首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hypothesis that in tumor-bearing animals an increase of host hepatic zinc metallothionein (Zn-MT) causes a restriction of zinc in the tumor tissue was studied. Three types of tumors were induced in laboratory mice by cell transplant. Tumor growth appears to be inhibited under zinc-deficient conditions, even in cases where zinc deficiency was started after tumor cell transplant. The survival times of tumor-bearing mice were prolonged by administration of cadmium chloride, which induces the synthesis of a combined zinc-cadmium metallothionein derivative in the host liver, but not in the tumor tissue, leading to an increase of hepatic zinc in the treated animals. The uptake of65Zn by the liver of Cd-treated, tumor bearing mice was significantly higher than that of controls whereas uptake of65Zn by tumor cells was significantly higher in controls than in the treated animals. These results suggest that restriction of zinc intake suppresses tumor growth.  相似文献   

2.
The present study was designed to understand the influence of zinc (Zn) if any, on the biokinetics of 65Zn in brain as well as whole body and its bio-distribution following aluminium (Al) treatment to rats. Male Sprague–Dawley rats weighing 140–160 g were divided into four different groups viz: normal control, aluminium treated (100 mg/kg b.wt./day via oral gavage), zinc treated (227 mg/L in drinking water) and combined aluminium and zinc treated. All the treatments were carried out for a total duration of 8 weeks. Al treatment showed a significant increase in fast component (Tb1) but revealed a significant decrease in slow component (Tb2) of biological half-life in brain as well as in whole body. However, Zn supplementation to Al-treated rats reversed the trend in both brain and whole body, which indicates a significant decrease in Tb1 component while the Tb2 component was significantly increased. Further, Al treatment showed an increased percent uptake value of 65Zn in cerebrum, cerebellum, heart, liver and lungs whereas a decrease in uptake was found only in blood. On the other hand, there was a significant decline in 65Zn activity in nuclear and mitochondrial fractions of brain of Al-treated rats. However, Zn treatment reversed the altered 65Zn uptake values in different organs as well as in various subcellular fractions. The study demonstrates that Zn shall prove to be effective in regulating the biokinetics of 65Zn in brain and whole body and its distribution at the tissue and subcellular levels in Al-treated rats.  相似文献   

3.
The effects of histidine on the zinc status are controversial. In mice, we studied the effects of a moderate histidine supplement on the regulation of the zinc status using subcutaneously administered65Zn. In animals fed a zinc-adequate diet, histidine supplement did not cause changes in the zinc status (zinc concentrations,65Zn tissue distribution, and tissue specific activities). Neither effects on the regulation of the zinc status (65Zn retention, excretion and biological half-life) could be demonstrated. However, the combination of a low zinc diet and moderate histidine supplementation caused changes in the regulation of the zinc status (lower65Zn retention, associated with increased fecal excretion and a shorter biological half-life), aggravating the dietary deficiency (lower bone zinc, a shift in the65Zn tissue distribution). Reviewing the literature, it seems that only a molar histidine/zinc ration of 2,000 or higher will cause zinc deficiency.  相似文献   

4.
Histidine has been reported to affect body zinc status by increasing urinary zinc excretion. The effects of experimental histidinemia on distribution of65Zn in anesthetized rats were studied. Infusion ofl-histidine at a rate sufficient to raise plasma concentrations to approximately 2mm for 6h starting 48 h after a single intraperitoneal65Zn injection did not alter65Zn activities in a variety of tissues when compared with anesthetized uninfused animals. However, plasma65Zn and erythrocyte65Zn were decreased, and liver65Zn was increased. If65Zn was injected intravenously during histidine infusion, net accumulation of zinc by some tissues was increased, but uptake by others was reduced relative to uninfused animals. In all cases, however, uptake expressed relative to plasma65Zn levels was increased when allowance was made for the more rapid fall in plasma65Zn during histidine infusion. Similar infusions ofd-histidine produced quantitatively similar effects. Since enzymatic mechanisms and amino acid carriers would be expected to show stereoselectivity, such processes are unlikely to be involved in the zinc distribution changes described. The possibility of zinc transport by a hitherto unidentified carrier is discussed. These experiments confirm that histidinemia can affect zinc status, but any associated changes in urinary zinc excretion do not seem adequate to account for the tissue changes found.  相似文献   

5.
Radioisotope labelling experiments with the estuarine clam, Macoma balthica, are described, in which a filter chamber device was used to separate solute metal uptake from uptake, of metals associated with suspended bacteria. Solute uptake contributed a majority of the 14-day total body burdens of 65Zn and 109Cd, whereas 57Co uptake largely resulted from ingestion of isotope-laden bacteria. In contrast to those for 109Cd and 65Zn, 57Co tissue distributions at 3 weeks differed significantly (p < 0.05) between feeding and non-feeding clams (housed within filter chambers).  相似文献   

6.
This study was designed to determine the effect of zinc on the biological half-lives of 65Zn in whole body and liver and on distribution of 65Zn in different organs of rats following nickel toxicity. Sprague-Dawley (SD) rats received either nickel in the form NiSO4·6H2O at a dose of 800 mg/L in drinking water, zinc in the form of ZnSO4·7H2O at a dose of 227 mg/L in drinking water, and nickel plus zinc or drinking water alone for a total duration of 8 wk. All of the rats were injected with a tracer dose of 0.37 MBq 65Zn at the end of the treatment period. The effects of different treatments were studied on biological half-lives of 65Zn in whole body and liver and on the distribution of 65Zn in different organs of rats. In the present study, we have noted that nickel treatment to normal rats caused a significant decrease in the slow component (Tb2) in liver, which improved following zinc supplementation. Nickel administration to normal-diet-fed animals caused significant lowering in the percentage uptake of 65Zn values in the brain, liver, and intestine. However, the administration of zinc to nickel-treated rats improved the status of 65Zn in different organs. The Tb2 in the liver and the percentage uptake of 65Zn values elevated following zinc supplementation to nickel-treated rats.  相似文献   

7.
Zinc (Zn) is a component of numerous enzymes that function in a wide range of biological process, including growth, development, immunity and intermediary metabolism. Zn may play a role in chronic states such as cardiovascular disease and diabetes mellitus. Zn acts as cofactor and for many enzymes and proteins and has antioxidant, antiinflammatory and antiapoptotic effects. Taking into consideration that lung is a possible target organ for diabetic complications, the aim of this study was to investigate the protective role of zinc on the glycoprotein content and antioxidant enzyme activities of streptozotocin (STZ) induced diabetic rat tissues. Female Swiss albino rats were divided into four groups. Group I, control; Group II, control + zinc sulfate; Group III, STZ-diabetic; Group IV, diabetic + zinc sulfate. Diabetes was induced by intraperitoneal injection of STZ (65 mg/kg body weight). Zinc sulfate was given daily by gavage at a dose of 100 mg/kg body weight every day for 60 days to groups II and IV. At the last day of the experiment, rats were sacrificed, lung tissues were taken. Also, glycoprotein components, tissue factor (TF) activity, protein carbonyl (PC), advanced oxidative protein products (AOPP), hydroxyproline, and enzyme activities in lung tissues were determined. Glycoprotein components, TF activity, lipid peroxidation, non enzymatic glycation, PC, AOPP, hydroxyl proline, lactate dehydrogenase, catalase, superoxide dismutase, myeloperoxidase, xanthine oxidase, adenosine deaminase and prolidase significantly increased in lung tissues of diabetic rats. Also, glutathione levels, paraoxonase, arylesterase, carbonic anhydrase, and Na+/K+- ATPase activities were decreased. Administration of zinc significantly reversed these effects. Thus, the study indicates that zinc possesses a significantly beneficial effect on the glycoprotein components and oxidant/antioxidant enzyme activities.  相似文献   

8.
Zinc-phosphorus interactions have been frequently studied using a diverse number of crop species, but attainment of reproducible Zn deficiencies, especially severe ones, has been hampered by the use of conventional hydroponic solutions wherein contaminating levels of Zn are often near-adequate for normal growth. We utilized novel, chelator-buffered nutrient solutions for precise imposition of Zn deficiencies. Tomato (Lycopersicon esculentum L. cv. Jackpot or Celebrity) seedlings were grown for 15 to 18 d in nutrient solutions containing 200, 600, or 1200 M P, and 0 to 91 M total Zn. Computed free Zn2+ activities were buffered at 10-10.3 M by inclusion of a 100-M excess (above the sum of the micronutrient metal concentrations) of the chelator DTPA. At total added Zn=0, acute Zn deficiency resulted in zero growth after seedling transfer, and plant death prior to termination. Free Zn2+ activities 10-10.6 M resulted in Zn deficiencies ranging from mild to severe, but activities 10-11.2 were required to cause hyperaccumulation of shoot P to potentially toxic levels. Despite severe Zn deficiency (i.e. ca. 20% of control growth), tissue Zn levels were usually much higher than the widely reported critical value of 20 mg kg-1, which may be an artifact of the selection of DTPA for buffering free Zn2+. Across Zn treatments, increasing solution P depressed growth slightly, especially in Celebrity, but corresponding increases in tissue P (indicative of enhanced P toxicity) or decreases in tissue Zn (P-induced Zn deficiency) were not observed. The depressive effect of P was also not explained by reductions in the water-soluble Zn fraction. Within 40 h, restoration of Zn supply did not ameliorate high leakage rates (as measured by K+ efflux) of Zn-deficient roots. Similarly, transfer of Zn-sufficient plants to deficient solutions did not induce leakiness within 40 h. Foliar sprays of ZnSO4 almost completely corrected both Zn deficiency and membrane leakiness of plants grown in low-Zn solutions. Hence, maintenance of root membrane integrity appears to depend on the overall Zn nutritional status of the plant, and not on the presence of certain free Zn2+ levels in the root apoplasm.  相似文献   

9.
Erenoglu  B.  Nikolic  M.  Römheld  V.  Cakmak  I. 《Plant and Soil》2002,241(2):251-257
Using two bread wheat (Triticum aestivum) and two durum wheat (Triticum durum) cultivars differing in zinc (Zn) efficiency, uptake and translocation of foliar-applied 65Zn were studied to characterize the role of Zn nutritional status of plants on the extent of phloem mobility of Zn and to determine the relationship between phloem mobility of Zn and Zn efficiency of the used wheat cultivars. Irrespective of leaf age and Zn nutritional status of plants, all cultivars showed similar Zn uptake rates with application of 65ZnSO4 to leaf strips in a short-term experiment. Also with supply of 65ZnSO4 by immersing the tip (3 cm) of the oldest leaf of intact plants, no differences in Zn uptake were observed among and within both wheat species. Further, Zn nutritional status did not affect total uptake of foliar applied Zn. However, Zn-deficient plants translocated more 65Zn from the treated leaf to the roots and remainder parts of shoots. In Zn-deficient plants about 40% of the total absorbed 65Zn was translocated from the treated leaf to the roots and remainder parts of shoots within 8 days while in Zn-sufficient plants the proportion of the translocated 65Zn of the total absorbed 65Zn was about 25%. Although differences in Zn efficiency existed between the cultivars did not affect the translocation and distribution of 65Zn between roots and shoots. Bread wheats compared to durum wheats, tended to accumulate more 65Zn in shoots and less 65Zn in roots, particularly under Zn-deficient conditions. The results indicate that differences in expression of Zn efficiency between and within durum and bread wheats are not related to translocation or distribution of foliar-applied 65Zn within plants. Differential compartementation of Zn at the cellular levels is discussed as a possible factor determining genotypic variation in Zn efficiency within wheat.  相似文献   

10.
Diabetes is a life threatening disease and its onset is linked with both environmental and genetic factors. Zinc metabolism gets altered during diabetes and results in many complications. The present study was designed to elucidate the effects of zinc supplementation on the biokinetics of 65Zn in whole body, liver and its biodistribution in diabetic rats. The animals were divided into four groups viz; normal control; diabetic (single intraperitoneal injection of alloxan 150 mg/kg body weight); zinc treated (227 mg/l in drinking water); and diabetic + zinc treated. To carry out biokinetics study, each rat was injected intraperitoneally with 0.74 MBq radioactivity of 65Zn following 4 weeks of different treatments and the radioactivity was determined by using a suitably shielded scintillation counter. Alloxan induced diabetic rats showed a significant decrease in both the fast (Tb1) and slow (Tb2) components of biological half-life of 65Zn which, however, were normalized in whole body (P > 0.05) following zinc supplementation. In case of liver, Tb2 component was brought back to the normal but Tb1 component was not increased significantly. The present study indicates that the paucity of zinc in the tissues of the diabetic animals was due to decreased retention of tissue zinc as evidenced by increased serum Zn, hyperzincuria and increased rate of uptake of 65Zn by the liver. Zinc supplementation caused a significant improvement in the retention of zinc in the tissues and is therefore likely to be of benefit in the treatment of diabetes.  相似文献   

11.
Diabetes mellitus is a serious worldwide metabolic disease, which is accompanied by hyperglycaemia and affects all organs and body system. Zinc (Zn) is a basic cofactor for many enzymes, which also plays an important role in stabilising the structure of insulin. Liver is the most important target organ after pancreas in diabetic complications. In this study, we aimed to investigate the protective role of Zn in liver damage in streptozotocin (STZ)‐induced diabetes mellitus. There are four experimental groups of female Swiss albino rats: group I: control; group II: control + ZnSO4; group III: STZ‐induced diabetic animals and group IV: STZ‐diabetic + ZnSO4. To induce diabetes, STZ was injected intraperitoneally (65 mg/kg). ZnSO4 (100 mg/kg) was given daily to groups II and IV by gavage for 60 days. At the end of the experiment, rats were killed under anaesthesia and liver tissues were collected. In the diabetic group, hexose, hexosamine, fucose, sialic acid levels, arginase, adenosine deaminase, tissue factor activities and protein carbonyl levels increased, whereas catalase, superoxide dismutase, glutathione‐S‐transferase, glutathione peroxidase, glutathione reductase and Na+/K+‐ATPase activities decreased. The administration of Zn to the diabetic group reversed all the negative effects/activities. According to these results, we can suggest that Zn has a protective role against STZ‐induced diabetic liver damage.  相似文献   

12.
F K Ghishan  H L Greene 《Life sciences》1983,32(15):1735-1741
Zinc has been implicated to play a role in the pathogenesis and management of diabetes. Since the intestinal transport of several minerals as calcium, magnesium and strontium was found to be altered in the diabetic rats, we postulated that intestinal zinc transport may be also altered in the diabetic rat. Therefore, using invivo single pass perfusion technique we determined lumen to mucosa flux, net absorption and the mucosa to lumen flux of zinc in the small and large intestinal segments of diabetic rats, diabetic rats treated with insulin and in control rats. Tissue distribution of transported 65Zn into various organs and tissue concentrations of native zinc in the groups of rats studied were determined. Our results indicate that lumen to mucosa flux (μmole/h/g wet weight) was decreased in all intestinal segments of the diabetic rats compared to controls. However, the total capacity (mμmole/h/cm length) was similar. The specific activity and total capacity of net absorption of zinc was similar in all intestinal segments of the rats studied. The reverse mucosa to lumen flux was significantly decreased in all segments of diabetic rats compared to corresponding values in control rats. Tissue distribution of 65Zn following the perfusion study showed increased retention of 65Zn in the liver, kidney and femurs of the diabetic rats compared to controls. Serum and tissue concentration of native zinc in various organs were similar in all groups of rats studied. The mechanism(s) responsible for these findings are discussed.  相似文献   

13.
Zn efficiency (ZE) is the ability of plants to maintain high yield under Zn-deficiency stress in the soil. Two bean (Phaseolus vulgaris L.) genotypes that differed in ZE, Voyager (Zn-efficient) and Avanti (Zn-inefficient), were used for this investigation. Plants were grown under controlled-environment conditions in chelate-buffered nutrient solution where Zn2+ activities were controlled at low (0.1 pM) or sufficient (150 pM) levels. To investigate the relative contribution of the root versus the shoot to ZE, observations of Zn-deficiency symptoms in reciprocal grafts of the two genotypes were made. After growth under low-Zn conditions, plants of nongrafted Avanti, self-grafted Avanti and reciprocal grafts that had the Avanti shoot scion exhibited Zn-deficiency symptoms. However nongrafted and self-grafted Voyager, as well as reciprocal grafts with the Voyager shoot scion, were healthy with no visible Zn-deficiency symptoms under the same growth conditions. More detailed investigations into putative shoot-localized ZE mechanisms involved determinations of leaf biomass production and Zn accumulation, measurements of subcellular Zn compartmentation, activities of two Zn-requiring enzymes, carbonic anhydrase and Cu/Zn-dependent superoxide dismutase (Co/ZnSOD), as well as the non-Zn-requiring enzyme nitrate reductase. There were no differences in shoot tissue Zn concentrations between the Zn-inefficient and Zn-efficient genotypes grown under the low-Zn conditions where differences in ZE were exhibited. Shoot Zn compartmentation was investigated using radiotracer (65Zn) efflux analysis and suggested that the Zn-efficient genotype maintains higher cytoplasmic Zn concentrations and less Zn in the leaf-cell vacuole, compared to leaves from the Zn-inefficient genotype under Zn deficiency. Analysis of Zn-requiring enzymes in bean leaves revealed that the Zn-efficient genotype maintains significantly higher levels of carbonic anhydrase and Cu/ZnSOD activity under Zn deficiency. While these data are not sufficient to allow us to determine the specific mechanisms underlying ZE, they certainly point to the shoot as a key site where ZE mechanisms are functioning, and could involve processes associated with Zn compartmentation and biochemical Zn utilization.Abbreviations CA Carbonic anhydrase - NR Nitrate reductase - SOD Superoxide dismutase - ZE Zinc efficiency This research was supported by a graduate fellowship awarded to G.H. by The Republic of Turkey  相似文献   

14.
The interaction between Cd and Zn in aquatic organisms is known to be highly variable. The purpose of this study was to use a subcellular compartmentalization approach to examine Cd and Zn interactions in the deposit-feeding polychaete Capitella capitata (sp. I). Laboratory-reared C. capitata were co-exposed to Cd (background or 50 μg Cd l− 1) and Zn (background or 86 μg Zn l− 1) with 109Cd and 65Zn as radiotracers for 1 week. After the 1-week uptake period, subsets of worms were allowed to depurate accumulated metals for an additional 1 week. Worms from both phases (uptake and loss) were then subjected to subcellular fractionation to determine the compartmentalization of metals as metal-sensitive fractions [MSF — organelles and heat-denaturable proteins (HDP)] and biologically detoxified metals [BDM — heat-stable proteins (HSP) and metal-rich granules (MRG)]. Uptake and loss of Cd and Zn in C. capitata at the whole body level were similar at bkgd-Cd/bkgd-Zn, with worms depurating the majority of accumulated metal (∼ 75% Cd and ∼ 64% Zn). When exposure of Zn or Cd was increased (bkgd-Cd/86-Zn; bkgd-Zn/50-Cd), uptake of background levels of Cd or Zn, respectively, was suppressed by ∼ 50%. These accumulated metals, however, were retained during the loss phase resulting in ∼ 40-50% greater Cd and Zn whole body tissue burdens than those of bkgd-Cd/bkgd-Zn worms. Beyond exhibiting similar patterns of uptake and loss at the whole body level, Cd and Zn behaved similarly at the subcellular level. Under background levels (bkgd-Cd/bkgd-Zn), after uptake, worms partitioned a majority of Cd (∼ 65%) and Zn (∼ 55%) to the HSP and organelles fractions. The HDP and MRG fractions contained less than ∼ 6% of both metals. Following depuration, at bkgd-Cd/bkgd-Zn, Cd and Zn were lost from all subcellular fractions; loss from HSP was the greatest contributor to whole body loss. When exposed to elevated concentrations of Zn or Cd, the suppression in uptake of bkgd-Cd or bkgd-Zn observed in whole body uptake was largely due to suppressions in the storage of Cd and Zn to HSP. These results suggest that Cd-Zn interactions reduce partitioning of both Cd and Zn to HSP, indicating that metal-binding proteins such as metallothioneins play a key role in these interactions.  相似文献   

15.
To study the relationship between tissue accumulation of Zinc (Zn) and neurodegeneration in the nigrostriatal dopaminergic pathway,65Zn distribution in this pathway was examined after unilateral injection of 6-hydroxydopamine (6-OHDA) into the substantia nigra of rats. When65ZnCl2 was intravenously injected 4 days after treatment with 6-OHDA,65Zn was concentrated in the ipsilateral substantia nigra 6 days after65Zn injection. On the other hand, 19 d after treatment with 6-OHDA,65Zn distribution in the ipsilateral substantia nigra was decreased to the level of the contralateral one. When NH4 99TcO4, which cannot go through the blood-brain barrier, was injected into rats 4 d after treatment with 6-OHDA,99Tc was concentrated in the ipsilateral substantia nigra 30 min after99Tc injection, but no longer detectable 6 d after injection. These results suggest that Zn is necessary for a repair process called replacement gliosis after the death of neurons and that excess Zn does not accumulate in the lesion after completion of the gliosis.  相似文献   

16.
Zinc (Zn) is an essential element for corals. We investigated the effects of ocean acidification on zinc incorporation, photosynthesis, and gross calcification in the scleractinian coral Stylophora pistillata. Colonies were maintained at normal pHT (8.1) and at two low-pH conditions (7.8 and 7.5) for 5 weeks. Corals were exposed to 65Zn dissolved in seawater to assess uptake rates. After 5 weeks, corals raised at pHT (8.1) exhibited higher 65Zn activity in the coral tissue and skeleton, compared with corals raised at a lower pH. Photosynthesis, photosynthetic efficiency, and gross calcification, measured by 45Ca incorporation, were however unchanged even at the lowest pH.  相似文献   

17.
Previous studies in our laboratory have demonstrated that reducing the availability of zinc with the extracellular metal chelator DTPA (diethylenetriaminepentaacetate) enhances, rather than inhibits, the thyroid hormone induction of growth hormone mRNA in GH3 rat anterior pituitary tumor cells. To understand the actions of the chelator on cellular zinc status, we observed the effects of DTPA on 65Zn uptake and retention. DTPA reduced the uptake of 65Zn by GH3 cells from the medium, but when GH3 cells were prelabeled with 65Zn, it resulted in greater retention of the isotope. In primary hepatocytes, DTPA both reduced the uptake of 65Zn from the medium and increased efflux from prelabeled cells. To investigate this difference, we studied the effects of DTPA on radioactive zinc flux in the H4IIE (rat hepatoma), MCF-7 (human breast cancer) and Hs578Bst (nontransformed human mammary) cell lines and in rat primary anterior pituitary cells. DTPA reduced the uptake of 65Zn in all cell lines examined. DTPA increased the retention of 65Zn in prelabeled H4IIE, MCF-7 and Hs578Bst cells but reduced it in primary pituitary cells. Time course experiments showed that 65Zn efflux is shut down rapidly by DTPA in transformed cells, whereas the chelator causes greater efflux from primary hepatocytes over the first 6 h. Experiments with 14C-labeled DTPA confirmed that this chelator does not cross cell membranes, showing that it operates entirely within the medium. Expression of ZnT-1, the efflux transporter, was not affected by DTPA in H4IIE cells. Thus, zinc deprivation enhanced zinc retention in established cell lines but increased efflux from primary cells, perhaps reflecting differing requirements for this mineral.  相似文献   

18.
Zinc is essential for normal growth, development and brain function although little is known about brain zinc homeostasis. Therefore, in this investigation we have studied65Zn uptake from blood into brain and other tissues and have measured the blood-brain barrier permeability to65Zn in the anaesthetized rat in vivo. Adult male Wistar within the weight range 500–600 g were used.65ZnCl2 and [125I]albumin, the latter serving as a vascular marker, were injected in a bolus of normal saline I.V. Sequential arterial blood samples were taken during experiments that lasted between 5 min and 5 hr. At termination, samples from the liver, spleen, pancreas, lung, heart, muscle, kidney, bone, testis, ileum, blood cells, csf, and whole brain were taken and analysed for radio-isotope activity. Data have been analysed by Graphical Analysis which suggests65Zn uptake from blood by all tissues sampled was unidirectional during this experimental period except brain, where at circulation times<30 min,65Zn fluxes were bidirectional. In addition to the blood space, the brain appears to contain a rapidly exchanging compartment(s) for65Zn of about 4 ml/100g which is not csf.  相似文献   

19.
We investigated the uptake and distribution of zinc (Zn) either applied to the roots or to the leaves in rice during grain development. Plants of two aerobic rice cultivars were grown in a nutrient solution with either sufficient Zn or surplus Zn. Root treatment with 1 week‘s supply of both 65Zn and unlabelled Zn was started at flowering or 15 days after flowering (DAF). Foliar treatment with 65Zn applied to the flag leaf or to senescent leaves was carried out at flowering. When 65Zn was applied to roots, plants continued to take up Zn after flowering, even beyond 15 DAF, irrespective of cultivar and Zn nutritional status of the plants. During the 1 week of supply of both 65Zn and unlabelled Zn, which either started at flowering or 15 DAF, the absorbed 65Zn was mainly distributed to roots, stem and grains. Little 65Zn was allocated to the leaves. Following a week of 65Zn supply directly after flowering, under sufficient Zn or surplus Zn, the proportions of total 65Zn uptake allocated to the grains continued to change during grain filling (9–33%). This Zn mainly came from the roots but under sufficient Zn supply also from the stem. With 65Zn applied to leaves (either the flag leaf or the lowest senescent leaf), both cultivars showed similar Zn distribution within the plants. About 45–50% of the 65Zn absorbed was transported out of the 65Zn‐treated leaf. From that Zn, more than 90% was translocated to other vegetative organs; little was partitioned to the panicle parts and even less to the grains. These results suggest that in rice plants grown under sufficient or surplus Zn supply, most of the Zn accumulated in the grains originates from uptake by roots after flowering and not from Zn remobilisation from leaves.  相似文献   

20.
The clinical spectrum of acrodermatitis enteropathica (n=226) is compared with symptoms reported in other Zn deficiencies: total parenteral nutrition without Zn (n=21), protein energy malnutrition (n=24), gastrointestinal disease (n=79), geophagia (n=227), and dietary, low intake (n=23). Common features of deficiency are diarrhea, recurrent infection, and growth retardation. Dermatitis is less common in other types of deficiency than in acrodermatitis enteropathica (9 vs 88% of cases). Anorexia and/or hypogeusia is reported more frequently in the other types of deficiency (30 vs 16%). The main symptoms in acrodermatitis enteropathica vary with age. These differences in the clinical picture of Zn deficiency are discussed in relation to the degree of the deficiency (acute, subacute, or chronic; severe, mild, or subclinical). The results of the conventional laboratory tests to diagnose Zn deficiency (Zn levels in serum, urine or hair) are reviewed. In healthy Dutch infants and children, the mean values of these levels vary by a factor of 1.6–3.0. Also, the clinical interpretation of their results is prone to errors. Therefore, we advocate the erythrocytic65Zn uptake test. Its mean varies by 1.3. However, its reference values for different age intervals need to be established. From the comparison of the results of three conventional tests of samples taken concurrently (serum, urine, and hair) in groups of Dutch children with symptoms common in Zn deficiency (diarrhea, recurrent infection, or growth retardation) it is estimated that ±1% of Dutch children with minor complaints suffer from either acute or subacute Zn deficiency. Other deficiencies occur occasionally. In order to detect the individual patient with deficiency, the erythrocytic65Zn uptake test is promising and needs to be evaluated. Therefore, we review a set of reference laboratory tests with results that alter during sequential stages of overload and deficiency. Such a scheme is advocated as a guidance for future clinical research on deficiency, and solves the problem of differentiating those conditions that identify the individual patients who need treatment by supplementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号