首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Homing behaviors are seen across the animal kingdom, with the magnitude and scale of these movements varying to a great degree. Invertebrates, such as crayfish, prove to be excellent models for comparative research, with relatively simple nervous systems that have been extensively studied combined with a rich behavioral repertoire that has been well documented. Here we explore whether two crayfish species (a primary burrower and a tertiary burrower) can home to artificial burrows and if so, whether their homing abilities differ. The two species of crayfish, Orconectes rusticus and Fallicambarus fodiens, were examined for their ability to home to artificial burrows in a laboratory setting. Animals were placed in a homing arena, motivated to search by the presence of food, and subsequently return to the burrows. The movements of each individual crayfish were digitized and analyzed for changes in walking speed, velocity and heading angle relative to burrows, total distance travelled and path turning angles. Crayfish of both species successfully returned home, although F. fodiens had a higher homing success rate than O. rusticus. Detailed kinematic analysis showed that walking speeds almost doubled during homing to burrows and heading angles were significantly closer to zero than on the outward journeys for both species. Path turning angles were significantly lower for O. rusticus than for F. fodiens. These findings indicate that these species of crayfish can successfully home without the visual landmark of burrow chimneys and that the primary burrower (F. fodiens) appears to be more successful with straighter return paths. The differences in these two species to home and the underlying mechanisms of homing may be due to the differences in burrow use with primary burrowers showing more efficient homing than tertiary burrowers.  相似文献   

2.
Olfactory receptor cells in insects are modulated by neurohormones. Recordings from cockroach olfactory sensilla showed that a subset of sensory neurons increase their responses to selected nonpheromone odorants after octopamine application. With octopamine application, recordings demonstrated increased firing rates by the short but not the long alcohol-sensitive sensilla to the nonpheromone volatile, hexan-1-ol. Within the same sensillum, individual receptor cells are shown to be modulated independently from each other, indicating that the octopamine receptors reside in the receptor not in the accessory cells. A uniform decrease in the amplitude of electroantennogram, which is odorant independent, is suggested to reflect the rise in octopamine concentration in the antennal hemolymph. Perception of general odorants measured as behavioral responses changed qualitatively under octopamine treatment: namely, repulsive hexan-1-ol became neutral, whereas neutral eucalyptol became attractive. Octopamine induced a change in male behavioral responses to general odors that were essentially the same as in the state of sexual arousal. Our findings suggest that sensitivity to odors having different biological significances is modulated selectively at the peripheral as well as other levels of olfactory processing.  相似文献   

3.
The caudal photoreceptors (CPRs) of crayfish (Procambarus clarkii) can trigger walking and abdominal movements by their response to light.
1.  In a restrained, inverted crayfish, illumination of A6 evoked a CPR discharge followed by leg movements and bursting from the abdominal tonic flexor (TF) motoneurons. Intracellular electrical stimulation of a single CPR at high frequency (80 Hz) evoked similar responses.
2.  Responses only occurred when a single CPR axon was driven at 60 Hz or more and outlasted the stimulus.
3.  CPR stimulation also excites the pattern-initiating network (Moore and Larimer 1987) in the abdomen.
4.  The axon of the CPR projects from ganglion A6 to the brain. Terminal branches occur in the subesophageal ganglion and the brain. A small descending interneuron is dye-coupled to CPR in the subesophageal ganglion.
5.  In animals with cut circumesophageal connectives, the CPRs can evoke walking and the abdominal motor pattern.
6.  The relationship of the abdominal motor pattern to walking is altered by restraint and/or inversion. In freely moving crayfish, the cyclic abdominal motor pattern is only observed with backward walking. In restrained, inverted crayfish, the motor pattern occurs with both forward or backward walking.
  相似文献   

4.
Most animals assess the environment in which they live and alter their behavior according to various stimuli. When the animal does not make significant behavioral changes, as measured by bodily movements, the animal may be characterized as unresponsive to a given stimulus. This study demonstrates that when behavioral movements of crayfish cannot be observed, physiological measures of heart rate (HR) and ventilatory rate (VR) show dramatic changes in response to defined sensory stimuli. In the majority of cases, upon anticipation of a social interaction with another crayfish both HR and VR will increase. During an agonistic encounter between two crayfish, the level of HR and VR correlate with the intensity of the interaction. Such rapid responses in cardiac and respiratory systems to environmental disturbances and anticipation of a social interaction suggest an autonomic-like regulation associated with fear, flight or fight. Since behavioral observations do not allow an internal status to be readily assessed, we suggest that HR and VR may serve as a useful bioindex in crustaceans to their internal drive or possibly an awareness level to environmental cues.  相似文献   

5.
Few studies in arthropods have documented to what extent local control centers in the thorax can support locomotion in absence of inputs from head ganglia. Posture, walking, and leg motor activity was examined in cockroaches with lesions of neck or circumoesophageal connectives. Early in recovery, cockroaches with neck lesions had hyper-extended postures and did not walk. After recovery, posture was less hyper-extended and animals initiated slow leg movements for multiple cycles. Neck lesioned individuals showed an increase in walking after injection of either octopamine or pilocarpine. The phase of leg movement between segments was reduced in neck lesioned cockroaches from that seen in intact animals, while phases in the same segment remained constant. Neither octopamine nor pilocarpine initiated changes in coordination between segments in neck lesioned individuals. Animals with lesions of the circumoesophageal connectives had postures similar to intact individuals but walked in a tripod gait for extended periods of time. Changes in activity of slow tibial extensor and coxal depressor motor neurons and concomitant changes in leg joint angles were present after the lesions. This suggests that thoracic circuits are sufficient to produce leg movements but coordinated walking with normal motor patterns requires descending input from head ganglia.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

6.
The Central American hunting spider Cupiennius salei, like most other spiders, has eight eyes, one pair of principal eyes and three pairs of secondary eyes. The principal eyes and one pair of the secondary eyes have almost completely overlapping visual fields, and presumably differ in function. The retinae of the principal eyes can be moved independently by two pairs of eye muscles each, whereas the secondary eyes do not have such eye muscles. The behavioural relevance of retinal movements of freely moving spiders was investigated by a novel dual-channel telemetric registration of the eye muscle activities. Walking spiders shifted the ipsilateral retina with respect to the walking direction before, during and after a turning movement. The change in the direction of vision in the ipsilateral anterior median eye was highly correlated with the walking direction, regardless of the actual light conditions. The contralateral retina remained in its resting position. This indicates that Cupiennius salei shifts it visual field in the walking direction not only during but sometimes previous to an intended turn, and therefore “peers” actively into the direction it wants to turn.  相似文献   

7.
Despite their wide distribution and ecological importance, almost no information is available about the role of freshwater crayfish as basibiont for epizoic algae. Moreover, studies on epizoic freshwater diatoms have been largely neglected. In this study, we examined the occurrence of diatoms on two sympatric species, the native white-clawed crayfish Austropotamobius pallipes and the non-indigenous signal crayfish Pacifastacus leniusculus, coexisting in the same stream in NW Italy. We detected that signal crayfish showed a far more productive epizoic algal community than white-clawed crayfish. Microscopical analysis confirmed that non-indigenous crayfish hosted rich and diversified diatom communities while virtually no diatom was found on the native. After analyzing different hypotheses, we suggested that this significant difference can be the result of diverse crayfish behavioral habits. Because of the lack of studies investigating epibiontic diatoms on freshwater crayfish, we performed a detailed characterization on the epizoic flora, including comparisons with natural epilithic communities. The exponential diffusion of non-indigenous freshwater crayfish is a subject of greatest interest. Increasing our knowledge on their role as basibionts is definitely necessary to better understand their ecological role, also considering their influence on primary producer community and their role as vectors of algal species of concern, such as Didymosphenia geminata.  相似文献   

8.
Summary In the fly,Calliphora erythrocephala, visual stimuli presented in an asymmetrical position with respect to the fly elicit roll or tilt movements of the head by which its dorsal part is moved towards the light areas of the surroundings (Figs. 4–7). The influence of passive body roll and tilt (gravitational stimulus) on the amplitude of these active head movements was investigated for two types of visual stimuli: (1) a dark hollow hemisphere presented in different parts of the fly's visual field, and (2) a moving striped pattern stimulating the lateral parts of one eye only.The response characteristics of the flies in the bimodal situation in which the gravitational stimulus was paired with stimulation by the dark hollow hemisphere can be completely described by the addition of the response characteristics for both unimodal situations, i.e. by the gravity-induced and visually induced characteristics (Figs. 8, 9). Therefore, the stimulus efficacy of the dark hollow hemisphere is independent of (=invariant with respect to) the flies' spatial position. The advantage of this type of interaction between gravity and visual stimulation for the control of body posture near the horizontal is discussed.In contrast, the efficacy of moving patterns depends on (=non-invariant with respect to) the spatial position of the walking fly. Regressive pattern movements exhibit their stronger efficacy with respect to progressive ones only when the gravity receptor system of the legs is stimulated. The stronger efficacy of downward vs upward movements can only be demonstrated when the flies are walking horizontally, independently of whether the leg gravity receptor system is stimulated by gravity or not (Fig. 10).The results are discussed with respect (1) to the invariance and non-invariance of the efficacy of visual stimuli with respect to the direction of the field of gravity, (2) to the formation of reference lines by the gravitational field which are used by the walking fly to determine the orientation of visual patterns, and (3) to the possible location of the underlying convergence between gravitationally and visually evoked excitation. As all types of head responses occur only in walking flies, we also discussed the possible influences of some physiological processes like arousal, proprioceptive feedback during walking and various peripheral sensory inputs on the performance of behavioural responses in the fly (Fig. 11).  相似文献   

9.
The modulatory action of DL-octopamine on the multicellular femoral chordotonal organ (fCO) of the stick insect Cuniculina impigra was examined using extracellular recordings from the fCO nerve and intracellular recordings from single sensory neurons. To determine the octopaminergic effect on position, velocity and/or acceleration sensitivity of mechanoreceptors direct mechanical stimulations with defined parameters were applied to the fCO apodeme. The spontaneous activity in the fCO nerve was enhanced in a dose-dependent manner by octopamine (threshold at 5 × 10?7 M). This was based on enhanced activity of position sensitive neurons as the fCO activity for all position stimuli was shifted to higher values. Intracellular recordings of single sensory cells showed that velocity-sensitivity of single sensory cells was not altered by octopamine. Similarly, the response of fCO afferents to ramp-and-hold stimuli revealed that acceleration sensitivity was unaffected by octopamine. The observed alterations in the fCO activity indicate that responses to static stimuli are enhanced while responses to motion stimuli are not affected by octopamine. These findings suggest that the octopaminergic modulation of the fCO may affect the animals' posture and those leg movements that rely on position information.  相似文献   

10.
Summary Specimens of the crayfishProcambarus clarkii turn to face in the direction of a brief tactile stimulus delivered to a walking leg. The control system that guides this directed behavior was investigated under closed-loop and open-loop conditions. The accuracy of turns exhibited in these experiments was compared to baseline accuracy established by animals restrained from forward and backward walking but allowed to rotate in the yaw plane. Procambarus clarkii individuals deprived of visual feedback tended to undershoot the target angle. Response accuracy increased when a uniform field of stripes moved across the visual field in accordance with the turning movements of the animal. Response accuracy did not match the accuracy observed under baseline conditions, however, unless the responding animal encountered a novel visual image, such as the silhouette of a crayfish, in the moving visual field.Visual feedback thus influences the accuracy of turning in crayfish in two important ways. Movement of stripes across the visual field of a crayfish feeds back positively and promotes rapid turning during the initial phase of a response. This effect obtains regardless of the direction or rate of movement of the stripes in the visual field. The appearance of a novel image in the visual field feeds back negatively to inhibit at least partially further turning. Feedback from the visual system appears to fine tune basic turning movements initiated by a tactile stimulus and crudely directed according to that input. Turning behavior in the crayfish resembles in this respect compensatory eye movements in the lobster and escape responses in a number of arthropods.Neural mechanisms that may explain the experimental results are discussed with particular emphasis on the possibility of interaction between voluntary turning responses and optomotor reactions.  相似文献   

11.
Here we report the characterization of an octopamine/tyramine (OA/TA or TyrR1) receptor (OA/TAMac) cloned from the freshwater prawn, Macrobrachium rosenbergii, an animal used in the study of agonistic social behavior. The invertebrate OA/TA receptors are seven trans-membrane domain G-protein coupled receptors that are related to vertebrate adrenergic receptors. Behavioral studies in arthropods indicate that octopaminergic signaling systems modulate fight or flight behaviors with octopamine and/or tyramine functioning in a similar way to the adrenalins in vertebrate systems. Despite the importance of octopamine signaling in behavioral studies of decapod crustaceans there are no functional data available for any of their octopamine or tyramine receptors. We expressed OA/TAMac in Xenopus oocytes where agonist-evoked trans-membrane currents were used as readouts of receptor activity. The currents were most effectively evoked by tyramine but were also evoked by octopamine and dopamine. They were effectively blocked by yohimbine. The electrophysiological approach we used enabled the continuous observation of complex dynamics over time. Using voltage steps, we were able to simultaneously resolve two types of endogenous currents that are affected over different time scales. At higher concentrations we observe that octopamine and tyramine can produce different and opposing effects on both of these currents, presumably through the activity of the single expressed receptor type. The pharmacological profile and apparent functional-selectivity are consistent with properties first observed in the OA/TA receptor from the insect Drosophila melanogaster. As the first functional data reported for any crustacean OA/TA receptor, these results suggest that functional-selectivity between tyramine and octopamine is a feature of this receptor type that may be conserved among arthropods.  相似文献   

12.
Invasive predators can devastate native species and ecosystems. However, native species may be able to coexist with invasive predators through a variety of mechanisms, such as changes in morphology or behavior due to a plastic response or selection on fixed anti-predator traits. We examined whether exposed and naive populations of Pacific tree frog tadpoles (Pseudacris regilla) display divergent morphological and behavioral traits in response to the invasive predatory red swamp crayfish (Procambarus clarkii). Tadpoles were collected from three study streams with and three without crayfish, in the Santa Monica Mountains of Southern California. We analyzed tadpole morphology and tested anti-predator behavior and survival in the laboratory. Tadpoles from streams with crayfish had shallower, narrower tails than tadpoles from streams without crayfish. Tadpoles from streams with and without crayfish were less active after exposure to crayfish chemical cues. The divergent morphology of naive and exposed tadpoles is consistent with tadpoles exhibiting a plastic response to crayfish or undergoing selection from crayfish predation. In laboratory predation experiments, we found no difference in survival between tadpoles from streams with and without crayfish but tadpoles that survived predation had deeper tail muscles than those that were killed or injured. Our results suggest that deeper tails are advantageous in the presence of crayfish, yet tadpoles from crayfish streams had shallower tails than those from crayfish-free streams. Shallower tails may have an alternative unmeasured advantage or there may be a physiological constraint to developing deeper tails in the wild. These results highlight the ability of a native frog to respond to an invasive predatory crayfish, potentially allowing for coexistence.  相似文献   

13.
Chemosensory pheromonal information regulates aggression and reproduction in many species, but how pheromonal signals are transduced to reliably produce behavior is not well understood. Here we demonstrate that the pheromonal signals detected by Gr32a-expressing chemosensory neurons to enhance male aggression are filtered through octopamine (OA, invertebrate equivalent of norepinephrine) neurons. Using behavioral assays, we find males lacking both octopamine and Gr32a gustatory receptors exhibit parallel delays in the onset of aggression and reductions in aggression. Physiological and anatomical experiments identify Gr32a to octopamine neuron synaptic and functional connections in the suboesophageal ganglion. Refining the Gr32a-expressing population indicates that mouth Gr32a neurons promote male aggression and form synaptic contacts with OA neurons. By restricting the monoamine neuron target population, we show that three previously identified OA-FruM neurons involved in behavioral choice are among the Gr32a-OA connections. Our findings demonstrate that octopaminergic neuromodulatory neurons function as early as a second-order step in this chemosensory-driven male social behavior pathway.  相似文献   

14.
Most birds show a characteristic head movement that consists of head stabilization and quick displacement. In this movement, which is analogous to saccadic eye movement in mammals, head stabilization plays an important role in stabilizing the retinal image. This head movement, called “head bobbing”, is particularly pronounced during walking. Previous studies focusing on anatomical and behavioral features have pointed out that visual information is also important for diving birds, indicating its significance in the head movements of diving birds. In the present study, the kinematic and behavioral features of head bobbing in diving little grebes were described by motion analysis to identify the head movement in diving birds. The results showed that head-bobbing stroke (HBS) consisted of a thrust phase and a hold phase as is typical for head bobbing during walking birds. This suggests that HBS is related to visual stabilization under water. In HBS, grebes tended to dive with longer stroke length and smaller stroke frequency than in non-bobbing stroke. This suggests that the behavior, which is related to vision, affects the kinematic stroke parameters. This clarification of underwater head movement will help in our understanding not only of vision, but also of the kinematic strategy of diving birds.  相似文献   

15.
The modulatory actions of the biogenic amine octopamine on the femur tibia (FT) control loop in the stick insect Carausius morosus were examined. The response properties of the FT control loop were determined under open loop conditions. Mechanical stimulation of the femoral chordotonal organ (fCO) was the input and tibial movement and motoneuronal activity were measured as the output of the system. Following octopamine injection into the hemolymph of intact, inactive animals, two consecutive phases occurred at the behavioral level. Octopamine caused initially an activation of the animal. During this first phase (3.5–12 min duration) the response properties of the FT control loop were similar to those found in animals that were activated by tactile stimuli under normal conditions. Afterward, animals became inactive. During this second phase (15–20 min duration), the gain of the control loop was zero and no resistance reflex in the FT joint was generated in response to fCO stimulation. However, active movements of the tibia could still be elicited. As we could show in restrained animals, where dl-octopamine was applied topically onto the undesheated mesothoracic ganglion, the complete suppression of the resistance reflex on the motoneuronal level was dose dependent starting at concentrations of 5 ± 10?3 M octopamine. We could show that octopamine specifically suppressed the pathways involved in the resistance reflex, while feedback loop responses to fCO stimuli typical for active animals could still be elicited. Our results indicate that an increase in the octopamine concentration mimicks activation of the animal: Properties being characteristic for the control of the FT joint in the inactive animal are inhibited by octopamine, while properties of the FT control loop typical for the active animal appear to be facilitated following octopamine injection. The results clearly demonstrate that different pathways in the neuronal network underlying the FT control loop are involved in the responses of the control loop to fCO stimuli in the inactive and active behavioral states of the stick insect. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Animals use chemical cues to find food, locate mates, and detect potential predators. Detecting cues in a risky environment can induce behavioral changes to increase survival. Rusty crayfish (Orconectes rusticus) reduce activity, increase refuge use, and make defensive displays after detecting fish predator cues. However, no studies have introduced amphibian cues. We investigated crayfish responses to hellbender salamander (Cryptobranchus alleganiensis, a dominant predator of crayfish) cues and compared these to responses to largemouth bass (Micropterus salmoides) cues. Largemouth bass occur sympatrically with hellbenders and are known to induce distinct responses in rusty crayfish. We randomly assigned crayfish to predator cue and conspecific alarm cue combinations and recorded frozen behavior, appendage movement, locomotion, and refuge use. We found crayfish increased their proportion of time spent frozen and reduced their proportion of time spent active in the tank when exposed to either predator cue. Moreover, these responses were magnified when crayfish were exposed to predator cues in combination with conspecific alarm cues. Our experiment demonstrates evidence in support of the crayfish’s ability to detect and appropriately respond to predator cues alone and in combination with conspecific alarm cues. Future work should investigate the effects of these behavioral changes on trophic dynamics in a natural system.  相似文献   

17.
For a symbiosis to be a mutualism, benefits received must exceed costs incurred for both partners. Partners can prevent costly overexploitation through behaviors that moderate interactions with the other symbiont. In a symbiosis between crayfish and branchiobdellidan annelids, the worms can increase crayfish survival and growth by removing fouling material from the gills. However, overexploitation by the worms is possible and results in damage to host gills. We used behavioral observations to assess the degree to which two species of crayfish (Cambarus chasmodactylus and Orconectes cristavarius) use grooming to moderate their interaction with branchiobdellids. We found that grooming could effectively reduce worm numbers, and the proportion of total grooming directed at worms differed between crayfish species and as a function of worm number. O. cristavarius increased grooming in response to the addition of a single worm, while C. chasmodactylus only increased grooming in response to ten worms. These differences in the number of worms that trigger grooming behavior reflect differences between crayfish species in field settings. We also assessed whether antibacterial compounds in circulating crayfish hemolymph could limit bacterial gill fouling. O. cristavarius hemolymph inhibited some test bacteria more effectively than C. chasmodactylus did. Differences in the antibacterial properties of crayfish hemolymph may therefore help explain differences in both worm-directed grooming and worm loads in the field. We conclude that crayfish can use grooming to reduce worm numbers, which could lower the potential for gill damage, and that the level of grooming varies between crayfish species.  相似文献   

18.
Rainbow trout, Oncorhynchus mykiss, and crayfish, Orconectes virilis, have been introduced for the last century into North American streams inhabited by native fishes. We sought to determine the behavioral response of a federally threatened cyprinid, Little Colorado spinedace, Lepidomeda vittata, in the concurrent presence of multiple nonnative predators (rainbow trout and crayfish), as well as the response to the presence of a combination of native (Apache trout, Oncorhynchus apache) and nonnative (crayfish) predators. We held spinedace in artificial streams and exposed them to four treatments: (1) control, (2) crayfish added, (3) trout added, and (4) both crayfish and trout added. Only a single spinedace was consumed over the course of the experiments; it was captured and preyed upon by a crayfish. When both crayfish and Apache trout were present, spinedace response was similar to what it was when only Apache trout were present (decreased movement in and out of refuge), suggesting that crayfish and Apache trout did not mutually influence spinedace behavior. However, when both rainbow trout and crayfish were present, spinedace not only decreased movements in and out of refuge, but also decreased activity rates. We suggest that crayfish and rainbow trout mutually influence spinedace behavior and recommend control or elimination of crayfish and rainbow trout from spinedace critical habitat or potential reintroduction sites. In addition, potential reintroduction sites for Apache trout should be evaluated based on presence of crayfish and spinedace to avoid potential multiple predator interactions and negative effects on spinedace.  相似文献   

19.
Eye movements are very important in order to track an object or to stabilize an image on the retina during movement. Animals without a fovea, such as the mouse, have a limited capacity to lock their eyes onto a target. In contrast to these target directed eye movements, compensatory ocular eye movements are easily elicited in afoveate animals1,2,3,4. Compensatory ocular movements are generated by processing vestibular and optokinetic information into a command signal that will drive the eye muscles. The processing of the vestibular and optokinetic information can be investigated separately and together, allowing the specification of a deficit in the oculomotor system. The oculomotor system can be tested by evoking an optokinetic reflex (OKR), vestibulo-ocular reflex (VOR) or a visually-enhanced vestibulo-ocular reflex (VVOR). The OKR is a reflex movement that compensates for "full-field" image movements on the retina, whereas the VOR is a reflex eye movement that compensates head movements. The VVOR is a reflex eye movement that uses both vestibular as well as optokinetic information to make the appropriate compensation. The cerebellum monitors and is able to adjust these compensatory eye movements. Therefore, oculography is a very powerful tool to investigate brain-behavior relationship under normal as well as under pathological conditions (f.e. of vestibular, ocular and/or cerebellar origin).Testing the oculomotor system, as a behavioral paradigm, is interesting for several reasons. First, the oculomotor system is a well understood neural system5. Second, the oculomotor system is relative simple6; the amount of possible eye movement is limited by its ball-in-socket architecture ("single joint") and the three pairs of extra-ocular muscles7. Third, the behavioral output and sensory input can easily be measured, which makes this a highly accessible system for quantitative analysis8. Many behavioral tests lack this high level of quantitative power. And finally, both performance as well as plasticity of the oculomotor system can be tested, allowing research on learning and memory processes9.Genetically modified mice are nowadays widely available and they form an important source for the exploration of brain functions at various levels10. In addition, they can be used as models to mimic human diseases. Applying oculography on normal, pharmacologically-treated or genetically modified mice is a powerful research tool to explore the underlying physiology of motor behaviors under normal and pathological conditions. Here, we describe how to measure video-oculography in mice8.  相似文献   

20.
In laboratory experiments, simultaneous continuous recording of the circadian cycle of behavioral reactions and cardiac activity of freshwater crayfish Astacus astacus and Procambarus clarkii was carried out. A non-invasive fiber-optic method of recording of the heart rate (HR) was used. The obtained data were analyzed by the method of variational pulsometry (VP). It was revealed that certain values of HR and characteristics of VP corresponded to the physiological states of active wakefulness and rest. It was found that during long immobilization of crayfish it is possible to identify the states of operative rest and sleep by the animal behavioral reactions and parameters of cardiac activity. Crayfish were studied in the state of artificially evoked immobilization (“animal hypnosis”). During this state, a high HR level, an increase of indexes of tension and autonomic equilibrium, and changes of other VP characteristics were observed. It is suggested that the different level of cardiac activity in different physiological states of crayfish (active wakefulness, operative rest, sleep, and “animal hypnosis”) is regulated by nervous influences analogous to sympathetic and parasympathetic influences in vertebrates. It was concluded that freshwater crayfish as a representative of the highly organized invertebrates can serve an effective model for studying mechanisms of sleep-like states and “animal hypnosis” in animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号