首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
β‐Diversity, which describes the extent of change in species composition in a given region, has become a core issue in ecology in recent years. However, it is hard to understand the underlying mechanisms of β‐diversity by using indices that yield identical values under species replacement and nestedness pattern. Partitioning β‐diversity into turnover (caused by species replacement among plots) and nestedness components (caused by species loss or gain among plots) may provide improved understanding of the variation in species composition. Here, we collected presence–absence data of 456 one‐tenth ha circular plots in the temperate forests of Northeastern China spanning a latitudinal range of 12° (41–53°N). We decomposed β‐diversity to assess the relative contribution of the turnover and nestedness components across latitudinal gradients. We used regression analysis to assess the relationship between spatial distance and β‐diversity. We applied variation partitioning to evaluate the importance of the measured environmental and spatial variables in explaining β‐diversity. We used the Tukey honest significant difference test to test the differences of β‐diversity along latitudinal gradients. Pearson correlations (r) and significance (p‐value) were computed using the Mantel tests to verify the relationship between distance and β‐diversity. The ANOVA test was used to verify whether the variation of β‐diversity explained by the environment and distance was significant. Our results showed that (1) β‐diversity and the turnover component were higher at low latitudes (zones A and B) than at high latitudes (zones C and D), while there was no relationship between the nestedness component and latitude. (2) The turnover component was dominant. (3) The spatial distance explained more variation of β‐diversity than the measured environmental factors. Therefore, we conclude that β‐diversity is mainly a product of species turnover in our temperate forests, suggesting that different localities harbor different species. We find that decomposing β‐diversity into the turnover and nestedness components is a useful approach to explore the variation of community composition and their causes.  相似文献   

2.
Understanding the spatial distribution of plant diversity and its drivers are major challenges in biogeography and conservation biology. Integrating multiple facets of biodiversity (e.g., taxonomic, phylogenetic, and functional biodiversity) may advance our understanding on how community assembly processes drive the distribution of biodiversity. In this study, plant communities in 60 sampling plots in desert ecosystems were investigated. The effects of local environment and spatial factors on the species, functional, and phylogenetic α‐ and β‐diversity (including turnover and nestedness components) of desert plant communities were investigated. The results showed that functional and phylogenetic α‐diversity were negatively correlated with species richness, and were significantly positively correlated with each other. Environmental filtering mainly influenced species richness and Rao quadratic entropy; phylogenetic α‐diversity was mainly influenced by dispersal limitation. Species and phylogenetic β‐diversity were mainly consisted of turnover component. The functional β‐diversity and its turnover component were mainly influenced by environmental factors, while dispersal limitation dominantly effected species and phylogenetic β‐diversity and their turnover component of species and phylogenetic β‐diversity. Soil organic carbon and soil pH significantly influenced different dimensions of α‐diversity, and soil moisture, salinity, organic carbon, and total nitrogen significantly influenced different dimensions of α‐ and β‐diversity and their components. Overall, it appeared that the relative influence of environmental and spatial factors on taxonomic, functional, and phylogenetic diversity differed at the α and β scales. Quantifying α‐ and β‐diversity at different biodiversity dimensions can help researchers to more accurately assess patterns of diversity and community assembly.  相似文献   

3.
Exploring vegetation distribution spatial patterns facilitates understanding how biodiversity addresses the potential threat of future climate variability, especially for highly diverse and threatened tropical plant communities, but few empirical studies have been performed. Dacrydium pectinatum is a constructive and endangered species in the tropical mountain forests of Hainan Island, China. In this study, sixty‐eight 30 m × 30 m permanent plots of D. pectinatum were investigated, and species‐based and phylogenetic‐based methods were used to analyze the α‐ and β‐diversity pattern variation and its key drivers. Our study showed that species and phylogenetic α‐diversity patterns are different on a local scale. However, on a regional scale, the variations in the two α‐diversity patterns tend to converge, and they decrease with increasing elevation. The phylogenetic structure changes from overdispersion to convergence with increasing elevation. Soil (SOM, TP, AP), topography (EL, SL), and stand (CD) factors and α‐diversity showed close correlations. Species and phylogenetic β‐diversity have significant positive correlations with changing environmental distance and geographical distance; however, as a representative form of habitat heterogeneity, elevation distance has a greater impact on β‐diversity changes than geographical distance. In conclusion, the α‐ and β‐diversity patterns of the D. pectinatum community are mainly related to habitat filtering, especially in high‐elevation areas, and the colonization history of various regions also affects the formation of diversity patterns. Species‐based and phylogenetic‐based methods robustly demonstrated the key role of the habitat filtering hypothesis in community assembly. We believe that more plant diversity patterns need to be explored to understand the biodiversity formation mechanisms in tropical forests. We also recommend strengthening the construction and management of nature reserves to help address the biodiversity loss crisis in endangered tropical plant communities.  相似文献   

4.
The Western Ghats (WG) mountain chain in peninsular India is a global biodiversity hotspot, one in which patterns of phylogenetic diversity and endemism remain to be documented across taxa. We used a well‐characterized community of ancient soil predatory arthropods from the WG to understand diversity gradients, identify hotspots of endemism and conservation importance, and highlight poorly studied areas with unique biodiversity. We compiled an occurrence dataset for 19 species of scolopendrid centipedes, which was used to predict areas of habitat suitability using bioclimatic and geomorphological variables in Maxent. We used predicted distributions and a time‐calibrated species phylogeny to calculate taxonomic and phylogenetic indices of diversity, endemism, and turnover. We observed a decreasing latitudinal gradient in taxonomic and phylogenetic diversity in the WG, which supports expectations from the latitudinal diversity gradient. The southern WG had the highest phylogenetic diversity and endemism, and was represented by lineages with long branch lengths as observed from relative phylogenetic diversity/endemism. These results indicate the persistence of lineages over evolutionary time in the southern WG and are consistent with predictions from the southern WG refuge hypothesis. The northern WG, despite having low phylogenetic diversity, had high values of phylogenetic endemism represented by distinct lineages as inferred from relative phylogenetic endemism. The distinct endemic lineages in this subregion might be adapted to life in lateritic plateaus characterized by poor soil conditions and high seasonality. Sites across an important biogeographic break, the Palghat Gap, broadly grouped separately in comparisons of species turnover along the WG. The southern WG and Nilgiris, adjoining the Palghat Gap, harbor unique centipede communities, where the causal role of climate or dispersal barriers in shaping diversity remains to be investigated. Our results highlight the need to use phylogeny and distribution data while assessing diversity and endemism patterns in the WG.  相似文献   

5.
Biotic specialization holds information about the assembly, evolution, and stability of biological communities. Partner availabilities can play an important role in enabling species interactions, where uneven partner availabilities can bias estimates of biotic specialization when using phylogenetic diversity indices. It is therefore important to account for partner availability when characterizing biotic specialization using phylogenies. We developed an index, phylogenetic structure of specialization (PSS), that avoids bias from uneven partner availabilities by uncoupling the null models for interaction frequency and phylogenetic distance. We incorporate the deviation between observed and random interaction frequencies as weights into the calculation of partner phylogenetic α‐diversity. To calculate the PSS index, we then compare observed partner phylogenetic α‐diversity to a null distribution generated by randomizing phylogenetic distances among the same number of partners. PSS quantifies the phylogenetic structure (i.e., clustered, overdispersed, or random) of the partners of a focal species. We show with simulations that the PSS index is not correlated with network properties, which allows comparisons across multiple systems. We also implemented PSS on empirical networks of host–parasite, avian seed‐dispersal, lichenized fungi–cyanobacteria, and hummingbird pollination interactions. Across these systems, a large proportion of taxa interact with phylogenetically random partners according to PSS, sometimes to a larger extent than detected with an existing method that does not account for partner availability. We also found that many taxa interact with phylogenetically clustered partners, while taxa with overdispersed partners were rare. We argue that species with phylogenetically overdispersed partners have often been misinterpreted as generalists when they should be considered specialists. Our results highlight the important role of randomness in shaping interaction networks, even in highly intimate symbioses, and provide a much‐needed quantitative framework to assess the role that evolutionary history and symbiotic specialization play in shaping patterns of biodiversity. PSS is available as an R package at https://github.com/cjpardodelahoz/pss.  相似文献   

6.
Amazonian rainforests are among the most species‐rich terrestrial habitats on Earth. The aim of this study was to analyze phylogenetic diversity (PD) patterns of orchid bee assemblages along a latitudinal gradient of 15° from northern Peru to central Bolivia and to relate them to climatic factors and geological history. We expanded an existing phylogeny of orchid bees and analyzed the PD of 15 orchid bee assemblages along a latitudinal gradient using mean pair‐wise phylogenetic distance. The resulting pattern was correlated to climatic factors and elevation. We found a hump‐shaped pattern of PD that peaked in central Peru and decreased towards the equatorial and especially towards the southern, subtropical sites. The decrease in PD towards higher latitudes is a common pattern found in many taxa, which in our case correlates with increasing climatic seasonality. However, the decrease towards the equatorial sites is unusual and may be related to a particular historic event: the northern sites with low PD are situated in the area of the former Lake Pebas, which covered western Amazonia until 3 mya. After the lake disappeared orchid bees mainly belonging to two distantly related species groups apparently colonized the region and diversified, which led to the comparatively low observed PD. In contrast, in central Peru, no in situ radiations were detected, hence the assemblages were composed of species from diverse phylogenetic lineages. Additionally, we identified multiple phylogenetically independent radiations of regionally restricted Euglossa species along the latitudinal gradient that, according to a published, dated phylogeny, diversified roughly 3–1 mya. The hump‐shaped latitudinal pattern of PD of the orchid bees of western Amazonia thus appears to have resulted from a preponderance of early divergent lineages in central Peru and of young radiations from distantly related clades colonizing higher latitudes, possibly triggered by historic climate fluctuations and major geological events.  相似文献   

7.
Aims Understanding what drives the variation in species composition and diversity among local communities can provide insights into the mechanisms of community assembly. Because ecological traits are often thought to be phylogenetically conserved, there should be patterns in phylogenetic structure and phylogenetic diversity in local communities along ecological gradients. We investigate potential patterns in angiosperm assemblages along an elevational gradient with a steep ecological gradient in Changbaishan, China.Methods We used 13 angiosperm assemblages in forest plots (32×32 m) distributed along an elevational gradient from 720 to 1900 m above sea level. We used Faith's phylogenetic diversity metric to quantify the phylogenetic alpha diversity of each forest plot, used the net relatedness index to quantify the degree of phylogenetic relatedness among angiosperm species within each forest plot and used a phylogenetic dissimilarity index to quantify phylogenetic beta diversity among forest plots. We related the measures of phylogenetic structure and phylogenetic diversity to environmental (climatic and edaphic) factors.Important findings Our study showed that angiosperm assemblages tended to be more phylogenetically clustered at higher elevations in Changbaishan. This finding is consistent with the prediction of the phylogenetic niche conservatism hypothesis, which highlights the role of niche constraints in governing the phylogenetic structure of assemblages. Our study also showed that woody assemblages differ from herbaceous assemblages in several major aspects. First, phylogenetic clustering dominated in woody assemblages, whereas phylogenetic overdispersion dominated in herbaceous assemblages; second, patterns in phylogenetic relatedness along the elevational and temperature gradients of Changbaishan were stronger for woody assemblages than for herbaceous assemblages; third, environmental variables explained much more variations in phylogenetic relatedness, phylogenetic alpha diversity and phylogenetic beta diversity for woody assemblages than for herbaceous assemblages.  相似文献   

8.
Beta diversity, and its components of turnover and nestedness, reflects the processes governing community assembly, such as dispersal limitation or biotic interactions, but it is unclear how they operate at the local scale and how their role changes along postfire succession. Here, we analyzed the patterns of beta diversity and its components in a herbaceous plant community after fire, and in relation to dispersal ability, in Central Spain. We calculated multiple‐site beta diversity (βSOR) and its components of turnover (βSIM) and nestedness (βSNE) of all herbaceous plants, or grouped by dispersal syndrome (autochory, anemochory, and zoochory), during the first 3 years after wildfire. We evaluated the relationship between pairwise beta diversity (βsor), and its components (βsim, βsne), and spatial distance or differences in woody plant cover, a proxy of biotic interactions. We found high multiple‐site beta diversity dominated by the turnover component. Community dissimilarity increased with spatial distance, driven mostly by the turnover component. Species with less dispersal ability (i.e., autochory) showed a stronger spatial pattern of dissimilarity. Biotic interactions with woody plants contributed less to community dissimilarity, which tended to occur through the nestedness component. These results suggest that dispersal limitation prevails over biotic interactions with woody plants as a driver of local community assembly, even for species with high dispersal ability. These results contribute to our understanding of postfire community assembly and vegetation dynamics.  相似文献   

9.
Aim Spatial turnover of species, or beta diversity, varies in relation to geographical distance and environmental conditions, as well as spatial scale. We evaluated the explanatory power of distance, climate and topography on beta diversity of mammalian faunas of North America in relation to latitude. Location North America north of Mexico. Methods The study area was divided into 313 equal‐area quadrats (241 × 241 km). Faunal data for all continental mammals were compiled for these quadrats, which were divided among five latitudinal zones. These zones were comparable in terms of latitudinal and longitudinal span, climatic gradients and elevational gradients. We used the natural logarithm of the Jaccard index (lnJ) to measure species turnover between pairs of quadrats within each latitudinal zone. The slope of lnJ in relation to distance was compared among latitudinal zones. We used partial regression to partition the variance in lnJ into the components uniquely explained by distance and by environmental differences, as well as jointly by distance and environmental differences. Results Mammalian faunas of North America differ more from each other at lower latitudes than at higher latitudes. Regression models of lnJ in relation to distance, climatic difference and topographic difference for each zone demonstrated that these variables have high explanatory power that diminishes with latitude. Beta diversity is higher for zones with higher mean annual temperature, lower seasonality of temperature and greater topographic complexity. For each latitudinal zone, distance and environmental differences explain a greater proportion of the variance in lnJ than distance, climate or topography does separately. Main conclusions The latitudinal gradient in beta diversity of North American mammals corresponds to a macroclimatic gradient of decreasing mean annual temperature and increasing seasonality of temperature from south to north. Most of the variance in spatial turnover is explained by distance and environmental differences jointly rather than distance, climate or topography separately. The high predictive power of geographical distance, climatic conditions and topography on spatial turnover could result from the direct effects of physical limiting factors or from ecological and evolutionary processes that are also influenced by the geographical template.  相似文献   

10.
Understanding the origins of biodiversity has been an aspiration since the days of early naturalists. The immense complexity of ecological, evolutionary, and spatial processes, however, has made this goal elusive to this day. Computer models serve progress in many scientific fields, but in the fields of macroecology and macroevolution, eco-evolutionary models are comparatively less developed. We present a general, spatially explicit, eco-evolutionary engine with a modular implementation that enables the modeling of multiple macroecological and macroevolutionary processes and feedbacks across representative spatiotemporally dynamic landscapes. Modeled processes can include species’ abiotic tolerances, biotic interactions, dispersal, speciation, and evolution of ecological traits. Commonly observed biodiversity patterns, such as α, β, and γ diversity, species ranges, ecological traits, and phylogenies, emerge as simulations proceed. As an illustration, we examine alternative hypotheses expected to have shaped the latitudinal diversity gradient (LDG) during the Earth’s Cenozoic era. Our exploratory simulations simultaneously produce multiple realistic biodiversity patterns, such as the LDG, current species richness, and range size frequencies, as well as phylogenetic metrics. The model engine is open source and available as an R package, enabling future exploration of various landscapes and biological processes, while outputs can be linked with a variety of empirical biodiversity patterns. This work represents a key toward a numeric, interdisciplinary, and mechanistic understanding of the physical and biological processes that shape Earth’s biodiversity.

This study describes a novel mechanistic engine that predicts a realistic global latitudinal diversity gradient, species richness distribution and phylogenies. This approach is a step towards the interdisciplinary numeric understanding of the physical and biological processes that have shaped Earth’s biodiversity.  相似文献   

11.
Abstract How to maximize the conservation of biodiversity is critical for conservation planning, particularly given rapid habitat loss and global climatic change. The importance of preserving phylogenetic diversity has gained recognition due to its ability to identify some influences of evolutionary history on contemporary patterns of species assemblages that traditional taxonomic richness measures cannot identify. In this study, we evaluate the relationship between taxonomic richness and phylogenetic diversity of angiosperms at genus and species levels and explore the spatial pattern of the residuals of this relationship. We then incorporate data on historical biogeography to understand the process that shaped contemporary floristic assemblages in a global biodiversity hotspot, Yunnan Province, located in southwestern China. We identified a strong correlation between phylogenetic diversity residuals and the biogeographic affinity of the lineages in the extant Yunnan angiosperm flora. Phylogenetic diversity is well correlated with taxonomic richness at both genus and species levels between floras in Yunnan, where two diversity centers of phylogenetic diversity were identified (the northwestern center and the southern center). The northwestern center, with lower phylogenetic diversity than expected based on taxonomic richness, is rich in temperate‐affinity lineages and signifies an area of rapid speciation. The southern center, with higher phylogenetic diversity than predicted by taxonomic richness, contains a higher proportion of lineages with tropical affinity and seems to have experienced high immigration rates. Our results highlight that maximizing phylogenetic diversity with historical interpretation can provide valuable insights into the floristic assemblage of a region and better‐informed decisions can be made to ensure different stages of a region's evolutionary history are preserved.  相似文献   

12.
To clarify the effect of niche conservatism on evolutionary history, we focused on freshwater snails, which have different ecological and phylogenetic properties from previously tested taxa. We conducted a phylogenetic analysis using 750 lymnaeid individuals from 357 sites of eleven Radix species. Then, we estimated the ancestral distribution using the geographic coordinates and colonization routes. In addition, a statistical test of the colonization distances in the latitudinal and longitudinal directions was performed. We also conducted ecological niche modeling for two widely distributed species using climatic data. Ancestral geographic reconstruction estimated the origin of the genus to be around the Indian subcontinental region and showed that latitudinal immigration distances were shorter than longitudinal immigration distances in the diversification process. Ecological niche models suggested that the current distribution was restricted by climate, with annual mean temperature and precipitation of the driest month as particularly strong factors. Niche conservatism to the climate can affect the diversification of freshwater snails.  相似文献   

13.
确定溪流鱼类多样性的时空分布格局可为鱼类多样性保护与管理提供科学基础。尽管溪流鱼类分类群多样性的纵向梯度格局已有大量报道, 但以鱼类生物学特征为基础的功能多样性研究较少。本文基于2009-2010年4个季度对青弋江1-5级溪流共15个样点的调查数据, 利用形态特征数据和食性构建了鱼类复合功能群, 研究了不同级别溪流间鱼类分类群和功能群组成及多样性的异同, 着重探讨了鱼类分类群和功能群的α和β多样性沿溪流纵向梯度的变化规律。采集到的56种鱼类可分为4个营养功能群和5个运动功能群, 共计14个“营养-运动”复合功能群。双因素交互相似性分析结果显示, 鱼类分类群和功能群组成都随河流级别显著变化, 但季节动态不显著; 双因素方差分析后发现, 鱼类分类群和功能群α、β多样性都随河流级别显著变化, 但受季节影响不显著。经回归分析, 分类群和功能群α多样性与河流级别大小呈显著的线性正相关, 但最大分类群α多样性出现于4级河流, 最大功能群α多样性在4级和5级河流间一致; 分类群和功能群β多样性与河流级别大小呈显著的二项式关系, 呈U型分布。分类群β多样性的空间变化主要取决于物种周转, 而功能群β多样性主要由嵌套所驱动。本研究表明, 沿着“上游-下游”的纵向梯度, 河流鱼类的α和β多样性的空间变化规律不同, 分类群和功能群α多样性的空间格局基本一致, 但分类群(主要是物种周转)和功能群β多样性(主要是功能嵌套)的空间变化过程的驱动机制不同。  相似文献   

14.
Aims Environmental gradients are drivers of species diversity; however, we know relatively little about the evolutionary processes underlying these relationships. A potentially powerful approach to studying diversity gradients is to quantify the phylogenetic structure within and between assemblages arrayed along broad spatial and environmental gradients. Here, we evaluate the phylogenetic structure of plant assemblages along an environmental gradient with the expectation that the habitat specialization of entire lineages is an important evolutionary pattern influencing the structure of tree communities along environmental gradients.Methods We evaluated the effect of several environmental variables on the phylogenetic structure of plant assemblages in 145 plots distributed in northwestern South America that cover a broad environmental gradient. The phylogenetic alpha diversity was quantified for each plot and the phylogenetic beta diversity between each pair of plots was also quantified. Both the alpha and beta diversity measures were then related to spatial and environmental gradients in the study system.Important findings We found that gradients in temperature and potential evapotranspiration have a strong relationship with the phylogenetic alpha diversity in our study system, with phylogenetic overdispersion in low temperatures and phylogenetic clustering at higher temperatures. Further, the phylogenetic beta diversity between two plots increases with an increasing difference in temperature, whereas annual precipitation was not a significant predictor of community phylogenetic turnover. We also found that the phylogenetic structure of the plots in our study system was related to the degree of seasonal flooding and seasonality in precipitation. In particular, more stressful environments such as dry forests and flooded forests showed phylogenetic clustering. Finally, in contrast with previous studies, we find that phylogenetic beta diversity was not strongly related to the spatial distance separating two forest plots, which may be the result of the importance of the three independent mountain ranges in our study system, which generate a high degree of environmental variation over very short distances. In conclusion, we found that environmental gradients are important drivers of both phylogenetic alpha and phylogenetic beta diversities in these forests over spatial distance.  相似文献   

15.
β‐Diversity, commonly defined as the compositional variation among localities that links local diversity (α‐diversity) and regional diversity (γ‐diversity), can arise from two different ecological phenomena, namely the spatial species turnover (i.e., species replacement) and the nestedness of assemblages (i.e., species loss). However, any assessment that does not account for stochasticity in community assembly could be biased and misinform conservation management. In this study, we aimed to provide a better understanding of the overall ecological phenomena underlying stream β‐diversity along elevation gradients and to contribute to the rich debate on null model approaches to identify nonrandom patterns in the distribution of taxa. Based on presence‐absence data of 78 stream invertebrate families from 309 sites located in the Swiss Alpine region, we analyzed the effect size of nonrandom spatial distribution of stream invertebrates on the β‐diversity and its two components (i.e., turnover and nestedness). We used a modeling framework that allows exploring the complete range of existing algorithms used in null model analysis and assessing how distribution patterns vary according to an array of possible ecological assumptions. Overall, the turnover of stream invertebrates and the nestedness of assemblages were significantly lower and higher, respectively, than the ones expected by chance. This pattern increased with elevation, and the consistent trend observed along the altitudinal gradient, even in the most conservative analysis, strengthened our findings. Our study suggests that deterministic distribution of stream invertebrates in the Swiss Alpine region is significantly driven by differential dispersal capacity and environmental stress gradients. As long as the ecological assumptions for constructing the null models and their implications are acknowledged, we believe that they still represent useful tools to measure the effect size of nonrandom spatial distribution of taxa on β‐diversity.  相似文献   

16.
The abundant centre model (ACM) predicts that the suitability of environmental conditions for a species decreases from the centre of its distribution toward its range periphery and, consequently, its populations will become scarcer, smaller and more isolated, resulting in lower genetic diversity and increased differentiation. However, little is known about whether genetic diversity shows similar patterns along elevational and latitudinal gradients with similar changes in important environmental conditions. Using microsatellite markers, we studied the genetic diversity and structure of 20 populations each of Anthyllis vulneraria along elevational gradients in the Alps from the valleys to the elevational limit (2500 m) and along a latitudinal gradient (2500 km) from Central Europe to the range margin in northern Scandinavia. Both types of gradients corresponded to an 11.5°C difference in mean annual temperature. Genetic diversity strongly declined and differentiation increased with latitude in line with the predictions of the ACM. However, as population size did not decline with latitude and genetic diversity was not related to population size in A. vulneraria, this pattern is not likely to be due to less favorable conditions in the North, but due to serial founder effects during the post‐glacial recolonization process. Genetic diversity was not related to elevation, but we found significant isolation by distance along both gradients, although the elevational gradient was shorter by orders of magnitude. Subarctic populations differed genetically from alpine populations indicating that the northern populations did not originate from high elevational Alpine ones. Our results support the notion that postglacial latitudinal colonization over large distances resulted in a larger loss of genetic diversity than elevational range shifts. The lack of genetic diversity in subarctic populations may threaten their long‐term persistence in the face of climate change, whereas alpine populations could benefit from gene flow from low‐elevation populations.  相似文献   

17.
Alzheimer''s disease (AD) pathology is characterized by loss of memory cognitive and behavioral deterioration. One of the hallmarks of AD is amyloid β (Aβ) plaques in the brain that consists of Aβ oligomers and fibrils. It is accepted that oligomers, particularly dimers, are toxic species that are produced extracellularly and intracellularly in membranes. It is believed that the disruption of membranes by polymorphic Aβ oligomers is the key for the pathology of AD. This is a first study that investigate the effect of polymorphic “α‐helix/random coil” and “fibril‐like” Aβ dimers on 1,2‐dioleoyl‐sn‐glycero‐3‐phosphocholine (DOPC) membrane. It has been found that the DOPC membrane promotes Aβ1–42 “fibril‐like” dimers and impedes Aβ1–42 “α‐helix/random coil” dimers. The N‐termini domains within Aβ1–42 dimers play a role in Aβ aggregation in membrane milieus. In addition, the aromatic π–π interactions (involving residues F19 and F20 in Aβ1–42) are the driving forces for the hydrophobic interactions that initiate the primary nucleation of polymorphic Aβ1–42 dimers within DOPC membrane. Finally, the DOPC bilayer membrane thickness is locally decreased, and it is disrupted by an embedded distinct Aβ1–42 dimer, due to relatively large contacts between Aβ1–42 monomers and the DOPC membrane. This study reveals insights into the molecular mechanisms by which polymorphic early‐stage Aβ1–42 dimers have distinct impacts on DOPC membrane.  相似文献   

18.
In natural ecosystems, arthropod predation on herbivore prey is higher at lower latitudes, mirroring the latitudinal diversity gradient observed across many taxa. This pattern has not been systematically examined in human‐dominated ecosystems, where frequent disturbances can shift the identity and abundance of local predators, altering predation rates from those observed in natural ecosystems. We investigated how latitude, biogeographical, and local ecological factors influenced arthropod predation in Brassica oleracea‐dominated agroecosystems in 55 plots spread among 5 sites in the United States and 4 sites in Brazil, spanning at least 15° latitude in each country. In both the United States and Brazil, arthropod predator attacks on sentinel model caterpillar prey were highest at the highest latitude studied and declined at lower latitudes. The rate of increased arthropod attacks per degree latitude was higher in the United States and the overall gradient was shifted poleward as compared to Brazil. PiecewiseSEM analysis revealed that aridity mediates the effect of latitude on arthropod predation and largely explains the differences in the intensity of the latitudinal gradient between study countries. Neither predator richness, predator density, nor predator resource availability predicted variation in predator attack rates. Only greater non‐crop plant density drove greater predation rates, though this effect was weaker than the effect of aridity. We conclude that climatic factors rather than ecological community structure shape latitudinal arthropod predation patterns and that high levels of aridity in agroecosystems may dampen the ability of arthropod predators to provide herbivore control services as compared to natural ecosystems.  相似文献   

19.
Cardiomyocytes autophagy is essential for maintaining cardiac function. Our previous studies have found that β1‐adrenergic receptor autoantibody (β1‐AA) induced the decreased myocardial autophagic flux, which resulted in cardiomyocyte death and cardiac dysfunction. And other studies demonstrated that β1‐AA induced the decrease of AMPK phosphorylation, the key hub of autophagy pathway, while adiponectin up‐regulated autophagic flux mediated by AMPK. However, it is not clear whether adiponectin improves the inhibition of myocardial autophagic flux induced by β1‐AA by up‐regulating the level of AMPK phosphorylation. In this study, it has been confirmed that β1‐AA induced the decrease of AMPK phosphorylation level in both vivo and vitro. Moreover, pretreatment of cardiomyocytes with AMPK inhibitor Compound C could further reduce the autophagic flux induced by β1‐AA. Adiponectin deficiency could aggravate the decrease of myocardial AMPK phosphorylation level, autophagic flux and cardiac function induced by β1‐AA. Further, exogenous adiponectin could reverse the decline of AMPK phosphorylation level and autophagic flux induced by β1‐AA and even reduce cardiomyocyte death. While pretreated with the Compound C, the adiponectin treatment did not improve the decreased autophagosome formation, but still improved the decreased autophagosome clearance induced by β1‐AA in cardiomyocytes. This study is the first time to confirm that β1‐AA could inhibit myocardial autophagic flux by down‐regulating AMPK phosphorylation level. Adiponectin could improve the inhibition of myocardial autophagic flux induced by β1‐AA partly dependent on AMPK, so as to provide an experimental basis for the treatment of patients with β1‐AA‐positive cardiac dysfunction.  相似文献   

20.

Aim

The ability of predicting which naturalized non-native species are likely to become invasive can help manage and prevent species invasions. The goal of this study is to test whether invasive angiosperm (flowering plant) species are a phylogenetically clustered subset of naturalized species at global, continental and regional scales, and to assess the relationships of phylogenetic relatedness of invasive species with climate condition (temperature and precipitation).

Location

Global.

Time period

Current.

Taxon

Angiosperms (flowering plants).

Methods

The globe is divided into 290 regions, which are grouped into seven biogeographic (continental) regions. Two phylogenetic metrics (net relatedness index and nearest taxon index), which represent different evolutionary depths, are used to quantify phylogenetic relatedness of invasive angiosperms, with respect to different tailor-made species pools. Phylogenetic relatedness of invasive angiosperms is related to climatic variables.

Results

The global assemblage of invasive angiosperm species is a strongly phylogenetically clustered subset of the species of the entire global angiosperm flora. Most invasive angiosperm assemblages are a phylogenetically clustered subset of their respective naturalized species pools, and phylogenetic clustering reflecting shallow evolutionary history is greater than that reflecting deep evolutionary history. In general, the phylogenetic relatedness of invasive species is greater in regions with lower temperature and precipitation across the world.

Main conclusions

The finding that invasive angiosperm assemblages across the globe are, in general, phylogenetically clustered subsets of their respective naturalized species pools has significant implications in biological conservation, particularly in predicting and controlling invasive species based on phylogenetic relatedness among naturalized species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号