首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
Cheng Y  Dai X  Zhao Y 《The Plant cell》2007,19(8):2430-2439
Auxin plays a key role in embryogenesis and seedling development, but the auxin sources for the two processes are not defined. Here, we demonstrate that auxin synthesized by the YUCCA (YUC) flavin monooxygenases is essential for the establishment of the basal body region during embryogenesis and the formation of embryonic and postembryonic organs. Both YUC1 and YUC4 are expressed in discrete groups of cells throughout embryogenesis, and their expression patterns overlap with those of YUC10 and YUC11 during embryogenesis. The quadruple mutants of yuc1 yuc4 yuc10 yuc11 fail to develop a hypocotyl and a root meristem, a phenotype similar to those of mp and tir1 afb1 afb2 afb3 auxin signaling mutants. We further show that YUC genes play an essential role in the formation of rosette leaves by analyzing combinations of yuc mutants and the polar auxin transport mutants pin1 and aux1. Disruption of YUC1, YUC4, or PIN1 alone does not abolish leaf formation, but the triple mutant yuc1 yuc4 pin1 fails to form leaves and flowers. Furthermore, disruption of auxin influx carrier AUX1 in the quadruple mutant yuc1 yuc2 yuc4 yuc6, but not in wild-type background, phenocopies yuc1 yuc4 pin1, demonstrating that auxin influx is required for plant leaf and flower development. Our data demonstrate that auxin synthesized by the YUC flavin monooxygenases is an essential auxin source for Arabidopsis thaliana embryogenesis and postembryonic organ formation.  相似文献   

3.
4.
5.
6.
7.
Plant cells have the capacity to generate a new plant without egg fertilization by a process known as somatic embryogenesis (SE), in which differentiated somatic cells can form somatic embryos able to generate a functional plant. Although there have been advances in understanding the genetic basis of SE, the epigenetic mechanism that regulates this process is still unknown. Here, we show that the embryogenic development of Coffea canephora proceeds through a crosstalk between DNA methylation and histone modifications during the earliest embryogenic stages of SE. We found that low levels of DNA methylation, histone H3 lysine 9 dimethylation (H3K9me2) and H3K27me3 change according to embryo development. Moreover, the expression of LEAFY COTYLEDON1 (LEC1) and BABY BOOM1 (BBM1) are only observed after SE induction, whereas WUSCHEL-RELATED HOMEOBOX4 (WOX4) decreases its expression during embryo maturation. Using a pharmacological approach, it was found that 5-Azacytidine strongly inhibits the embryogenic response by decreasing both DNA methylation and gene expression of LEC1 and BBM1. Therefore, in order to know whether these genes were epigenetically regulated, we used Chromatin Immunoprecipitation (ChIP) assays. It was found that WOX4 is regulated by the repressive mark H3K9me2, while LEC1 and BBM1 are epigenetically regulated by H3K27me3. We conclude that epigenetic regulation plays an important role during somatic embryogenic development, and a molecular mechanism for SE is proposed.  相似文献   

8.
9.
10.
The female gametophyte of flowering plants, called the embryo sac, develops from a haploid cell named the functional megaspore, which is specified after meiosis by the diploid sporophyte. In Arabidopsis, the functional megaspore undergoes three syncitial mitotic divisions followed by cellularization to form seven cells of four cell types including two female gametes. The plant hormone auxin is important for sporophytic developmental processes, and auxin levels are known to be regulated by biosynthesis and transport. Here, we investigated the role of auxin biosynthetic genes and auxin influx carriers in embryo sac development. We find that genes from the YUCCA/TAA pathway (YUC1, YUC2, YUC8, TAA1, TAR2) are expressed asymmetrically in the developing ovule and embryo sac from the two-nuclear syncitial stage until cellularization. Mutants for YUC1 and YUC2 exhibited defects in cell specification, whereas mutations in YUC8, as well as mutations in TAA1 and TAR2, caused defects in nuclear proliferation, vacuole formation and anisotropic growth of the embryo sac. Additionally, expression of the auxin influx carriers AUX1 and LAX1 were observed at the micropylar pole of the embryo sac and in the adjacent cells of the ovule, and the aux1 lax1 lax2 triple mutant shows multiple gametophyte defects. These results indicate that both localized auxin biosynthesis and auxin import, are required for mitotic divisions, cell expansion and patterning during embryo sac development.  相似文献   

11.
12.
Indole-3-acetic acid (IAA), the main endogenous auxin, has been known for decades to be a key regulator for plant growth and development. Multiple routes have been proposed for IAA biosynthesis but physiologic roles or relevance of the different routes are still unclear. Recently, four members of the Arabidopsis thaliana YUC gene family have been implicated in an additional requirement of IAA involved in floral organ and vascular tissue formation. The loss-of-function yuc1yuc4 double mutants in Arabidopsis displayed phenotypes similar to the previously described loss-of-function floozy mutants in petunia (fzy). Moreover, it has been demonstrated that YUC1 encodes a flavin monooxygenase (FMO) that catalyzes a rate-limiting step of a tryptophan-dependent auxin biosynthesis pathway: the conversion of tryptamine to N-hydroxyl-tryptamine. Here we report on the genetic study of ToFZY, the putative tomato ortholog of YUC4 and FZY, including gene and cDNA sequence comparison and a preliminary expression analysis. In addition, we describe a novel conserved amino acid motif that may be considered a hallmark potentially useful for the identification of new YUC-like FMOs. We also demonstrate that ToFZY encodes a protein with the same enzymatic activity as YUC1. Finally, we provide evidence suggesting that the ToFZY gene belongs to a multigenic family whose members may exhibit a temporal and spatial specialization similar to that described in A. thaliana.  相似文献   

13.
14.
Lee M  Jung JH  Han DY  Seo PJ  Park WJ  Park CM 《Planta》2012,235(5):923-938
Auxin regulates diverse molecular and physiological events at the cellular and organismal levels during plant growth and development in response to environmental stimuli. It acts either through distinct signaling pathways or in concert with other growth hormones. Its biological functions are adjusted by modulating biosynthesis, conjugate formation, and polar transport and distribution. Several tryptophan-dependent and -independent auxin biosynthetic pathways have been proposed. Recent studies have shown that a few flavin monooxygenase enzymes contribute to the tryptophan-dependent auxin biosynthesis. Here, we show that activation of a flavin monooxygenase gene YUCCA7 (YUC7), which belongs to the tryptophan-dependent auxin biosynthetic pathway, enhances drought resistance. An Arabidopsis activation-tagged mutant yuc7-1D exhibited phenotypic changes similar to those observed in auxin-overproducing mutants, such as tall, slender stems and curled, narrow leaves. Accordingly, endogenous levels of total auxin were elevated in the mutant. The YUC7 gene was induced by drought, primarily in the roots, in an abscisic acid (ABA)-dependent manner. The yuc7-1D mutant was resistant to drought, and drought-responsive genes, such as RESPONSIVE TO DESSICATION 29A (RD29A) and COLD-REGULATED 15A (COR15A), were up-regulated in the mutant. Interestingly, whereas stomatal aperture and production of osmoprotectants were not discernibly altered, lateral root growth was significantly promoted in the yuc7-1D mutant when grown under drought conditions. These observations support that elevation of auxin levels in the roots enhances drought resistance possibly by promoting root growth.  相似文献   

15.
16.
17.
Flavin monooxygenases(FMOs) play critical roles in plant growth and development by synthesizing auxin and other signaling molecules.However,the structure and function relationship within plant FMOs is not understood.Here we defined the important residues and domains of the Arabidopsis YUC1 FMO,a key enzyme in auxin biosynthesis.We previously showed that simultaneous inactivation of YUC1 and its homologue YUC4 caused severe defects in vascular and floral development.We mutagenized the yuc4 mutant and screene...  相似文献   

18.
19.
Plant growth and development rely on sugar transport between source and sink cells and between different organelles. The plastid-localized sugar transporter GLUCOSE-6-PHOSPHATE TRANSLOCATER1 (GPT1) is an essential gene in Arabidopsis (Arabidopsis thaliana). Using a partially rescued gpt1 mutant and cell-specific RNAi suppression of GPT1, we demonstrated that GPT1 is essential to the function of the embryo suspensor and the development of the embryo. GPT1 showed a dynamic expression/accumulation pattern during embryogenesis. Inhibition of GPT1 accumulation via RNAi using a suspensor-specific promoter resulted in embryos and seedlings with defects similar to auxin mutants. Loss of function of GPT1 in the suspensor also led to abnormal/ectopic cell division in the lower part of the suspensor, which gave rise to an ectopic embryo, resulting in twin embryos in some seeds. Furthermore, loss of function of GPT1 resulted in vacuolar localization of PIN-FORMED1 (PIN1) and altered DR5 auxin activity. Proper localization of PIN1 on the plasma membrane is essential to polar auxin transport and distribution, a key determinant of pattern formation during embryogenesis. Our findings suggest that the function of GPT1 in the embryo suspensor is linked to sugar and/or hormone distribution between the embryo proper and the maternal tissues, and is important for maintenance of suspensor identity and function during embryogenesis.

Specific expression of a sugar transporter that localizes to the plastids of cells in the embryo suspensor affects auxin activity and embryo development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号