首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The active conformation of the dimeric cofactor-dependent phosphoglycerate mutase (dPGM) from Escherichia coli has been elucidated by crystallographic methods to a resolution of 1.25 A (R-factor 0.121; R-free 0.168). The active site residue His(10), central in the catalytic mechanism of dPGM, is present as a phosphohistidine with occupancy of 0.28. The structural changes on histidine phosphorylation highlight various features that are significant in the catalytic mechanism. The C-terminal 10-residue tail, which is not observed in previous dPGM structures, is well ordered and interacts with residues implicated in substrate binding; the displacement of a loop adjacent to the active histidine brings previously overlooked residues into positions where they may directly influence catalysis. E. coli dPGM, like the mammalian dPGMs, is a dimer, whereas previous structural work has concentrated on monomeric and tetrameric yeast forms. We can now analyze the sequence differences that cause this variation of quaternary structure.  相似文献   

2.
The B-type cofactor-dependent phosphoglycerate mutase (dPGM-B) catalyzes the interconversion of 2-phosphoglycerate and 3-phosphoglycerate in glycolysis and gluconeogenesis pathways using 2,3-bisphosphoglycerate as the cofactor. The crystal structures of human dPGM-B bound with citrate were determined in two crystal forms. These structures reveal a dimerization mode conserved in both of dPGM and BPGM (bisphosphoglycerate mutase), based on which a dPGM/BPGM heterodimer structure is proposed. Structural comparison supports that the conformational changes of residues 13-21 and 98-117 determine PGM/BPGM activity differences. The citrate-binding mode suggests a substrate-binding model, consistent with the structure of Escherichia coli dPGM/vanadate complex. A chloride ion was found in the center of the dimer, providing explanation for the contribution of chloride ion to dPGM activities. Based on the structural information, the possible reasons for the deficient human dPGM mutations found in some patients are also discussed.  相似文献   

3.
Phosphoglycerate mutases (PGM) catalyze the reversible conversion of 3-phosphoglycerate and 2-phosphoglycerate as part of glycolysis and gluconeogenesis. Two structural and mechanistically unrelated types of PGMs are known, a cofactor (2,3-bisphosphoglycerate)-dependent (dPGM) and a cofactor-independent enzyme (iPGM). Here, we report the characterization of the first archaeal cofactor-dependent PGM from Thermoplasma acidophilum, which is encoded by ORF TA1347. This ORF was cloned and expressed in Escherichia coli and the recombinant protein was characterized as functional dPGM. The enzyme constitutes a 46 kDa homodimeric protein. Enzyme activity required 2,3-bisphosphoglycerate as cofactor and was inhibited by vanadate, a specific inhibitor of dPGMs in bacteria and eukarya; inhibition could be partially relieved by EDTA. Histidine 23 of the archaeal dPGM of T. acidophilum, which corresponds to active site histidine in dPGMs from bacteria and eukarya, was exchanged for alanine by site directed mutagenesis. The H23A mutant was catalytically inactive supporting the essential role of H23 in catalysis of the archaeal dPGM. Further, an archaeal cofactor-independent PGM encoded by ORF AF1751 from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus was characterized after expression in E. coli. The monomeric 46 kDa protein showed cofactor-independent PGM activity and was stimulated by Mn2+ and exhibited high thermostability up to 70°C. A comprehensive phylogenetic analysis of both types of archaeal phosphoglycerate mutases is also presented.  相似文献   

4.
The glycolytic enzyme phosphoglycerate mutase exists in two evolutionarily unrelated forms. Vertebrates have only the 2,3-bisphosphoglycerate-dependent enzyme (dPGM), whilst higher plants have only the cofactor-independent enzyme (iPGM). Certain eubacteria possess genes encoding both enzymes, and their respective metabolic roles and activities are unclear. We have over-expressed, purified and characterised the two PGMs of Escherichia coli. Both are expressed at high levels, but dPGM has a 10-fold higher specific activity than iPGM. Differential inhibition by vanadate was observed. The presence of an integral manganese ion in iPGM was confirmed by EPR spectroscopy.  相似文献   

5.
Inhibition of a tartrate-resistant acid phosphatase (ACP) from Leishmania donovani and the tartrate-sensitive ACP from human seminal fluid (prostatic ACP) was examined using a series of 13 molybdate-containing heteropolyanions. The heteropolyanions were divided into four groups based on the number of molybdenum atoms they contain: Group I, Mo4; Group II, Mo6-8; Group III, Mo12; Group IV, Mo18. Two of the four groups, those consisting of compounds that contain either an Mo4 unit or an Mo18 unit with a heteroatom in the central cavity, were potent inhibitors and exhibited the highest degree of selectivity against the leishmanial and seminal fluid ACPs. The inhibition of prostatic ACP by complex E2 could be completely reversed by dialysis. Little inhibition of the acid phosphatase, beta-glucuronidase, or alpha-mannosidase from human spleen was observed with complexes B' and E2. For the seminal fluid phosphatase, the Ki values obtained with arsenate and vanadate depended markedly on pH, suggesting that, unlike most other phosphatases, the conformation of the inhibitor binding site on human seminal fluid ACP is pH-dependent. Results of competition experiments performed with various inhibitor pairs indicated that complex D2 binds to the active site of prostatic ACP while complex M binds at some site on the enzyme that affects the active site. Binding of complex M also modifies the affinity of the enzyme for other inhibitors such as vanadate. The potency of several heteropolyanion complexes and their selective inhibition of pathophysiologically significant acid phosphatases indicate that these compounds may have value as tools for study of the structure and function of this class of enzyme and perhaps in the therapy of human disease.  相似文献   

6.
BACKGROUND: Cyclin-dependent kinase 2 (CDK2) is an important target for structure-based design of antitumor agents. Monomeric CDK2 is inactive. Activation requires rearrangements to key structural elements of the enzyme's active site, which accompany cyclin binding and phosphorylation. To assess the validity of using monomeric CDK2 as a model for the active kinase in structure-based drug design, we have solved the structure of the inhibitor indirubin-5-sulphonate (E226) complexed with phospho-CDK2-cyclin A and compared it with the structure of E226 bound to inactive, monomeric CDK2. RESULTS: Activation of monomeric CDK2 leads to a rotation of its N-terminal domain relative to the C-terminal lobe. The accompanying change in position of E226 follows that of the N-terminal domain, and its interactions with residues forming part of the adenine binding pocket are conserved. The environment of the ATP-ribose site, not explored by E226, is significantly different in the binary complex compared to the monomeric complex due to movement of the glycine loop. Conformational changes also result in subtle differences in hydrogen bonding and electrostatic interactions between E226's sulphonate and CDK2's phosphate binding site. Affinities calculated by LUDI for the interaction of E226 with active or inactive CDK2 differ by a factor of approximately ten. CONCLUSIONS: The accuracy of monomeric CDK2 as an inhibitor design template is restricted to the adenine binding site. The general flexibility observed for the glycine loop and subtle changes to the phosphate binding site suggest a need to study interactions between inhibitors and active CDK2 in structure-based drug design programs.  相似文献   

7.
A high resolution crystal structure of Escherichia coli alkaline phosphatase in the presence of vanadate has been refined to 1.9 A resolution. The vanadate ion takes on a trigonal bipyramidal geometry and is covalently bound by the active site serine nucleophile. A coordinated water molecule occupies the axial position opposite the serine nucleophile, whereas the equatorial oxygen atoms of the vanadate ion are stabilized by interactions with both Arg-166 and the zinc metal ions of the active site. This structural complex supports the in-line displacement mechanism of phosphomonoester hydrolysis by alkaline phosphatase and provides a model for the proposed transition state in the enzyme-catalyzed reaction.  相似文献   

8.
The availability of complete genome sequences has highlighted the problems of functional annotation of the many gene products that have only limited sequence similarity with proteins of known function. The predicted protein encoded by open reading frame Rv3214 from the Mycobacterium tuberculosis H37Rv genome was originally annotated as EntD through sequence similarity with the Escherichia coli EntD, a 4'-phosphopantetheinyl transferase implicated in siderophore biosynthesis. An alternative annotation, based on slightly higher sequence identity, grouped Rv3214 with proteins of the cofactor-dependent phosphoglycerate mutase (dPGM) family. The crystal structure of this protein has been solved by single-wavelength anomalous dispersion methods and refined at 2.07-Angstroms resolution (R = 0.229; R(free) = 0.245). The protein is dimeric, with a monomer fold corresponding to the classical dPGM alpha/beta structure, albeit with some variations. Closer comparisons of structure and sequence indicate that it most closely corresponds with a broad-spectrum phosphatase subfamily within the dPGM superfamily. This functional annotation has been confirmed by biochemical assays which show negligible mutase activity but acid phosphatase activity with a pH optimum of 5.4 and suggests that Rv3214 may be important for mycobacterial phosphate metabolism in vivo. Despite its weak sequence similarity with the 4'-phosphopantetheinyl transferases (EntD homologues), there is little evidence to support this function.  相似文献   

9.
Phosphoglycerate mutase (PGM) and enolase are consecutive enzymes in the glycolytic pathway. We used molecular dynamics simulation to examine the interaction of human B‐type PGM (dPGM‐B) and neuron‐specific enolase (NSE). Specifically, we studied the interactions of 31 orientations of these enzymes by means of the effective energy function implicit solvation method. Interactions between active regions of the enzymes occurred preferentially, although the strongest interactions appeared to be between the back side of NSE and the active regions of dPGM‐B. Cleavage of 2PG from dPGM‐B was investigated, and the Ser14–Leu30 loop of dPGM‐B is suggested as a cleavage site and, likely, another entrance site of a ligand. Substrate channeling between the enzymes was observed when NSE with its active regions Leu11–Asn16, Arg49–Lys59, and Gly155–Ala158 covered the Ser14–Leu30 loop of dPGM‐B. Analyses of the results make us believe that the channeling between PGM and enolase “benefits” from weak interaction. The probability of formation of channeling favorable complex is estimated to be up to 5%, while functional interaction between NSE and dPGM‐B might be as high as 20%. NSE and dPGM‐B functional interaction seems not to be isotype specific. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Enzymes involved in the biosynthesis of bacterial peptidoglycan, an essential cell wall polymer unique to prokaryotic cells, represent a highly interesting target for antibacterial drug design. Structural studies of E. coli MurD, a three-domain ATP hydrolysis driven muramyl ligase revealed two inactive open conformations of the enzyme with a distinct C-terminal domain position. It was hypothesized that the rigid body rotation of this domain brings the enzyme to its closed active conformation, a structure, which was also determined experimentally. Targeted molecular dynamics 1 ns-length simulations were performed in order to examine the substrate binding process and gain insight into structural changes in the enzyme that occur during the conformational transitions into the active conformation. The key interactions essential for the conformational transitions and substrate binding were identified. The results of such studies provide an important step toward more powerful exploitation of experimental protein structures in structure-based inhibitor design.  相似文献   

11.
Polypeptide deformylase (PDF) catalyzes the deformylation of polypeptide chains in bacteria. It is essential for bacterial cell viability and is a potential antibacterial drug target. Here, we report the crystal structures of polypeptide deformylase from four different species of bacteria: Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Escherichia coli. Comparison of these four structures reveals significant overall differences between the two Gram-negative species (E. coli and H. influenzae) and the two Gram-positive species (S. pneumoniae and S. aureus). Despite these differences and low overall sequence identity, the S1' pocket of PDF is well conserved among the four enzymes studied. We also describe the binding of nonpeptidic inhibitor molecules SB-485345, SB-543668, and SB-505684 to both S. pneumoniae and E. coli PDF. Comparison of these structures shows similar binding interactions with both Gram-negative and Gram-positive species. Understanding the similarities and subtle differences in active site structure between species will help to design broad-spectrum polypeptide deformylase inhibitor molecules.  相似文献   

12.
Recent crystallography studies have shown that the binding site oxyanion hole plays an important role in inhibitor binding, but can exist in two conformations (active/inactive). We have undertaken molecular dynamics (MD) calculations to better understand oxyanion hole dynamics and thermodynamics. We find that the Zika virus (ZIKV) NS2B/NS3 protease maintains a stable closed conformation over multiple 100-ns conventional MD simulations in both the presence and absence of inhibitors. The S1, S2, and S3 pockets are stable as well. However, in two of eight simulations, the A132-G133 peptide bond in the binding pocket of S1' spontaneously flips to form a 310-helix that corresponds to the inactive conformation of the oxyanion hole, and then maintains this conformation until the end of the 100-ns conventional MD simulations without inversion of the flip. This conformational change affects the S1' pocket in ZIKV NS2B/NS3 protease active site, which is important for small molecule binding. The simulation results provide evidence at the atomic level that the inactive conformation of the oxyanion hole is more favored energetically when no specific interactions are formed between substrate/inhibitor and oxyanion hole residues. Interestingly, however, transition between the active and inactive conformation of the oxyanion hole can be observed by boosting the valley potential in accelerated MD simulations. This supports a proposed induced-fit mechanism of ZIKV NS2B/NS3 protease from computational methods and provides useful direction to enhance inhibitor binding predictions in structure-based drug design.  相似文献   

13.
Alkaline phosphatases (APs) are non-specific phosphohydrolases that are widely used in molecular biology and diagnostics. We describe the structure of the cold active alkaline phosphatase from the Antarctic bacterium TAB5 (TAP). The fold and the active site geometry are conserved with the other AP structures, where the monomer has a large central beta-sheet enclosed by alpha-helices. The dimer interface of TAP is relatively small, and only a single loop from each monomer replaces the typical crown domain. The structure also has typical cold-adapted features; lack of disulfide bridges, low number of salt-bridges, and a loose dimer interface that completely lacks charged interactions. The dimer interface is more hydrophobic than that of the Escherichia coli AP and the interactions have tendency to pair with backbone atoms, which we propose to result from the cold adaptation of TAP. The structure contains two additional magnesium ions outside of the active site, which we believe to be involved in substrate binding as well as contributing to the local stability. The M4 site stabilises an interaction that anchors the substrate-coordinating R148. The M5 metal-binding site is in a region that stabilises metal coordination in the active site. In other APs the M5 binding area is supported by extensive salt-bridge stabilisation, as well as positively charged patches around the active site. We propose that these charges, and the TAP M5 binding, influence the release of the product phosphate and thus might influence the rate-determining step of the enzyme.  相似文献   

14.
The crystal structure of the ternary complex of hexameric purine nucleoside phosphorylase (PNP) from Escherichia coli with formycin A derivatives and phosphate or sulphate ions is determined at 2.0 A resolution. The hexamer is found as a trimer of unsymmetric dimers, which are formed by pairs of monomers with active sites in different conformations. The conformational difference stems from a flexible helix (H8: 214-236), which is continuous in one conformer, and segmented in the other. With the continuous helix, the entry into the active site pocket is wide open, and the ligands are bound only loosely ("open" or "loose binding" conformation). By segmentation of the helix (H8: 214-219 and H8': 223-236, separated by a gamma-turn), the entry into the active site is partially closed, the pocket is narrowed and the ligands are bound much more tightly ("closed" or "tight binding" conformation). Furthermore, the side-chain of Arg217 is carried by the moving helix into the active site. This residue, conserved in all homologous PNPs, plays an important role in the proposed catalytic mechanism. In this mechanism, substrate binding takes place in the open, and and the catalytic action occurs in the closed conformation. Catalytic action involves protonation of the purine base at position N7 by the side-chain of Asp204, which is initially in the acid form. The proton transfer is triggered by the Arg217 side-chain which is moved by the conformation change into hydrogen bond distance to Asp204. The mechanism explains the broad specificity of E. coli PNP, which allows 6-amino as well as 6-oxo-nucleosides as substrates. The observation of two kinds of binding sites is fully in line with solution experiments which independently observe strong and weak binding sites for phosphate as well as for the nucleoside inhibitor.  相似文献   

15.
The X-ray structures of the chloroperoxidase from Curvularia inaequalis, heterologously expressed in Saccharomyces cerevisiae, have been determined both in its apo and in its holo forms at 1.66 and 2.11?Å resolution, respectively. The crystal structures reveal that the overall structure of this enzyme remains nearly unaltered, particularly at the metal binding site. At the active site of the apo-chloroperoxidase structure a clearly defined sulfate ion was found, partially stabilised through electrostatic interactions and hydrogen bonds with positively charged residues involved in the interactions with the vanadate in the native protein. The vanadate binding pocket seems to form a very rigid frame stabilising oxyanion binding. The rigidity of this active site matrix is the result of a large number of hydrogen bonding interactions involving side chains and the main chain of residues lining the active site. The structures of single site mutants to alanine of the catalytic residue His404 and the vanadium protein ligand His496 have also been analysed. Additionally we determined the structural effects of mutations to alanine of residue Arg360, directly involved in the compensation of the negative charge of the vanadate group, and of residue Asp292 involved in forming a salt bridge with Arg490 which also interacts with the vanadate. The enzymatic chlorinating activity is drastically reduced to approximately 1% in mutants D292A, H404A and H496A. The structures of the mutants confirm the view of the active site of this chloroperoxidase as a rigid matrix providing an oxyanion binding site. No large changes are observed at the active site for any of the analysed mutants. The empty space left by replacement of large side chains by alanines is usually occupied by a new solvent molecule which partially replaces the hydrogen bonding interactions to the vanadate. The new solvent molecules additionally replace part of the interactions the mutated side chains were making to other residues lining the active site frame. When this is not possible, another side chain in the proximity of the mutated residue moves in order to satisfy the hydrogen bonding potential of the residues located at the active site frame.  相似文献   

16.
Escherichia coli DNA topoisomerase III belongs to the type IA family of DNA topoisomerases, which transiently cleave single-stranded DNA (ssDNA) via a 5' phosphotyrosine intermediate. We have solved crystal structures of wild-type E. coli topoisomerase III bound to an eight-base ssDNA molecule in three different pH environments. The structures reveal the enzyme in three distinct conformational states while bound to DNA. One conformation resembles the one observed previously with a DNA-bound, catalytically inactive mutant of topoisomerase III where DNA binding realigns catalytic residues to form a functional active site. Another conformation represents a novel intermediate in which DNA is bound along the ssDNA-binding groove but does not enter the active site, which remains in a catalytically inactive, closed state. A third conformation shows an intermediate state where the enzyme is still in a closed state, but the ssDNA is starting to invade the active site. For the first time, the active site region in the presence of both the catalytic tyrosine and ssDNA substrate is revealed for a type IA DNA topoisomerase, although there is no evidence of ssDNA cleavage. Comparative analysis of the various conformational states suggests a sequence of domain movements undertaken by the enzyme upon substrate binding.  相似文献   

17.
The gene encoding Thermus caldophilus GK24 (Tca) alkaline phosphatase was cloned into Escherichia coli. The primary structure of Tca alkaline phosphatase was deduced from its nucleotide sequence. The Tca alkaline phosphatase precursor, including the signal peptide sequence, was comprised of 501 amino acid residues. Its molecular mass was determined to be 54? omitted?760 Da. On the alignment of the amino acid sequence, Tca alkaline phosphatase showed sequence homology with the microbial alkaline phosphatases, 20% identity with E. coli alkaline phosphatase and 22% Bacillus subtilis (Bsu) alkaline phosphatases. High sequence identity was observed in the regions containing the Ser-102 residue of the active site, the zinc and magnesium binding sites of E. coli alkaline phosphatase. Comparison of Tca alkaline phosphatase and E. coli alkaline phosphatase structures suggests that the reduced activity of the Tca alkaline phosphatase, in the presence of zinc, is directly involved in some of the different metal binding sites. Heat-stable Tca alkaline phosphatase activity was detected in E. coli YK537, harboring pJRAP.  相似文献   

18.
The crystal structure of human purple acid phosphatase recombinantly expressed in Escherichia coli (rHPAP(Ec)) and Pichia pastoris (rHPAP(Pp)) has been determined in two different crystal forms, both at 2.2A resolution. In both cases, the enzyme crystallized in its oxidized (inactive) state, in which both Fe atoms in the dinuclear active site are Fe(III). The main difference between the two structures is the conformation of the enzyme "repression loop". Proteolytic cleavage of this loop in vivo or in vitro results in significant activation of the mammalian PAPs. In the crystals obtained from rHPAP(Ec), the carboxylate side-chain of Asp145 of this loop acts as a bidentate ligand that bridges the two metal atoms, in a manner analogous to a possible binding mode for a phosphate ester substrate in the enzyme-substrate complex. The carboxylate side-chain of Asp145 and the neighboring Phe146 side-chain thus block the active site, thereby inactivating the enzyme. In the crystal structure of rHPAP(Pp), the enzyme "repression loop" has an open conformation similar to that observed in other mammalian PAP structures. The present structures demonstrate that the repression loop exhibits significant conformational flexibility, and the observed alternate binding mode suggests a possible inhibitory role for this loop.  相似文献   

19.
Bisphosphoglycerate mutase is an erythrocyte-specific enzyme whose main function is to synthesize 2,3-diphosphoglycerate, the allosteric effector of hemoglobin. In addition to its main 2,3-diphosphoglycerate synthase activity, the enzyme displays phosphatase and mutase activities both involving 2,3-diphosphoglycerate in their reaction. The three activities have been demonstrated to be catalysed at a unique active site. To study the structure of such an active site we have developed a recombinant system producing mutants of human bisphosphoglycerate mutase in Escherichia coli, by site-directed mutagenesis. For this purpose the human bisphosphoglycerate mutase cDNA that we had previously cloned has been used to construct a procaryotic high level expression vector bearing the "tac" promoter. Human bisphosphoglycerate mutase produced in E. coli, a species which does not normally synthesize this enzyme, represented 8% of the total soluble bacterial protein and displayed the three catalytic activities (synthase, mutase, and phosphatase) characteristic of the enzyme. Since it has been suggested that the carboxyl-terminal region may be implicated in the catalytic activity of the enzyme, three variants deleted in this part of the protein were produced. Our results indicate that a minimal deletion of 7 amino acid residues in the carboxyl-terminal portion of the human bisphosphoglycerate mutase completely abolished the three catalytic activities of the enzyme. In contrast, the effects of the deletion of the last two lysine residues were limited to a 38% reduction in the synthase activity. These results show that the carboxyl-terminal amino acid residues are either directly or indirectly implicated in the three catalytic functions of the human bisphosphoglycerate mutase, and that the two terminal lysine residues are not essential for the major part of the enzymatic mechanism of the enzyme.  相似文献   

20.
A model for the 3-D structure of Enterococcus faecalis D-Ala:D-Ala ligase was produced using the X-ray structure of the Escherichia coli enzyme complexed with ADP and the methylphosphinophosphate inhibitor as a template. The model passed critical validation criteria with an accuracy similar to that of the template crystallographic structure and showed that ADP and methylphosphinophosphate were positioned in a large empty pocket at the interface between the central and the C-terminal domains, as in E. coli. It evidenced the residues important for substrate binding and catalytic activity in the active site and demonstrated a large body of conserved interactions between the active sites of the E. faecalis and the E. coli D-Ala:D-Ala ligase, the major differences residing in the balance between the hydrophobic and aromatic environment of the adenine. The model also successfully explained the inactivity of four spontaneous mutants (D295 --> V, which impairs interactions with Mg2+ and R293, which are both essential for binding and catalytic activity; S319 --> I, which perturbs recognition of D-Ala2; DAK251-253 --> E, in which the backbone conformation in the vicinity of the deletion remains unaltered but phosphate transfer from ATP is perturbed because of lack of K253; T316 --> I, which causes the loss of a hydrogen bond affecting the positioning of S319 and therefore the binding of D-Ala2). Since D-Ala:D-Ala ligase is an essential enzyme for bacteria, this approach, combining molecular modeling and molecular biology, may help in the design of specific ligands which could inhibit the enzyme and serve as novel antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号