首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sites have been located on retractor unguis and trochantal depressor muscle fibres of Sarcophaga which respond to iontophoretic application of l-glutamate. No such sites could be found on flight muscle fibres. Ultrastructural examination of the three muscles reveals differences between the muscles in the positions of the neuromuscular junctions. A correlation can be made between the sites of the neuromuscular junctions and the iontophoretically sensitive sites. The possibility of l-glutamate fulfilling a transmitter rôle in these muscles is discussed.  相似文献   

2.
Summary Feather follicles in the avian skin are interconnected by well-defined bundles of smooth muscle cells, which are responsible for the erection and depression of feathers and thus play an important role in thermoregulation. The depressing and erecting muscle bundles were found to receive a very dense supply of unmyelinated nerve fibres that displayed ultrastructural and histochemical characteristics of noradrenergic axons (formaldehyde- and glyoxylic acid-induced catecholamine fluorescence; uptake to 5-hydroxydopamine). No nerve fibres were encountered showing histochemical acetylcholinesterase activity. There was no indication of the presence of peptidergic or purinergic nerve endings.The neuromuscular space usually ranged from 40–60 nm in width and contained a basal lamina. Occasionally, this space was reduced to approximately 20 nm. At such close neuromuscular contacts a basal lamina was lacking, and focal densities beneath the pre- and postsynaptic plasma membrane were observed. Since no gap junctions between muscle cells were detected, the dense supply with noradrenergic nerve fibres indicates a high amount of directly innervated smooth muscle cells.An additional finding of the present study was the observation that high local concentrations of 5-hydroxydopamine led to degeneration of noradrenergic nerve endings.Supported by a grant from the Deutsche Forschungsgemeinschaft (Dr. 91)  相似文献   

3.
Summary The crustacean species Pacifastacus leniusculus and Gammarus pulex were investigated by electron microscopy in a search for possible neuromuscular junctions in the hindgut, which has a rich supply of catecholaminergic fibres. True neuromuscular synapses were found in both species between nerve terminals containing dense-core vesicles (80–110 nm in diam.) and muscle fibres. We suggest that the dense-core vesicle terminals contain a catecholamine, and this is supported by ultrahistochemical tests for monoamines. Two types of junctions are found: one in which the nerve terminal is embedded in the muscle cell (both species) and one in which protrusions from the muscle cell meet nerve terminals (Pacifastacus). Gammarus pulex, which has only circular muscles in the hindgut, has only catecholaminergic innervation, whereas Pacifastacus leniusculus has circular and longitudinal muscles both with at least two types of innervation.The investigation was supported by grants from the Swedish Natural Science Research Council (B 2760-009), the Hungarian Academy of Sciences, the Royal Swedish Academy of Sciences, and the Magnus Bergvall Foundation. We are also indebted to Mrs. Lena Sandell for her skilful technical assistance  相似文献   

4.
5.
The neuromuscular junctions of a fast coxal adductor of Gromphadorhina portentosa show great variability in both axon terminal diameter and extent of post-junctional sarcoplasmic specializaton. Finestructural equivalents of both cone and brush type nerve endings are present. The large motor axons innervating this muscle are surrounded by a pervasive lemnoblast sheath, leaving the axon surface exposed only in the area of synaptic contact. Connective tissue covers the nerve and fills the spaces between sheath cell processes in the nerve trunk, but is lost after it enters the muscle. The role of sheath cells in nerve function is discussed in the light of these findings.  相似文献   

6.
In early tailbud embryos of the axolotl (Ambystoma mexicanum), cells of the anterior myotomes begin to elongate and align along the longitudinal axis of the animal. Soon thereafter, gap junctions appear between the differentiating myotubes. These junctions occur between adjacent cells within a myotome (intramyotomal) and between the cells of adjacent myotomes which are separated from one another by narrow connective tissue septa (intermyotomal). The latter are found at the ends of the elongating cells where muscle-tendon insertion will occur and nerve-muscle synapses will form. The gap junctions are transient: They appear with the onset of myofibrillar formation at the time that nerve fibers enter the intermyotomal septa. The junctions last until the cells have differentiated into mature striated muscle cells and neuromuscular synapses are fully developed.These gap junctions may provide a means for the direct intercellular spread of electrical excitation between the differentiating muscle cells and so account for the observed myogenic contraction of myotomes. We also suggest that these junctions may form a means for cellular communication and interaction during the development of the axial musculature.  相似文献   

7.
In the posterior salivary duct and gland of Octopus vulgaris and of Eledone cirrhosa, the duct secretory nerve trunks and their ramifications in the gland tubules include many fibres that incorporate labelled serotonin. However, there are also unlabelled secretory fibres, which cannot be discriminated from incorporating fibres on morphological grounds. Neuroglandular junctions are not apparently established by incorporating fibres. In the duct, the motor nerve trunks contain a small number of labelled fibres, and nerve bundles supplying the duct muscle contain, in variable proportions, serotonin incorporating fibres. Both labelled and unlabelled nerve fibres reach the duct muscle fibres, but neuromuscular junctions involve only unlabelled presynaptic fibres. The nerve fibres which join the gland muscle are usually unlabelled, and the small quota of incorporating fibres in the motor trunks apparently supply only duct tissues. Both secretory and motor trunks, originating from different ganglia, can be considered to contain heterogeneous fibres, releasing different neurotransmitters at the terminals. Certain of these fibres could be serotoninergic.  相似文献   

8.
Somatic muscle cells of Ascaris lumbricoides consist of three differently specialized components referred to as the fiber, which contains the contractile apparatus (described previously), the belly, and the arm. The belly is shown to be a sac of glycogen, which is depleted during starvation of the animal. The arm extends to a nerve cord where it establishes a myoneural junction characterized by giant mitochondria and clusters of vesicles in the nerve fibers and by a 500 A neuromuscular gap. The arms, which have been shown to be "electrically interconnected" in the vicinity of the nerve cord, form "tight junctions" with one another in just this region. At high magnification, these junctions can be resolved into several types. In some there is fusion of the outer leaflets of the membranes with formation of an intermediate line. Others resemble septate desmosomes in that a residual extracellular space ~20 A in width remains between the membranes, but the outer leaflets are interconnected across the gap. It is suggested that the term "tight junction" encompasses a variety of structures distinguishable only at high magnification and that the different variations are not necessarily equivalent functionally.  相似文献   

9.
Summary In normal (untreated) rats the mean length ratio of postsynaptic to presynaptic membrane was 2.7±0.8 for neuromuscular junctions of slow-twitch soleus muscle fibres and 4.2±1.0 for neuromuscular junctions of fast-twitch extensor digitorum longus muscle fibres; this difference was significant (P<0.001). After experimental double innervation by fast and slow muscle nerves for four months, the ratio was (1) 2.9±0.8 for the original slow-twitch fibre end-plate and 2.8±0.8 for the newly established one, both not significantly different from that of the normal slow-twitch fibres; and (2) 2.2±0.5 for the original fast-twitch fibre end-plate and 2.2±0.7 for the newly established one, both significantly smaller than that of the normal fast-twitch fibres (P<0.001). This means that the double innervated slow-twitch muscle fibres retained their original neuromuscular junction type, whereas the doubly-innervated fast-twitch muscle fibres underwent a dramatic transformation of their neuromuscular junction from the fast-muscle to the slow-muscle type. In both doubly innervated fibres, the ultrastructural characteristics of neuromuscular junctions, whether altered or not, were identical at both end-plate regions.  相似文献   

10.
The longitudinal muscle of the earthworm body wall is innervated by nerve bundles containing axons of two types which form two corresponding types of myoneural junction with the muscle fibers Type I junctions resemble cholinergic neuromuscular junctions of vertebrate skeletal muscle and are characterized by three features: (a) The nerve terminals contain large numbers of spherical, clear, ~500 A vesicles plus a small number of larger dense-cored vesicles (b) The junctional gap is relatively wide (~900 A), and it contains a basement membrane-like material, (c) The postjunctional membrane, although not folded, displays prominent specializations on both its external and internal surfaces The cytoplasmic surface is covered by a dense matrix ~200 A thick which appears to be the site of insertion of fine obliquely oriented cytoplasmic filaments The external surface exhibits rows of projections ~200 A long whose bases consist of hexagonally arrayed granules seated in the outer dense layer of the plasma membrane The concentration of these hexagonally disposed elements corresponds to the estimated concentration of both receptor sites and acetylcholinesterase sites at cholinergic junctions elsewhere. Type II junctions resemble the adrenergic junctions in vertebrate smooth muscle and exhibit the following structural characteristics: (a) The nerve fibers contain predominantly dense-cored vesicles ~1000 A in diameter (b) The junctional gap is relatively narrow (~150 A) and contains no basement membrane-like material, (c) Postjunctional membrane specialization is minimal. It is proposed that the structural differences between the two types of myoneural junction reflect differences in the respective transmitters and corresponding differences in the mechanisms of transmitter action and/or inactivation.  相似文献   

11.
Cellular interrelationships and synaptic connections in tentaclesof several species of coelenterates were examined by means ofelectron microscopy to determine if neuromuscular pathways werepresent. The presence of sensory cells, ganglion cells, epitheliomuscularcells, interneuronal synapses, and neuromuscular junctions suggeststhat neuromuscular pathways are present in coelenterates. Nakedaxons without sheath cells form several synapses en passantwith the same and with different epitheliomuscular cells aswell as with nematocytes and other neurons. Interneuronal synapsesand neuromuscular and neuronematocyte junctions have clear ordense-cored vesicles (700–1500 Å in diameter) associatedwith a dense cytoplasmic coat on the presynaptic membrane, acleft (100–300 Å in width) with intracleft filaments,and a subsynaptic membrane with a dense cytoplasmic coat. Atscyphozoan neuromuscular junctions there is a subsurface cisternaof endoplasmic reticulum, which is separated from the epitheliomuscularcell membrane by a narrow cytoplasmic gap (100–300 Åin width) . Neuromuscular junctions in coelenterates resembleen passant axonal junctions with smooth muscle in higher animals. Morphological evidence is presented for a simple reflex involvinga two-cell (sensory or ganglion-epitheliomuscular cell) or three-cell(sensory-ganglion-epitheliomuscular cell) pathway that may resultin the coordinated contraction of the longitudinal muscle intentacles of coelenterates.  相似文献   

12.
Motor end-plate disease (med) in the mouse is an hereditary defect of the neuromuscular system, with partial functional denervation and muscle inactivity in late stages of the disease. Motor end-plate disease is characterized by an intense ultraterminal sprouting of the motor nerves from swollen nerve terminal branches in the soleus muscle. At the ultrastructural level, the neuromuscular junctions extend to very wide territories, often outside the original motor end-plate, in regions where the nerve sprouts are in simple apposition to the muscle fiber, with no secondary synaptic folds. The nerve terminals are rich in neurofilaments and poor in synaptic vesicles.Freeze fracture analysis of the pre-synaptic and post-synaptic membrane specializations fails to reveal any important structural alteration which could suggest a defect in acetylcholine release or in muscle membrane excitability. However, the non-junctional sarcolemmal specializations (the so-called ‘square arrays’) arc found with a frequency slightly higher than in normal muscle.The nerve abnormalities at the neuromuscular junction may be either a consequence of muscle inactivity or the morphological expression of some primary nerve abnormality. Further studies of the soleus muscle at early stages of the disease may provide evidence in favor of either possibility.  相似文献   

13.
Peripheral nerves exhibit robust regenerative capabilities in response to selective injury among amniotes, but the regeneration of entire muscle groups following volumetric muscle loss is limited in birds and mammals. In contrast, lizards possess the remarkable ability to regenerate extensive de novo muscle after tail loss. However, the mechanisms underlying reformation of the entire neuromuscular system in the regenerating lizard tail are not completely understood. We have tested whether the regeneration of the peripheral nerve and neuromuscular junctions (NMJs) recapitulate processes observed during normal neuromuscular development in the green anole, Anolis carolinensis. Our data confirm robust axonal outgrowth during early stages of tail regeneration and subsequent NMJ formation within weeks of autotomy. Interestingly, NMJs are overproduced as evidenced by a persistent increase in NMJ density 120 and 250 days post autotomy (DPA). Substantial Myelin Basic Protein (MBP) expression could also be detected along regenerating nerves indicating that the ability of Schwann cells to myelinate newly formed axons remained intact. Overall, our data suggest that the mechanism of de novo nerve and NMJ reformation parallel, in part, those observed during neuromuscular development. However, the prolonged increase in NMJ number and aberrant muscle differentiation hint at processes specific to the adult response. An examination of the coordinated exchange between peripheral nerves, Schwann cells, and newly synthesized muscle of the regenerating neuromuscular system may assist in the identification of candidate molecules that promote neuromuscular recovery in organisms incapable of a robust regenerative response.  相似文献   

14.
The metathoracic extensor tibiae muscle of the cricket Teleogryllus oceanicus is innervated by two excitatory axons; one of which leaves the metathoracic ganglion through nerve 5, the other through nerve 3. Axons in nerve 5 frequently regenerate to reinnervate the extensor tibiae if the nerve is sectioned in a late nymphal stage; functional reinnervation is rare if the nerve is sectioned in young adults. The muscle may become reinnervated by several axons regenerating through nerve 5, and individual muscle fibres may receive inputs from two regenerated axons. Axons regrowing through nerve 5 to a partially-denervated extensor tibiae preferentially innervate fibres in the central portion of the muscle, which is the normal innervation field of nerve 5. If the muscle is totally denervated by transection of both nerve 5 and nerve 3b, reinnervation is less specific and fibres throughout the muscle may be reinnervated by axons in either nerve. Reinnervation by regenerating axons is progressive. The proportion of muscles which are functionally reinnervated by regenerated axons increases with survival time as does the proportion of fibres within a muscle with reinnervation. The amplitude of excitatory junctional potentials and of muscle contraction evoked by regenerated axons both increase with survival time.  相似文献   

15.
Blanco RE 《Tissue & cell》1988,20(5):771-782
The ultrastructural organization and the junctional complexes of peripheral nerves have been investigated in the cockroach Periplaneta americana. Nerve 5 is surrounded by a layer of connective tissue, the neural lamella, beneath which is a layer of perineurial glial cells wrapping the axons. Adjacent perineurial cells are joined to one another by septate, gap and tight junctions. Septate and gap junctions were observed in freeze-fracture replicas of main trunk nerve 5. Septate junctions were found as rows of PF particles mainly in perineurial cell membranes. Gap junctions exhibited EF macular aggregates in perineurial and subperineurial glial cells. During incubations in vivo with extracellularly applied ionic lanthanum, the lanthanum did not penetrate beyond the perineurium. Where nerve 5 branches and contacts the muscle, lanthanum penetrated freely between the muscle fibres and the nerve branches. In small peripheral branches where the axons are surrounded by single a glial layer, lanthanum is unable to penetrate to the axolemma.  相似文献   

16.
This study examined the effect of prolonged inactivity, associated with aestivation, on neuromuscular transmission in the green-striped burrowing frog, Cyclorana alboguttata. We compared the structure and function of the neuromuscular junctions on the iliofibularis muscle from active C. alboguttata and from C. alboguttata that had been aestivating for 6 months. Despite the prolonged period of immobility, there was no significant difference in the shape of the terminals (primary, secondary or tertiary branches) or the length of primary terminal branches between aestivators and non-aestivators. Furthermore, there was no significant difference in the membrane potentials of muscle fibres or in miniature end plate potential (EPP) frequency and amplitude. However, there was a significant decrease in evoked transmitter release characterised by a 56% decrease in mean EPP amplitude, and a 29% increase in the failure rate of nerve terminal action potentials to evoke transmitter release. The impact of this suite of neuromuscular characteristics on the locomotor performance of emergent frogs is discussed.  相似文献   

17.
Local anaesthetics, cardiotoxin and mechanical injuries may cause necrosis of muscle fibres while leaving the motor nerve fibres and their terminals intact. With local injuries to mouse muscles carried out by freezing or cutting we made a point of preserving both the nerve terminals and the muscle fibre portions on which these terminals were located. It was thus possible to follow the changes induced at endplates by these lesions. Within two or three days of the freezing or cutting, the muscle fibres underwent very different degrees of regression of the contractile material and T-system. The neuromuscular junctions also underwent changes, principally affecting their postsynaptic portion, in particular the folds of the subneural apparatus. After dedifferentiation of subsynaptic areas, we observed sprouting of the nerve terminal on muscle fibres which survived the amputation of one end and formed actively new myofibrils. This sprouting restored synaptic connections at the original sites, but with new structural features and correlative changes in the distribution of cholinergic receptors and cholinesterases. It is probable that after a phase of involution followed by a phase of recovery, the injured muscle fibres triggered off the nerve terminal sprouting which led to the remodelling of the endplates.  相似文献   

18.
Matsuno  Akira  Kawaguti  Siro 《Hydrobiologia》1991,216(1):39-43
Atorella japonica were observed by TEM to examine the nerve plexus in the capitulum of the polyp and the cross-striated muscle cells of the strobila. The nerve plexus included a number of neuromuscular junctions and many interneural synapses. Neuromuscular junctions contained two types of synaptic vesicle: clear and small (ca 75 nm diam.), and dense cored and large (ca 120 nm diam.). The first type of vesicle always appeared near the presynaptic membrane and the second type was distributed behind the former. In interneural synapses, two types of vesicle which were similar to neuromuscular synaptic vesicles were recognized. They were distributed in a pattern similar to that of the neuromuscular synaptic vesicles, but these vesicles were found on both sides of the two synaptic membranes.  相似文献   

19.
Strips of denervated adult mouse diaphragm muscle maintained in organ culture were reinnervated by nerve processes growing out from explants of embryonic mouse spinal cord. In vivo, following denervation, the action potential loses its sensitivity to tetrodotoxin; this sensitivity is regained upon reinnervation. Similarly, action potentials in cultured muscle fibres were insensitive to tetrodotoxin, and sensitivity was restored in muscle fibres that became reinnervated in vitro. Tetrodotoxin sensitivity was also restored in cultured muscle fibres reinnervated in the continuous presence of d-tubocurarine, but it was not induced by 4 days of direct electrical stimulation of noninnervated muscles. We conclude that developing nerve terminals can exert a trophic action on adult muscle fibres that is independent of electrical activity in the muscle.  相似文献   

20.
The effects of neuromuscular blocking drugs on the development of slow and fast muscle fibres and their neuromuscular junctions was studied in chick embryos.
Treatment of embryos with the depolarizing neuromuscular blocking agent suxamethonium affected the development of muscle fibres of the slow anterior latissimus dorsi (ALD) muscle more than that of muscle fibres of the posterior latissimus dorsi (PLD). The differentiation of the presynaptic elements of the neuromuscular junction was delayed and this was particularly obvious in PLD. Normally the number of axon profiles at individual endplates is reduced by 18 days of incubation, but in suxamethonium treated embryos this reduction took place only at 21 days. During earlier stages of development the axon profiles from treated embryos were small with sparse synaptic vesicles. Nevertheless the subsynaptic site of endplates on ALD and PLD muscle fibres became specialized earlier than normal and to a greater extent. Treatment with hemicholinium (HC-3), a drug that reduces the synthesis of acetylcholine (ACh) in nerve terminals affected the development of PLD muscle fibres more than ALD muscle fibres. Although in HC-3 treated embryos nerve-muscle contacts were formed, the axon terminals look immature and remain small even in 18-day old embryos at both ALD and PLD muscle fibres. The reduction of the number of axon profiles normally seen at 18 days failed to take place in treated embryos. At 18 days of incubation many endplates on PLD muscle fibres showed little sign of postsynaptic specilization and resembled endplates usually seen at this stage on ALD muscle fibres.
It is concluded that while neuromuscular activity may be important for the reduction of the number of axon profiles at individual endplates, the specialization of the subsynaptic membrane is brought about by depolarizing effect of ACh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号