responses were not influenced by cyclooxygenase or lipoxygenase inhibitors. Indomethacin was also ineffective against the potentiation of vasoactive intestinal peptide-stimulated cyclic AMP by noradrenaline. Phorbol ester potentiated the cyclic AMP response to isoprenaline, and this potentiation was antagonized by three different putative protein kinase C inhibitors. However, the same inhibitors did not affect the alpha-adrenoceptor-stimulated enhancement of the response to isoprenaline. We have found no evidence, therefore, to support the suggestion that arachidonic acid and its metabolites and/or protein kinase C mediate the alpha-adrenoceptor modulation of beta-adrenoceptor function.  相似文献   

16.
Presynaptic correlates of evoked neurotransmitter release include a rise in cytosolic free calcium level and the calcium-dependent liberation of unesterified arachidonic acid. It has been proposed that lipoxygenase metabolites produced from arachidonic acid may constitute an endogenous feedback system for the modulation of neurotransmitter release. The results of the present study are in agreement with this hypothesis. It was demonstrated that membrane depolarization evoked the release of endogenous glutamate from hippocampal mossy fiber synaptosomes, as well as the accumulation of intraterminal free calcium. The presence of 12-lipoxygenase products attenuated both the induced release of glutamate and the increase in calcium content, whereas 5- or 15-lipoxygenase metabolites were ineffective. A role for lipoxygenase products in the negative modulation of mossy fiber secretion processes was further indicated by the observations that low concentrations of the lipoxygenase inhibitor nordihydroguaiaretic acid (0.1-10 microM) potentiated the glutamate release and calcium accumulation induced by membrane depolarization. Therefore, we suggest that 12-lipoxygenase metabolites provide a presynaptic inhibitory signal that limits neurotransmitter release from hippocampal mossy fiber terminals.  相似文献   

17.
5-Hydroxytryptamine (5-HT) is a potent pulmonary vasoconstrictor and contributes to hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension. Small intrapulmonary vessels are very sensitive to hypoxia and play a major role for blood flow regulation in the lung. Thus we have investigated the mechanisms involved in the calcium signal to 5-HT in rat small intrapulmonary artery (IPA). Effects of 5-HT were examined in isolated IPA (external diameter <250 microm) from rat. Digital imaging with fura-PE3 was used to record intracellular calcium concentration ([Ca(2+)](i)) and to follow external diameter of the vessels. 5-HT induced a sustained [Ca(2+)](i) variation that was sensitive to the inhibitor of the 5-HT(2A) receptors, ketanserin, and insensitive to voltage-dependent L-type calcium channel blockers (nitrendipine and nicardipine) or voltage-independent calcium channel antagonists (LOE-908, SKF-96365, and gadolinium). The calcium response to 5-HT was also not modified by a sarcoplasmic reticulum Ca(2+)-ATPase inhibitor (cyclopiazonic acid; CPA), which depletes intracellular calcium stores. CPA alone activated a capacitative calcium channel that was sensitive to LOE-908 and insensitive to SKF-96365 and gadolinium. The sustained calcium signal to 5-HT was partly blocked by inhibitors of arachidonic acid production (RHC-80267 and isotetrandrine) and mimicked by application of exogenous arachidonic acid. These results suggest that activation of a noncapacitative, arachidonic acid-sensitive, receptor-operated calcium channel contributes to 5-HT-induced sustained calcium increase in small IPA.  相似文献   

18.
Abstract: The effects of arachidonic acid and phorbol esters in the Ca2+-dependent release of glutamate evoked by 4-aminopyridine (4-AP) in rat cerebrocortical synaptosomes were studied. In the absence of arachidonic acid, high concentrations (500 n M ) of 4β-phorbol dibutyrate (4β-PDBu) were required to enhance the release of glutamate. However, in the presence of arachidonic acid, low concentrations of 4β-PDBu (1–50 n M ) were effective in potentiating glutamate exocytosis. This potentiation of glutamate release by phorbol esters was not observed with the methyl ester of arachidonic acid, which does not activate protein kinase C. Moreover, pretreatment of synaptosomes with the protein kinase inhibitor staurosporine also prevented the stimulatory effect by arachidonic acid and phorbol esters. These results suggest that the activation of protein kinase C by both arachidonic acid and phorbol esters may play a role in the potentiation of glutamate exocytosis.  相似文献   

19.
Incubation of synaptosomes from rat brain with DL-2-amino-5-phosphonovalerate (APV) stimulated an increased release of dopamine, and this effect was strictly dependent on the extrasynaptosomal calcium level. APV increased biosynthesis of dopamine from tyrosine by 30%, whereas monoamine oxidase activity was inhibited by 30%. When synaptosomes were incubated with radioactive dopamine, APV caused a large decrease in incorporation of label into 3,4-dihydroxyphenylacetic acid but greatly increased incorporation into norepinephrine and its N-methyl derivatives. Quantification of dopamine and its metabolites in synaptosomes, using electrochemical detection, indicated that the presence of APV resulted in changes in the absolute levels of the aforementioned dopamine metabolites similar to the changes in radiolabel incorporation. Omission of Ca2+ from the extrasynaptosomal medium greatly diminished the APV-induced changes in catecholamine metabolism. The metabolic changes appear to largely result from an increased intrasynaptosomal Ca2+ level due to the APV-induced increase in calcium permeability of the plasma membrane.  相似文献   

20.
Effect of alpha-latrotoxin on the concentration level of free calcium [( Ca2+]in) in the rat brain synaptosomes and dependence of the activity of "latrotoxin" channels on [Ca2+]in were studied using fluorescent calcium probe quin-2. It is shown that alpha-latrotoxin exerts effect on calcium permeability of plasmalemma and does not induce calcium ejection from the intracellular compartments. A lag-period is characteristic of alpha-latrotoxin action. A degree of the [Ca2+]in increase in synaptosomes depends on the toxin concentration. When [Ca2+]in increases as a result of preliminary potassium depolarization of plasmalemma of synaptosomes, the amount of incoming calcium ions followed by the toxin effect as well as the calcium input rate considerably decrease. Inactivation of calcium-transferring channels induced by alpha-latrotoxin is not a result of a change in the potential on the membrane, as during the blockage of potential-depending calcium channels by D-600, an increase of KCl in the incubation medium does not influence the alpha-latrotoxin action. Differences in the properties of alpha-latrotoxin channels are discussed in synaptosomes and BLM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号