首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Benzenoids (C6–C1 aromatic compounds) play important roles in plant defense and are often produced upon herbivory. Black cottonwood (Populus trichocarpa) produces a variety of volatile and nonvolatile benzenoids involved in various defense responses. However, their biosynthesis in poplar is mainly unresolved. We showed feeding of the poplar leaf beetle (Chrysomela populi) on P. trichocarpa leaves led to increased emission of the benzenoid volatiles benzaldehyde, benzylalcohol, and benzyl benzoate. The accumulation of salicinoids, a group of nonvolatile phenolic defense glycosides composed in part of benzenoid units, was hardly affected by beetle herbivory. In planta labeling experiments revealed that volatile and nonvolatile poplar benzenoids are produced from cinnamic acid (C6–C3). The biosynthesis of C6–C1 aromatic compounds from cinnamic acid has been described in petunia (Petunia hybrida) flowers where the pathway includes a peroxisomal-localized chain shortening sequence, involving cinnamate-CoA ligase (CNL), cinnamoyl-CoA hydratase/dehydrogenase (CHD), and 3-ketoacyl-CoA thiolase (KAT). Sequence and phylogenetic analysis enabled the identification of small CNL, CHD, and KAT gene families in P. trichocarpa. Heterologous expression of the candidate genes in Escherichia coli and characterization of purified proteins in vitro revealed enzymatic activities similar to those described in petunia flowers. RNA interference-mediated knockdown of the CNL subfamily in gray poplar (Populus x canescens) resulted in decreased emission of C6–C1 aromatic volatiles upon herbivory, while constitutively accumulating salicinoids were not affected. This indicates the peroxisomal β-oxidative pathway participates in the formation of volatile benzenoids. The chain shortening steps for salicinoids, however, likely employ an alternative pathway.

A three-step peroxisomal β-oxidative pathway mediates the shortening of the propyl side chain of cinnamic acid and contributes to herbivore-induced aromatic volatile formation in poplar.  相似文献   

4.
The enzymatic hydrolysis of cellulose into glucose, referred to as saccharification, is severely hampered by lignins. Here, we analyzed transgenic poplars (Populus tremula × Populus alba) expressing the Brachypodium (Brachypodium distachyon) p-coumaroyl-Coenzyme A monolignol transferase 1 (BdPMT1) gene driven by the Arabidopsis (Arabidopsis thaliana) Cinnamate 4-Hydroxylase (AtC4H) promoter in the wild-type (WT) line and in a line overexpressing the Arabidopsis Ferulate 5-Hydroxylase (AtF5H). BdPMT1 encodes a transferase which catalyzes the acylation of monolignols by p-coumaric acid (pCA). Several BdPMT1-OE/WT and BdPMT1-OE/AtF5H-OE lines were grown in the greenhouse, and BdPMT1 expression in xylem was confirmed by RT-PCR. Analyses of poplar stem cell walls (CWs) and of the corresponding purified dioxan lignins (DLs) revealed that BdPMT1-OE lignins were as p-coumaroylated as lignins from C3 grass straws. For some transformants, pCA levels reached 11 mg·g−1 CW and 66 mg·g−1 DL, exceeding levels in Brachypodium or wheat (Triticum aestivum) samples. This unprecedentedly high lignin p-coumaroylation affected neither poplar growth nor stem lignin content. Interestingly, p-coumaroylation of poplar lignins was not favored in BdPMT1-OE/AtF5H-OE transgenic lines despite their high frequency of syringyl units. However, lignins of all BdPMT1-OE lines were structurally modified, with an increase of terminal unit with free phenolic groups. Relative to controls, this increase argues for a reduced polymerization degree of BdPMT1-OE lignins and makes them more soluble in cold NaOH solution. The p-coumaroylation of poplar samples improved the saccharification yield of alkali-pretreated CW, demonstrating that the genetically driven p-coumaroylation of lignins is a promising strategy to make wood lignins more susceptible to alkaline treatments used during the industrial processing of lignocellulosics.

The expression of a grass p-coumaroyl-CoA:monolignol transferase induces high p-coumaroylation of poplar lignins and better saccharification of alkali-pretreated poplar wood without growth penalty.  相似文献   

5.
The decomposition of the roots (0–2 mm, 2–5 mm and 5–10 mm) of black alder (Alnus glutinosa (L.) Gaertn.) and hybrid poplar (Populus nigra L. X Populus trichocarpa Torr & Gray) was followed over a 462-day period in pure and mixed plantings in southern Quebec. Small roots of alder had the highest initial concentrations of nitrogen and lignin, and lost 9 and 10% less mass than medium and large roots, respectively. Large roots of poplar had the highest lignin-to-nitrogen ratio and showed the smallest loss of mass over the total incubation period. Slow root decomposition of black alder and hybrid poplar was characterized by a greater proportion of initial root nitrogen immobilized per unit of carbon respired. Lignin concentration in roots of alder and poplar increased rapidly at the beginning of the incubation. Our results suggest that high levels of nitrogen in roots of alder could contribute in slowing the rate of decomposition by allowing the formation of nitrogen-lignin derivatives and low levels of nitrogen in roots of poplar may limit the growth of microorganisms and the rate of root decomposition. A multiple regression was developed using initial nitrogen, lignin concentration and the ratio of lignin to nitrogen to produce an index of the rate of root decomposition. The correlation between the index values and the percentage of residual root mass was significant (r=0.98, p<0.01).  相似文献   

6.
Ester-linked p-hydroxybenzoate occurs naturally in poplar lignin as pendent groups that can be released by mild alkaline hydrolysis. These ‘clip-off’ phenolics can be separated from biomass and upgraded into diverse high-value bioproducts. We introduced a bacterial chorismate pyruvate lyase gene into transgenic poplar trees with the aim of producing more p-hydroxybenzoate from chorismate, itself a metabolic precursor to lignin. By driving heterologous expression specifically in the plastids of cells undergoing secondary wall formation, this strategy achieved a 50% increase in cell-wall-bound p-hydroxybenzoate in mature wood and nearly 10 times more in developing xylem relative to control trees. Comparable amounts also remained as soluble p-hydroxybenzoate-containing xylem metabolites, pointing to even greater engineering potential. Mass spectrometry imaging showed that the elevated p-hydroxybenzoylation was largely restricted to the cell walls of fibres. Finally, transgenic lines outperformed control trees in assays of saccharification potential. This study highlights the biotech potential of cell-wall-bound phenolate esters and demonstrates the importance of substrate supply in lignin engineering.  相似文献   

7.
A cinnamoyl coenzyme A reductase (CCR, EC 1.2.1.44), one of the key enzyme involved in lignin biosynthesis, was cloned from Populus tomentosa (Chinese white poplar). At the same time, a 4CL1 gene was cloned from P. tomentosa, too. The two genes were subcloned in pQE31 vector and expressed in Escherichia coli M15. Both of them were purified by Ni-NTA. Purified CCR protein was digested by trypsin and analyzed by HPLC-MS; the peptide segments had 27% similarity with the sequence of the CCR protein. 4CL was thought to be a neighbor enzyme of CCR in lignin biosynthesis. In this paper, a 4CL1 from P. tomentosa was cloned, and its enzyme reaction products were extracted for the substrates of CCR. Three 4CL1 enzyme reaction products were monitored by HPLC-MS and then the CCR enzyme reaction was detected by GC-MS. In the CCR reaction, the three corresponding aldehyde (p-coumaraldehyde, caffealdehyde, and coniferaldehyde) were detected and identified by Frontier3 software. The results showed that the CCR that we cloned from P. tomentosa had affinities with 4CL1 enzyme reaction products and a ptCCR that was cloned from aspen (Li et al., Plant Cell Physiol 46(7):1073–1082, 2005) only had affinity with feruloyl-CoA. The different results maybe depend on the different study method. The method of exacting 4CL enzyme products as the substrates of CCR in the paper was reliable and can be used in lignin biosynthesis network to detect the enzymes in the neighborhood that depended on the polarity of the substrates and products. This CCR gene had eight homology sequence CCR gene when a BLAST was conducted in Populus trichocarpa genome database. The CCR homology genes in Populus suggested that some CCRs may take part in the lignin biosynthesis, too. The gene family would be the hot spot in the future study.  相似文献   

8.
4-Hydroxybenzoate was activated with coenzyme A by cells of a strictly anaerobic, phenol-degrading mixed culture to 4-hydroxybenzoyl-CoA, which was reductively dehydroxylated to benzoyl-CoA with reduced benzylviologen as an electron donor. The specific activity of the 4-hydroxybenzoyl-CoA ligase in cell-free extracts of the culture was 100–200 nmol min–1 mg–1, that of 4-hydroxybenzoyl-CoA reductase 14.5 nmol min–1 mg–1. An increased growth yield of the phenol-degrading mixed culture of 1.8 g/mol with 4-hydroxybenzoate in comparison to phenol as the substrate was found previously and indicated energy generation by decarboxylation of 4-hydroxybenzoate. Addition of 4-hydroxybenzoate to cell suspensions of the mixed culture resulted in a rapid increase of the cellular ATP level. The proton ionophore carbonylcyanidem-chlorophenylhydrazone and the H+-ATPase inhibitor dicyclohexylcarbodiimide prevented an increase of cellular ATP levels during 4-hydroxybenzoate decarboxylation, whereas the sodium ionophore monensin and the putative Na+-ATPase inhibitor ouabain revealed no effect. This was taken as good evidence for the generation of a proton gradient across the membrane by decarboxylation of 4-hydroxybenzoate and ATP formation by H+-ATPase.  相似文献   

9.
After herbivore damage, many plants increase their emission of volatile compounds, with terpenes usually comprising the major group of induced volatiles. Populus trichocarpa is the first woody species with a fully sequenced genome, enabling rapid molecular approaches towards characterization of volatile terpene biosynthesis in this and other poplar species. We identified and characterized four terpene synthases (PtTPS1-4) from P. trichocarpa which form major terpene compounds of the volatile blend induced by gypsy moth (Lymantria dispar) feeding. The enzymes were heterologously expressed and assayed with potential prenyl diphosphate substrates. PtTPS1 and PtTPS2 accepted only farnesyl diphosphate and produced (−)-germacrene D and (E,E)-α-farnesene as their major products, respectively. In contrast, PtTPS3 and PtTPS4 showed both mono- and sesquiterpene synthase activity. They produce the acyclic terpene alcohols linalool and nerolidol but exhibited opposite stereospecificity. qRT-PCR analysis revealed that the expression of the respective terpene synthase genes was induced after feeding of gypsy moth caterpillars. The TPS enzyme products may play important roles in indirect defense of poplar to herbivores and in mediating intra- and inter-plant signaling.  相似文献   

10.
As a step toward predictive modeling of flux through the pathway of monolignol biosynthesis in stem differentiating xylem of Populus trichocarpa, we discovered that the two 4-coumaric acid:CoA ligase (4CL) isoforms, 4CL3 and 4CL5, interact in vivo and in vitro to form a heterotetrameric protein complex. This conclusion is based on laser microdissection, coimmunoprecipitation, chemical cross-linking, bimolecular fluorescence complementation, and mass spectrometry. The tetramer is composed of three subunits of 4CL3 and one of 4CL5. 4CL5 appears to have a regulatory role. This protein–protein interaction affects the direction and rate of metabolic flux for monolignol biosynthesis in P. trichocarpa. A mathematical model was developed for the behavior of 4CL3 and 4CL5 individually and in mixtures that form the enzyme complex. The model incorporates effects of mixtures of multiple hydroxycinnamic acid substrates, competitive inhibition, uncompetitive inhibition, and self-inhibition, along with characteristic of the substrates, the enzyme isoforms, and the tetrameric complex. Kinetic analysis of different ratios of the enzyme isoforms shows both inhibition and activation components, which are explained by the mathematical model and provide insight into the regulation of metabolic flux for monolignol biosynthesis by protein complex formation.  相似文献   

11.
12.
The amount and composition of cell wall-bound polyphenol (lignin) in cultured Populus trichocarpa tissues which formed numerous xylem elements (xylogenic) or no xylem (non-xylogenic) were compared. Polyphenol accounted for ca 15% of the dry wt of the cell wall and did not differ significantly in amount in xylogenic and non-xylogenic tissues. The syringic acid derivatives, 3,4.5-trimethoxybenzoic acid, was identified as one of the oxidation products of methylated cell walls and was recovered in similar amounts irrespective of xylem formation. In contrast, lignin from xylogenic cultures contained more p-coumaryl alcohol derivatives and less coniferyl alcohol derivatives than lignin from non-xylogenic cultures. In this respect the lignin composition of xylogenic tissues closely resembled that from stems.  相似文献   

13.

Background

In plants, 14-3-3 proteins are encoded by a large multigene family and are involved in signaling pathways to regulate plant development and protection from stress. Although twelve Populus 14-3-3s were identified based on the Populus trichocarpa genome V1.1 in a previous study, no systematic analysis including genome organization, gene structure, duplication relationship, evolutionary analysis and expression compendium has been conducted in Populus based on the latest P. trichocarpa genome V3.0.

Principal Findings

Here, a comprehensive analysis of Populus 14-3-3 family is presented. Two new 14-3-3 genes were identified based on the latest P. trichocarpa genome. In P. trichocarpa, fourteen 14-3-3 genes were grouped into ε and non-ε group. Exon-intron organizations of Populus 14-3-3s are highly conserved within the same group. Genomic organization analysis indicated that purifying selection plays a pivotal role in the retention and maintenance of Populus 14-3-3 family. Protein conformational analysis indicated that Populus 14-3-3 consists of a bundle of nine α-helices (α1-α9); the first four are essential for formation of the dimer, while α3, α5, α7, and α9 form a conserved peptide-binding groove. In addition, α1, α3, α5, α7, and α9 were evolving at a lower rate, while α2, α4, and α6 were evolving at a relatively faster rate. Microarray analyses showed that most Populus 14-3-3s are differentially expressed across tissues and upon exposure to various stresses.

Conclusions

The gene structures and their coding protein structures of Populus 14-3-3s are highly conserved among group members, suggesting that members of the same group might also have conserved functions. Microarray and qRT-PCR analyses showed that most Populus 14-3-3s were differentially expressed in various tissues and were induced by various stresses. Our investigation provided a better understanding of the complexity of the 14-3-3 gene family in poplars.  相似文献   

14.
The genus Populus is classified into six different sections, and depending on the declaration of hybrids, the number of species varies between 22 and 85. Species within one section, and sometimes between sections, are crossable to each other, resulting in many naturally but also artificially produced hybrids. Morphological attributes for a clone characterisation are often difficult to evaluate when different poplar species or even hybrids are crossed; thus, molecular markers are needed to characterise the different species. Taking advantage of the large microsatellite resource developed for Populus trichocarpa, however, amplification of these microsatellite markers in other Populus species either often fails, or in the case of amplification, unrelated genomic regions are amplified. To meet this obvious problem of the species transferability of microsatellite markers, in total, 305 microsatellite loci, mainly from P. trichocarpa but also few from Populus tremuloides and Populus nigra, were tested for their transferability to diverse genotypes of six species belonging to three sections of the genus Populus. Ultimately, 209 microsatellite loci could be amplified with varying sizes in the different species. The PCR products of selected loci were separated in a polyacrylamide gel and sequenced to assure that the expected loci were derived from the database genome of P. trichocarpa. The present results constitute a large study for microsatellite transferability for Populus species. The documented microsatellite loci can be applied to species-, hybrid- and clone-specific diagnostic approaches or as universal markers for comprehensive ecological studies.  相似文献   

15.
16.
Lignin, a polyphenolic polymer, is a major chemical constituent of the cell walls of terrestrial plants. The biosynthesis of lignin is a highly plastic process, as highlighted by an increasing number of noncanonical monomers that have been successfully identified in an array of plants. Here, we engineered hybrid poplar (Populus alba x grandidentata) to express chalcone synthase 3 (MdCHS3) derived from apple (Malus domestica) in lignifying xylem. Transgenic trees displayed an accumulation of the flavonoid naringenin in xylem methanolic extracts not inherently observed in wild-type trees. Nuclear magnetic resonance analysis revealed the presence of naringenin in the extract-free, cellulase-treated xylem lignin of MdCHS3-poplar, indicating the incorporation of this flavonoid-derived compound into poplar secondary cell wall lignins. The transgenic trees also displayed lower total cell wall lignin content and increased cell wall carbohydrate content and performed significantly better in limited saccharification assays than their wild-type counterparts.

Expressing exogenous, apple-derived chalcone synthase in actively lignifying poplar xylem tissue results in less total lignin, improved saccharification rates, and incorporation of naringenin into lignins.  相似文献   

17.
18.
The anaerobic metabolism of 2-hydroxybenzoic acid (salicylic acid) was studied in a denitrifying bacterium. Cells grown with 2-hydroxybenzoate were simultaneously adapted to degrade benzoate. Extract of these cells formed benzoate or benzoyl-CoA when incubated under reducing conditions with salicylate, MgATP, and coenzyme A, suggesting a degradation of 2-hydroxybenzoate via benzoate or benzoyl-CoA. This suggestion was supported by enzyme activity measurements. In extracts of 2-hydroxybenzoate-grown cells, the following enzyme activities were detected: two CoA ligases, one specific for 2-hydroxybenzoate, the other for benzoate, and two different enzyme activities catalyzing the reductive transformation of 2-hydroxybenzoyl-CoA. These findings suggest a degradation of salicylic acid by two new enzymes, 2-hydroxybenzoate-CoA ligase (AMP-forming) and 2-hydroxybenzoyl-CoA reductase (dehydroxylating), catalyzing (1) 2-hydroxybenzoate + MgATP + CoASH → 2-hydroxybenzoyl-CoA + MgAMP + PPi (2) 2-hydroxybenzoyl-CoA + 2[H] → benzoyl-CoA + H2O Benzoyl-CoA was dearomatized by reduction of the ring. This represents another case in which benzoyl-CoA is a central intermediate in anaerobic aromatic metabolism. Received: 1 February 1996 / Accepted: 24 February 1996  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号