首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B cell repertoire changes that characterize systemic autoimmune disease may be linked to an acceleration of normal immune aging. To examine this issue, the repertoires expressed by lupus-prone and geriatric normal mice were compared. An ELISA-spot assay was used to identify and quantitate individual lymphocytes secreting antibodies reactive with a panel of five autoantigens and three conventional Ag. Over half of autoimmune NZB and MRL/lpr mice developed repertoires biased toward the production of specific autoantibodies by 8 mo of age. The B cell repertoires expressed by normal BALB/c mice were stable over this period but developed a similar bias toward the production of autoantibodies by 18 to 22 mo of age. As both normal and autoimmune mice grew older, they expressed repertoires that increasingly diverged from those of other members of the same strain--a process whose onset and rate of development was accelerated in lupus-prone animals. By analyzing B cells from individual MRL/lpr mice at multiple time points, we found that 1) autoreactivity developed over a specific time period, 2) individual animals developed increased responsiveness against different autoantigens, and 3) this increased responsiveness persisted for life. These results suggest that the repertoires of adult autoimmune mice are generated and maintained by a process of continuous (auto)antigenic stimulation similar to that associated with normal immune aging.  相似文献   

2.
Autoimmune MRL-lpr/lpr and NZB/W mice spontaneously secrete large quantities of pathogenic IgG1 and IgG2a autoantibodies. NZB mice also produce autoantibodies but these tend to be of the IgM H chain class. This work examines whether differences in the isotype of autoantibody produced by lupus-prone mice reflects differences in the sensitivity of autoreactive B cells to lymphokine-mediated IgG secretion. Twenty-five percent of normal BALB/c B cells produced IgG1 when stimulated in vitro with IL-4 plus LPS. This was comparable with the effect of IL-4 on small resting B cells from MRL-lpr/lpr and NZB/W mice. In contrast, less than 8% of the resting B cells from NZB mice produced IgG1 under these conditions. LPS plus IFN-gamma induced 5% of BALB/c and NZB/W but only 1% of NZB B cells to secrete IgG2a. Because lymphocytes from both young and old NZB mice showed diminished IgG1 and IgG2a secretion after lymphokine treatment, B cells from this strain appeared to be intrinsically resistant to the effects of IL-4 and IFN-gamma. In contrast, a disproportionately large proportion (22%) of B cells from adult MRL-lpr/lpr mice produced IgG2a when treated with IFN-gamma in vitro. Only B cells from MRL-lpr/lpr mice with active disease responded with such high levels of IgG2a production: cells from animals that had not yet developed clinical disease produced normal levels of IgG2a. Within each strain, B cells producing antibodies against autoantigens such as DNA, bromelain-treated mouse RBC and Sm responded to treatment with IL-4 and IFN-gamma in a manner indistinguishable from B cells producing antibodies against conventional Ag such as TNP and ARS.  相似文献   

3.
The ability of autoimmune T cell subsets to interfere with tolerization of B cells can be studied by using thymic-independent Ag. We have defined an abnormality within the CD4+ T cell compartment in young NZB and MRL-lpr/lpr mice by studying tolerance of spleen and B cells to the thymic independent Ag, fluorescein-Brucella abortus. Tolerization of spleen cells is defective in MRL-lpr/lpr mice, but not MRL-+/+ or C3H.lpr mice, suggesting that the defect requires both the autosomal MRL background and the lpr gene to be present. T enriched cells from NZB mice and from MRL-lpr/lpr mice (but not MRL-+/+ or C3H.lpr mice) reverse tolerance in spleen cells from [NZB X DBA/2]F1 and C3H/HeJ mice, respectively. This interference is removed by treatment with anti-CD4 antibody and C. Supernatants from cultured T cells of NZB and MRL-lpr/lpr mice also prevent tolerance in spleen cells of [NZB X DBA/2]F1 and MRL-+/+ mice, respectively, unless CD4+ cells are removed prior to T cell culture. Removal of T cells from NZB and MRL-lpr/lpr spleen cells allows normal tolerization of B cells, which is abrogated by the addition of syngeneic T cells or cultured T cell supernatants. This effect also depends on the presence of CD4+ T cells. These studies show that in MRL-lpr/lpr mice, through interaction of the lpr and MRL background genes in a T cell subset, and in NZB mice, CD4+ T cells interfere with B cell tolerance to a thymic-independent Ag.  相似文献   

4.
To determine the genetic origins of lupus auto-antibodies, we analyzed the relationship between VH gene usage and auto-Ag-binding properties of 352 B cell hybridomas derived from MRL-lpr/lpr mice. The hybridomas were derived from neonatal, 1-month-old, 3-month-old, and 6-month-old mice. The experimental strategy provided that the hybridomas were monoclonal at initial evaluation, so the Ag binding and V gene frequencies of the entire population could be determined. Initially, 1032 Ig-producing hybridomas were evaluated for binding to six Ag; VH gene family use was determined in 119 anti-DNA and anti-rabbit thymus extract (RTE) antibodies (autoantibodies) and in 233 age-matched Ig that did not bind to any of the six Ag (nonbinders). Neonatal B cells, including cross-reactive IgM autoantibodies and nonbinder IgM, used relatively 3' VH genes. The majority of B cells in adult mice used VH genes of the J558 family. Although J558 use was significantly higher among the autoantibodies (anti-DNA and anti-RTE) than among the nonbinder Ig, this difference was due to a higher frequency of J558 use by 1-month-old mice. At 3 months, J558 use by the nonbinder Ig increased to the same frequency of J558 use as in the autoantibody population. J558 use in both groups of antibodies exceeded a previously reported estimation of J558 expression in the functional B cell repertoire of young adult MRL-lpr/lpr mice. Several subgroups of antibodies that share properties with pathogenic Ig, including IgG, cross-reactive Ig, and anti-dsDNA autoantibodies, demonstrated a marked preferential expression of the J558 family. These results suggest that there is an age-related bias in the activation of B cells using J558 VH genes in MRL-lpr/lpr mice that is under the influence of a selective force distinct from, or in addition to, an ssDNA or RTE auto-Ag-driven response.  相似文献   

5.
Natural autoantibodies (NAA) and their associated B cells constitute a substantial proportion of the normal Ab and B cell repertoire. They often have weak reactivity toward a variety of self-Ags such as DNA, nucleoproteins, and phospholipids. It remains controversial whether NAA contribute to or protect from autoimmune diseases. Using site-directed transgenic (sd-tg) mice expressing a prototypic NAA, we investigated the effect of NAA and NAA-producing B cells in disease development in the autoimmune-prone MRL/MpJ-Fas(lpr) (MRL-lpr) mice. We found that the expression of NAA in MRL-lpr mice prevented proteinuria and reduced kidney immune complex formation. The mice had significantly improved survival. Administration of the IgM NAA to MRL-lpr mice also delayed the onset of nephritis. The sd-tg MRL-lpr mice had decreased levels of anti-dsDNA Abs, anti-Hep2 nuclear Abs, and anti-Sm/ribonucleoprotein Abs. There is a shift in the IgG subclass profile from IgG2a and IgG3 to IgG1 in the sd-tg MRL-lpr mice. The CD4(+) T cells from the sd-tg MRL-lpr mice had increased expression of the negative costimulatory molecule CTLA-4 and increased production of IL-10 as compared with those from the wild-type mice. Furthermore, the NAA B cells produced large amounts of IL-10 upon TLR stimulation. These results indicate that NAA and NAA-producing B cells play an important role in protection from lupus nephritis and suggest that the NAA B cells may have an immune regulatory function via the provision of IL-10.  相似文献   

6.
Studies of lymphoproliferation in MRL-lpr/lpr mice   总被引:6,自引:0,他引:6  
MRL-lpr/lpr mice develop massive lymphoproliferation and an associated autoimmune process that includes anti-DNA formation, vasculitis, and glomerulonephritis. We have investigated the lymphoproliferation of MRL-lpr/lpr mice and have found that multiple factors are operative. Although neonatal thymectomy markedly retards the syndrome, chronic injection of poly rI.rC could substitute for the thymus. The resulting cells had the phenotype characteristic of the abnormal MRL-lpr/lpr T cells, Thy-1+, dull Ly-1+, Lyt-2-, 6B2+, Ig-. Splenectomy at 2 wk of age markedly retarded the development of this syndrome; however, splenectomy at birth did not. Some protection was afforded by splenectomy at 5 wk. Thus, there appears to be a critical period in the life of an MRL-lpr/lpr mouse when the spleen contributes importantly to the lymphoproliferation. A most remarkable observation was that an MRL-lpr/lpr spleen graft under the kidney capsule could induce lymphadenopathy characteristic of lpr/lpr mice in MRL +/+ recipients. Cells within the graft had to be able to proliferate for the adenopathy to occur because irradiation of the spleen with 800 R just before grafting abrogated the lymphadenopathy-inducing potential. No adenopathy was induced by +/+ spleen grafts placed into +/+ mice. Although MRL-lpr/lpr males develop disease slightly more slowly than female littermates, the differences are small. Manipulations that retard disease, such as splenectomy at 2 wk or neonatal thymectomy, magnified the sex differences. Male MRL-lpr/lpr mice that were thymectomized and splenectomized and given polyclonal immune activators failed to develop either anti-DNA or lymphadenopathy, whereas their female littermates expressed both abnormalities. We conclude from these studies that multiple factors serve to modulate the magnitude of the lymphoproliferation and autoimmune syndrome of MRL-lpr/lpr mice.  相似文献   

7.
MRL-lpr/lpr mice spontaneously develop massive T cell lymphadenopathy, autoantibodies, and immune-mediated pathology. These mice are thought to be models of various human autoimmune diseases, including systemic lupus, Sjogren's syndrome, and rheumatoid arthritis. We have used cyclosporin A (CS-A) treatment as a tool by which the mechanisms of immune-mediated pathology might be dissected. CS-A was used because of its known preferential inhibition of T cell function and the marked expansion in MRL-lpr/lpr mice of an unusual L3T4-, Lyt-2-, 6B2+ T cell population. CS-A prevented lymphadenopathy and expansion of L3T4-, Lyt-2-, 6B2+ T cells in the peripheral lymph nodes, and also in the thymus. The increased expression of the c-myb and T cell receptor beta-chain genes associated with these unusual cells was also corrected. The finding of increased numbers of L3T4-, Lyt-2-, 6B2+ thymocytes in untreated mice suggests abnormal intrathymic differentiation in lpr/lpr mice, a defect that was corrected by CS-A. Treated mice had a marked decrease in arthritis and glomerulonephritis and significantly prolonged survival. These beneficial effects of CS-A occurred despite a lack of reduction in antibodies reactive with DNA, circulating immune complexes, rheumatoid factor titers, or immunoglobulin concentrations. These results demonstrate that the B cell hyperactivity of MRL-lpr/lpr mice can proceed without the T cell proliferative disease.  相似文献   

8.
Autoantibodies directed against dsDNA are found in patients with systemic lupus erythematosus as well as in mice functionally deficient in either Fas or Fas ligand (FasL) (lpr/lpr or gld/gld mice). Previously, an IgH chain transgene has been used to track anti-dsDNA B cells in both nonautoimmune BALB/c mice, in which autoreactive B cells are held in check, and MRL-lpr/lpr mice, in which autoantibodies are produced. In this study, we have isolated the Fas/FasL mutations away from the autoimmune-prone MRL background, and we show that anti-dsDNA B cells in Fas/FasL-deficient BALB/c mice are no longer follicularly excluded, and they produce autoantibodies. Strikingly, this is accompanied by alterations in the frequency and localization of dendritic cells as well as a global increase in CD4 T cell activation. Notably, as opposed to MRL-lpr/lpr mice, BALB-lpr/lpr mice show no appreciable kidney pathology. Thus, while some aspects of autoimmune pathology (e.g., nephritis) rely on the interaction of the MRL background with the lpr mutation, mutations in Fas/FasL alone are sufficient to alter the fate of anti-dsDNA B cells, dendritic cells, and T cells.  相似文献   

9.
Characteristics of B cell proliferation and activation in murine AIDS   总被引:22,自引:0,他引:22  
A syndrome characterized by lymphadenopathy, hypergammaglobulinemia, and immunodeficiency develops in C57BL/6 mice inoculated with LP-BM5 murine leukemia viruses. By studying the number and antigenic specificity of B cells activated in the course of this disease, we found that a series of reproducible changes in the humoral immune system were induced by retroviral infection. The rate of B cell proliferation and the proportion of B cells activated to secrete Ig increased by nearly 10-fold at 4 wk post inoculation. B cells producing antibodies reactive with a panel of three conventional Ag and five autoantigens were stimulated simultaneously and proportionally to secrete, demonstrating that such activation was polyclonal in nature. At 12 wk post infection, the number of Ig-secreting B cells continued to rise and significant hypergammaglobulinemia developed. At 16 wk post infection, immunostimulation gave way to immunosuppression, as evidenced by a slight decline in the number of Ig-secreting lymphocytes and a sharp reduction in the concentration of serum antibody. At this time, the B cell repertoires of infected mice diverged markedly from those of uninfected animals. These changes are comparable to those found in some patients infected with HIV, and provide a useful model to study the association between retroviral infection and regulatory abnormalities of the humoral immune system.  相似文献   

10.
Costimulatory molecules, termed B7.1 and B7.2, are present on the surfaces of APC and are important for the activation of T lymphocytes specific for both foreign Ags and autoantigens. We have examined the role of B7 costimulation in the MRL-lpr/lpr murine model of human systemic lupus erythematosus. MRL-lpr/lpr mice receiving both anti-B7.1 and anti-B7.2 Abs expressed significantly lower anti-small nuclear ribonucleoprotein particles (snRNP) and anti-dsDNA autoantibodies than did untreated mice. Anti-B7.2 Ab treatment alone inhibited anti-dsDNA autoantibody expression while having no effect on anti-snRNP autoantibody expression. Anti-B7.1 Ab treatment alone did not change the expression of either anti-snRNP or anti-dsDNA autoantibodies. Parallel studies performed in MRL-lpr/lpr mice genetically deficient in either B7.1 or B7.2 expressed autoantibody profiles comparable to those found in wild-type MRL-lpr/lpr mice. However, B7.1-deficient MRL-lpr/lpr mice exhibited distinct and more severe glomerulonephritis while B7.2-deficient MRL-lpr/lpr mice had significantly milder or absent kidney pathology as compared with age-matched wild-type mice. These studies indicate that each B7 costimulatory signal may control unique pathological events in murine systemic lupus erythematosus that may not always be apparent in autoantibody titers alone.  相似文献   

11.
Considerable evidence supports the idea that autoantibody production in human and murine SLE is Ag driven. To determine whether Ag (the ribosomal P proteins) could initiate autoantibody production in lupus mice, 34 MRL/lpr mice were immunized with mouse riboosomal proteins in Freund's adjuvant. Neither intact ribosomes, denatured total mouse ribosomal proteins, nor the purified mouse ribosomal proteins, P1 and P2, induced the production of anti-P autoantibodies in the MRL/lpr mice. In contrast to these negative findings, MRL/lpr mice immunized with Artemia salina ribosomes produced anti-P antibodies as well as anti-P autoantibodies. Although the induced anti-P autoantibodies bound exclusively to the carboxyl terminus, these anti-P antibodies differed from spontaneously occurring anti-P autoantibodies in their predominant binding to mouse P0 on immunoblots and their preferential reactivity against A. salina synthetic peptides by ELISA. Induction of anti-P antibodies required the presence of P1 and P2 on the ribosome because ribosomal cores devoid of P1 and P2 dimers did not induce anti-P. Despite the presence of approximately 80 ribosomal proteins, autoantibodies to other mouse ribosomal proteins were rarely observed. Immunization of MRL/+ mice and a normal H-2-matched strain of mice, C3H, also resulted in anti-P antibodies reactive with the A. salina P proteins and mouse P0. Whereas anti-P levels gradually declined in C3H mice, anti-P levels either remained elevated (MRL/lpr) or showed a secondary rise (MRL/+) at the onset of autoimmunity. These observations indicate that: i) high levels of autologous Ag are not sufficient to drive antiribosomal autoantibody production in MRL mice, ii) multivalency of the P proteins may explain their potent immunogenicity and ability to break tolerance, and iii) immunized MRL mice show an abnormal persistence of high level anti-P production presumably reflecting T cell activation of presensitized B cells.  相似文献   

12.
Mutations of Fas (lpr) or Fas ligand (gld) cause a limited lupus-like syndrome in B6 mice by interfering with the deletion of autoreactive B and/or T cells. A more generalized lupus syndrome reminiscent of that of MRL mice can be induced in nonautoimmune strains by pristane, which causes a nonspecific inflammatory response in the peritoneal cavity. We hypothesized that, as in MRL mice, the lpr and gld mutations might accelerate lupus in pristane-treated mice. Pristane-treated B6 mice developed anti-nRNP/Sm, Su, and ribosomal P Abs, but little anti-ssDNA or chromatin. In contrast, B6/lpr and B6/gld mice spontaneously developed anti-ssDNA/chromatin Abs, but not anti-nRNP/Sm/Su/ribosomal P. Unexpectedly, B6/lpr and B6/gld mice were highly resistant to the induction by pristane of IgM anti-ssDNA (2 wk) and IgG anti-nRNP/Sm/Su/ribosomal P autoantibodies (6 mo), suggesting that intact Fas signaling is necessary. Interestingly, pristane did not enhance IgG chromatin Ab production in B6/lpr or B6/gld mice, suggesting that it did not influence the production of autoantibodies that develop spontaneously in the setting of Fas deficiency. Pristane treatment also decreased lymphoproliferation in B6/lpr mice. Increased production of IL-12 was associated consistently with the production of anti-nRNP/Sm/Su/ribosomal P as well as anti-DNA/chromatin. In contrast, production of anti-DNA/chromatin Abs was associated with IL-6 overproduction in pristane-treated mice, but not in lpr mice. The data strongly support the idea that different subsets of autoantibodies are regulated differentially by cytokine stimulation and/or Fas signaling.  相似文献   

13.
MRL/MpJ-lpr/lpr (MRL-lpr/lpr) mice spontaneously develop a systemic lupus erythematosus-like syndrome associated with the expansion of a T-cell subset exerting helper activity for autoantibody production. Several studies have demonstrated that these T cells have unusual phenotypic characteristics including the expression of the B220 B-cell marker. To further characterize the antigenic profiles of these T cells, we have generated monoclonal antibodies (MAb) by immunizing rats with MRL-lpr/lpr T cells. Using flow cytofluorometry analysis, one of these MAb (4G6), described here, was found to react strongly with T cells of MRL-lpr/lpr mice but weakly with T cells of congenic mice lacking the lpr mutation (MRL/MpJ-+/+ mice). This MAb also stained brightly T cells from C3H/Hej-lpr/lpr mice and dimly those from normal C3H/Hej mice. However, it failed to react with T cells from C57Bl/6-lpr/lpr mice or normal C57Bl/6 (B6) mice. Analysis of 4G6 reactivity (weak vs negative) of T cells in a series of inbred strains demonstrated a correlation with the Pca-1a genotype known to result in expression of the PC.1 antigen on plasma cells. Immunoprecipitation studies revealed that the 4G6 antigen has a mean apparent molecular weight of 115,000, under reducing conditions, similar to that of PC.1. Moreover, high expression of 4G6 was found on plasmacytoma lines and B blasts but not on T blasts. Identity of the 4G6 antigen with PC.1 was confirmed by the finding that conventional anti-PC.1 alloantisera could block the cell surface binding of the 4G6 MAb. Therefore, T cells from MRL-lpr/lpr (and C3H-lpr/lpr) mice aberrantly carry high levels of a plasma cell antigen, detected by the 4G6 MAb, which substantiates further that these T cells represent a unique subset with some surface properties of the B-cell lineage.  相似文献   

14.
To examine the potential role of immune-network interactions in the production of lupus autoantibodies, normal NZW rabbit antibody responses were analyzed after immunization with one of the following Ig preparations: human lupus serum anti-dsDNA antibodies, human lupus serum anti-ssDNA antibodies, a mixture of human lupus serum anti-dsDNA and anti-ssDNA antibodies, the MRL-lpr/lpr anti-dsDNA mAb H241, and the MRL-lpr/lpr anti-ssDNA mAb H130. Four of five rabbits produced Ig typical of lupus autoantibodies: individual rabbit Ig cross-reacted with multiple autoantigens including nucleic acids, cardiolipin, SmRNP, glomerular extract, laminin, and exogenous Ag. Rabbit anti-Id against human anti-dsDNA antibodies were highly specific for dsDNA. Notably, in each serum the autoantibody activity was confined to the anti-Id Ig fraction. A similar spontaneously occurring Id-anti-Id interaction was also found between anti-ssDNA and anti-dsDNA antibodies isolated from an individual lupus patient. These results indicate that lupus autoantibodies which share Ag binding properties with pathogenic Ig, including both cross-reactive and anti-dsDNA antibodies, can induce the production of Ig with similar autoantigen binding properties through immune-network interactions. This phenomenon, if unregulated, could lead to the amplification of pathogenic autoantibody production in individuals with systemic lupus.  相似文献   

15.
The expressed B cell repertoires of mice from 1 day to 5 mo of age were examined. The ELISA-spot assay was used to enumerate individual Ig-secreting splenic B cells and determine the proportion of these cells producing antibodies reactive with each of six autoantigens and two conventional Ag. Results indicate that i) neonatal B cells producing antibodies against specific members of the Ag panel arose in a temporally defined sequence, ii) antibodies produced by 1- to 5-wk-old mice appeared to be more cross-reactive than those produced by adult mice, iii) no bias toward autoantibody production was found in the neonatal repertoires of autoimmune-prone mice, and iv) as a whole, the pattern of repertoire development among diverse strains of mice was highly conserved, although individual mice varied considerably in the absolute number of B cells committed to the production of antibodies of a given specificity.  相似文献   

16.
Tago, F., Tsukimoto, M., Nakatsukasa, H. and Kojima. S. Repeated 0.5 Gy Gamma Irradiation Attenuates Autoimmune Disease in MRL-lpr/lpr Mice with Suppression of CD3(+)CD4(-)CD8(-)B220(+) T-Cell Proliferation and with Up-regulation of CD4(+)CD25(+)Foxp3(+) Regulatory T Cells. Radiat. Res. 169, 59-66 (2008). MRL-lpr/lpr mice are used as a model of systemic lupus erythematosus. We previously reported attenuation of autoimmune disease in MRL-lpr/lpr mice by repeated gamma irradiation (0.5 Gy each time). In this study, we investigated the mechanisms of this attenuation by measuring the weight of the spleen and the population of highly activated CD3(+)CD4(-)CD8(-)B220(+) T cells, which are characteristically involved in autoimmune pathology in these mice. Splenomegaly and an increase in the percentage of CD3(+)CD4(-)CD8(-)B220(+) T cells, which occur with aging in nonirradiated mice, were suppressed in irradiated mice. The high proliferation rate of CD3(+)CD4(-)CD8(-)B220(+) T cells was suppressed in the irradiated animals. The production of autoantibodies and the level of IL6, which activates B cells, were also lowered by radiation exposure. These results indicate that progression of pathology is suppressed by repeated 0.5-Gy gamma irradiation. To uncover the mechanism of the immune suppression, we measured the regulatory T cells, which suppress activated T cells and excessive autoimmune responses. We found that regulatory T cells were significantly increased in irradiated mice. We therefore conclude that repeated 0.5-Gy gamma irradiation suppresses the proliferation rate of CD3(+)CD4(-)CD8(-)B220(+) T cells and the production of IL6 and autoantibodies and up-regulates regulatory T cells.  相似文献   

17.
Abs to DNA and nucleoproteins are expressed in systemic autoimmune diseases, whereas B cells producing such Abs are edited, deleted, or inactivated in healthy individuals. Why autoimmune individuals fail to regulate is not well understood. In this study, we investigate the sources of anti-dsDNA B cells in autoimmune transgenic MRL-lpr/lpr mice. These mice are particularly susceptible to lupus because they carry a site-directed transgene, H76R that codes for an anti-DNA H chain. Over 90% of the B cells are eliminated in the bone marrow of these mice, and the few surviving B cells are associated with one of two Vkappa editors, Vkappa38c and Vkappa21D. Thus, it appears that negative selection by deletion and editing are intact in MRL-lpr/lpr mice. However, a population of splenic B cells in the H76R MRL-lpr/lpr mice produces IgG anti-nuclear Abs, and these mice have severe autoimmune organ damage. These IgG Abs are not associated with editors but instead use a unique Vkappa gene, Vkappa23. The H76R/Vkappa23 combination has a relatively high affinity for dsDNA and an anti-nuclear Ab pattern characteristic of lupus. Therefore, this Vkappa gene may confer a selective advantage to anti-DNA Abs in diseased mice.  相似文献   

18.
Intrathymic tolerance results in elimination of T cells bearing self-reactive TCR V beta regions in mice expressing certain combinations of I-E and minor lymphocyte stimulatory (Mls) phenotypes. To determine if autoimmune strains of mice have a defect in intrathymic deletion of self-reactive TCR V beta regions, expression of V beta 3, V beta 6, V beta 8.1, and V beta 11 were examined in lpr/lpr and +/+ strains of mice; MRL/MpJ(H-2K, I-E+, Mlsb,), C57BL/6J(H-2b, I-E-, Mlsb,), C3H/HeJ(H-2k, I-E+, Mlsc), AKR/J(H-2k, I-E+, Mlsa); and in autoimmune NZB/N(H-2d, I-E+, Mlsa) and BXSB(H-2b, I-E-, Mlsb) mice. The results suggest that, during intrathymic development, self-reactive T cells are deleted in autoimmune strains of mice as found in normal control strains of mice. However, the TCR V beta repertoire is skewed in autoimmune strains compared to normal strains of mice. For example, MRL-lpr/lpr mice, but not other lpr/lpr strains, had increased expression of V beta 6 relative to expression in control MRL(-)+/+ mice, which is associated with collagen-induced arthritis. These data are consistent with a model of normal affinity for negative selection of self-reactive T cells in the thymus of autoimmune strains of mice followed by expansion of autoreactive T cell clones in the peripheral lymphoid organs. The peripheral lymphoid organs of lpr/lpr mice contain an expanded population of abnormal CD4-, CD8-, 6B2+ T cells. Elimination of self-reactive peripheral T cells suggests that these abnormal cells are derived from a CD4+ subpopulation in the thymus. Flow cytometry analysis of peripheral lymph node T cells from MRL-lpr/lpr mice reveal three populations of CD4+ T cells expressing low, intermediate and high intensity of B220 (6B2). This supports the hypothesis that in lpr/lpr mice, self-reactive CD4+ T cells are eliminated in the thymus, and that these cells lose expression of CD4 and acquire expression of 6B2 in the periphery.  相似文献   

19.
Accelerated programmed cell death of MRL-lpr/lpr T lymphocytes.   总被引:8,自引:0,他引:8  
MRL-lpr/lpr (lpr) mice develop a polyclonal accumulation of abnormal peripheral T lymphocytes, which bear surface alpha beta TCR, CD3, and the B220 isoform of CD45, but lack CD4, CD8, and CD2. These T cells have a constitutively phosphorylated CD3 zeta chain and manifest a defect in signal transduction that results in a lack of IL-2 production and proliferation. We investigated whether this signaling abnormality might contribute to their accumulation via a defect in T cell elimination in the periphery. T cell deletion occurs through a process of programmed cell death with DNA degradation, or apoptosis. Viable lymphocytes from lpr mice were found to undergo rapid programmed cell death in culture within 4 h without additional activation, which was not observed in lymphocytes from normal MRL-+/+ or C57BL/6-+/+ mice. Both nonmature B220+ and mature B220- T lymphocytes from lpr mice display this accelerated programmed cell death, indicating that this is a defect affecting all peripheral T lymphocytes in lpr mice. In vitro apoptosis of lpr T cells could be inhibited with PMA, a stimulator of protein kinase C. Thus, the massive accumulation of T lymphocytes in the lymphoid tissue of lpr mice is not due to a defect in their ability to undergo programmed cell death in vitro. The activation state of lpr T cells may contribute to their rapid degradation of DNA in vitro.  相似文献   

20.
A lupus-like disease characterized by a severe immune complex glomerulonephritis and IgG autoantibody production was induced in (C57BL/6 X DBA/2)F1 mice by injection of parental DBA/2 lymphoid cells. The ensuing graft-vs-host (GVH) reaction resulted in a 10- and a 100-fold increase in serum IgG antibody levels to denatured DNA and total histones, respectively, compared with that in F1----F1 control mice. The level of anti-DNA antibodies peaked 2 wk after injection of DBA/2 cells and preceded peak anti-histone levels by approximately 2 wk. Anti-histone antibodies were generated predominantly to histones H1, H2A, and H2B, a profile different from that observed in NZB/NZW and MRL-lpr/lpr mice. The marked increase in IgG antinuclear antibodies did not correlate with increases in total IgG serum levels and was not associated with comparable increases in antibodies to transferrin, hemoglobin, fibrinogen, or thyroglobulin. Selective autoantibody production was also observed in vitro, wherein GVH spleen cells produced high levels of IgG antibodies to total histones and denatured DNA but not to these non-nuclear protein antigens. In contrast, spleen cells stimulated in vitro with lipopolysaccharide produced equivalent amounts of antibodies to all antigens tested. Our results are in agreement with those of other investigators and collectively suggest that IgG autoantibodies in GVH disease, and possibly in spontaneous lupus-like disease, are not secondary to a generalized B cell activation, but may be selectively generated in response to self antigens with unique configurational properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号