首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
细胞死亡包括程序性死亡及坏死,而程序性死亡中新型的细胞死亡方式——焦亡被发现,更新了人们对细胞死亡的认识。近年来,细胞焦亡机制的研究取得重大进展,研究显示Gasdermin家族蛋白是焦亡的直接执行者,其中重要成员Gasdermin D和Gasdermin E的上游信号蛋白也基本明确。细胞焦亡时,Gasdermin蛋白N端域插入细胞膜形成孔道,导致细胞膜破裂,细胞内容物外渗,并释放IL-1β和IL-18。焦亡作为区别于凋亡的新型细胞程序性死亡,具有诱导炎性反应的特征。因此深入研究焦亡在疾病中的作用与机制,对阐明炎性相关疾病的机制和指导治疗具有重要意义。本文就焦亡的发现、焦亡通路的信号蛋白及在相关疾病的研究进展作一概述。  相似文献   

2.
卵泡颗粒细胞凋亡和自噬在动物卵巢卵泡闭锁过程中发挥重要的调控作用。新近研究表明,铁死亡和焦亡也参与卵巢卵泡闭锁过程。铁死亡是一种铁依赖性脂质过氧化和活性氧(reactive oxygen species, ROS)积累引起的细胞死亡形式。研究证实,自噬和凋亡介导的卵泡闭锁过程中也有典型的铁死亡特征。细胞焦亡是依赖于Gasdermin蛋白的促炎性细胞死亡,可通过调节卵泡颗粒细胞调控卵巢繁殖性能。本文综述了几种细胞程序性死亡独立或相互作用参与调控卵泡闭锁的作用及机制,以期扩展卵泡闭锁机制的理论研究,为细胞程序性细胞死亡诱导卵泡闭锁的作用机制提供理论参考。  相似文献   

3.
细胞焦亡是一种促炎性的细胞程序性死亡方式,其生化及形态学特征、发生机制都与细胞凋亡等其他细胞死亡方式有着显著的不同。细胞焦亡的发生不仅与感染性疾病有关,而且与代谢性疾病、神经系统疾病和动脉粥样硬化等疾病的发生、发展密切相关。通过对细胞焦亡发生机制及其与相关疾病发生、发展的关系进行研究,有利于了解这些疾病的发病机理,并为治愈这些疾病提供新的思路及作用靶点。  相似文献   

4.
细胞死亡对调节机体内细胞的增殖和分化平衡、维持组织内环境的稳态至关重要。细胞凋亡(apoptosis)一度被认为是程序性细胞死亡的唯一形式,近期的研究结果发现程序性细胞死亡方式还包括程序性坏死(necroptosis)与细胞焦亡(pyroptosis),两者均可使细胞膜形成孔洞,破坏细胞膜,并激活强烈的炎症反应,然而两者在机制及形态上又有不同点。本文对程序性坏死与细胞焦亡的分子机制、形态学特征以及在缺血再灌注损伤、病原体感染中的作用等方面的区别做一综述。  相似文献   

5.
细胞是生物体最基本的结构单位和功能单位,细胞死亡对于多细胞生物的发育和稳态极为重要,也是生命的基本过程之一。目前认为细胞死亡形式主要分为两大类:非程序性细胞死亡(non-programmed cell death,NPCD)即坏死(necrosis);程序性细胞死亡(programmed cell death,PCD)。PCD与坏死不同,组织内无可见的炎症反应,无死亡细胞的溶解。程序性细胞死亡按其发生机制的不同可以分为凋亡(apoptosis)、自吞噬性程序性细胞死亡(autophagic cell death)、类凋亡/副凋亡(paraptosis)、细胞有丝分裂灾难(mitotic catastrophe)、胀亡(oncosis)、焦亡(pyroptosis)、胞质自切(autoschizis)、细胞程序性坏死(necroptosis)、细胞侵入性死亡(entosis)、铁死亡(ferroptosis)等。近年来,程序性细胞死亡在肿瘤发生发展中的作为成为研究热点,所以对程序性细胞死亡机制的研究至关重要,本文将对各类型程序性细胞死亡的机制做简要综述。  相似文献   

6.
细胞死亡对多细胞生物体个体发育、组织重塑和免疫调控具有重要意义。细胞焦亡,或称为Caspase-1依赖性细胞死亡,是宿主细胞控制病原微生物感染的重要防御机制。简要介绍了细胞焦亡的概念、分子机制和焦亡相关的病理生理作用。  相似文献   

7.
肾脏上皮细胞死亡是肾脏缺血再灌注损伤引起的一种明显的病理现象,而最新研究发现调控性细胞死亡在肾脏缺血再灌注损伤中发挥着重要作用。本文就程序性坏死、铁死亡和细胞焦亡等调控性细胞死亡的相关通路、调节剂和相互作用以及在肾脏缺血再灌注损伤中的作用进行综述,以期对肾脏缺血再灌注损伤的预防和治疗提供理论基础。  相似文献   

8.
刘瑞卿  李胜玉  申艳娜 《微生物学报》2019,59(11):2083-2093
细胞焦亡是细胞感染时由炎症小体介导,以裂解细胞为特点的程序性死亡形式。其激活途径分为依赖半胱氨酸蛋白酶-1或半胱氨酸蛋白酶-4/5/11活化的经典与非经典途径。目前的研究表明细胞焦亡过程中主要效应蛋白是具有膜成孔活性的gasdermin(也作GSDM)家族成员。因此,细胞焦亡也被称为gasdermin介导的程序性坏死。当宿主受到感染时,细胞焦亡与宿主自身其他免疫防御机制存在互相调节机制,保证宿主在清除感染的同时降低自身损伤程度。本文笔者将从研究最为广泛的GSDMD在细胞焦亡途径中的作用机制、细胞焦亡在感染性疾病中的研究进展以及细胞焦亡与其他程序性死亡在感染性疾病中的相互作用这三个方面作系统叙述,期望为今后研究如何通过细胞焦亡途径治疗感染性疾病提供理论基础。  相似文献   

9.
细胞焦亡(pyroptosis)是一种高度促炎性的细胞程序性死亡,最早是在受细菌感染或者细菌毒素处理后的巨噬细胞中观察到的,很长一段时间被误认为是一种巨噬细胞特异的、依赖于能够切割白介素1β的促炎性蛋白酶caspase-1的细胞死亡.后续的研究发现,胞浆内模式识别受体识别病原体来源的模式分子或者机体本身来源的危险信号分子形成炎症小体(inflammasomes),招募和激活caspase-1导致细胞焦亡;鼠的caspase-11和人的caspase-4/5直接作为模式识别受体识别细菌脂多糖类脂A组装的炎症小体也导致细胞焦亡,这一发现颠覆了传统炎症小体的概念.与caspase-1不同, caspase-11/4/5不能切割白介素且引起的细胞焦亡在非单核细胞中也普遍存在.最新的研究发现, caspase-1以及caspase-11/4/5都能切割共同的底物gasdermin D(GSDMD)导致裂解性细胞死亡.GSDMD属于一类具有膜打孔活性的gasdermin家族蛋白成员,细胞焦亡也被重新定义为gasdermin介导的程序性坏死样细胞死亡,开创了细胞焦亡研究的新领域.本文回顾了细胞焦亡研究的历史以及细胞焦亡概念的进化过程,总结了caspase-1和caspase-11/4/5上游目前已知的天然免疫通路,讨论了关于细胞焦亡的研究进展尤其是GSDMD以及其他gasdermin家族细胞焦亡执行蛋白的功能和作用机制,以及细胞焦亡和相关蛋白在对抗感染以及人的自身炎症性疾病过程中的作用.  相似文献   

10.
张宪省 《植物学报》2018,53(4):445-446
程序性细胞死亡在调控植物发育和胁迫响应中具有重要作用, 而活性氧是导致程序性细胞死亡的关键因子。日前, 中科院遗传与发育所李家洋研究组对活性氧调控程序性细胞死亡的分子机制进行了深度解析, 首次阐明了苹果酸作为信号分子, 经由叶绿体-线粒体穿梭途径而引发活性氧产生, 继而导致细胞死亡。该研究成果是程序性细胞死亡调控机制领域的重大突破。  相似文献   

11.
细胞焦亡是一种由Gasdermin家族蛋白介导的新型程序性细胞死亡。当宿主细胞感应病原体感染或其他危险信号时,Gasdermin家族蛋白被切割活化并诱导细胞焦亡。细胞焦亡过程往往伴随大量炎性细胞因子释放,这些炎性细胞因子在宿主清除病原体过程中发挥着至关重要作用,而病原体在与宿主长期“博弈”过程中也进化出抑制细胞焦亡的策略以实现免疫逃逸。本文介绍了细胞焦亡的发现历程及其在抗感染免疫中的重要功能,并总结了病原体抑制细胞焦亡的多种新策略及其相关研究进展。深入理解细胞焦亡的发生及调控机制,可揭示相关感染性疾病的发病机制并有助于开发有效的抗感染治疗策略。  相似文献   

12.
铁死亡是近年来新发现的一种铁依赖的区别于细胞凋亡、坏死、焦亡的程序性细胞死亡方式,其主要特点为铁离子累积与脂质过氧化的发生.研究表明,铁死亡在急性肾损伤、肾癌等肾脏相关疾病中起重要作用,但其确切机制尚未被完全揭示.随着铁死亡相关机制研究的不断发展,铁死亡在肾脏相关疾病治疗方面表现出良好的应用前景.本文对铁死亡相关机制及...  相似文献   

13.
细胞焦亡是一种炎症相关的细胞程序性死亡方式,由胱天蛋白酶(caspase)和炎性小体介导,最终依赖gasdermin家族成员gasdermin D(GSDMD)执行。细胞焦亡的发生伴随着细胞内炎性因子的外泄及免疫细胞的活化,因此与炎症反应的发生密切相关。非酒精性脂肪性肝病(nonalcoholic fatty liver disease, NAFLD)是一种病因不明的慢性肝病,如果缺乏有效的干预手段,脂肪变性会逐渐进展至炎症、纤维化,最终发展至肝硬化。GSDMD 介导的细胞焦亡在非酒精性脂肪性肝病的发病过程中扮演重要角色,不仅会导致肝细胞死亡,还会加重炎症反应和纤维化的进程。抑制GSDMD 的功能从而减少细胞焦亡能够有效地缓解NAFLD 中的脂质堆积和炎症反应,这将为NAFLD 的治疗开辟一个新的研究方向。本文将概述GSDMD 介导的细胞焦亡的分子机制,并关注GSDMD 和细胞焦亡在NAFLD 发病机制及治疗方面的研究进展,为NAFLD 的诊治提供新思路。  相似文献   

14.
动脉粥样硬化是脂代谢紊乱和炎症共同作用的结果,在动脉粥样硬化中可以观察到细胞死亡,并且在动脉粥样硬化病变的发生发展中起重要作用。炎症是先天免疫的主要反应,被认为是动脉粥样硬化的启动者和驱动者。尽管大量研究揭示了凋亡、自噬和细胞坏死在动脉粥样硬化中的作用,但参与动脉粥样硬化的细胞死亡机制仍然在很大程度上是未知的。细胞焦亡是新近发现的一种程序性细胞死亡方式,其通过促使炎性因子释放而参与动脉粥样硬化的形成与进展,并与斑块的稳定性密切相关。本文就细胞焦亡在动脉粥样硬化中的作用作一综述。  相似文献   

15.
肾间质纤维化是糖尿病肾病等慢性肾脏疾病进展至终末期肾病的不可逆性危险因素。细胞焦亡是一种新型程序性细胞死亡,通过诱导炎症反应的发生参与糖尿病肾病。焦亡引起的慢性炎症和纤维化被认为是糖尿病肾病发病的重要因素。因此,明确细胞焦亡与糖尿病肾病肾间质纤维化之间的关系对延缓糖尿病肾病进展至关重要。本文综述了近年来细胞焦亡在糖尿病肾病肾间质纤维化发病机制中的研究进展,以期为临床防治糖尿病肾病提供更多的理论基础。  相似文献   

16.
2型糖尿病发病机制的特征之一是脂毒性诱导胰腺β细胞团减少。 为了研究游离脂肪酸引起β细胞死亡的机制,我们研究了β细胞系INS1中棕榈酸酯诱导的不同细胞死亡途径的作用。运用实时荧光成像技术我们发现除了以前报道的细胞凋亡之外,细胞焦亡作为一种新的途径,其部分促成游离脂肪酸诱导的胰腺β细胞死亡。 我们提供证据表明,胰腺β细胞焦亡的机制可能肯能受DFNA5调控。本文的发现将为糖尿病的治疗提供一个新的途径。  相似文献   

17.
王佳慧  梁欢  于影  高琴 《生理学报》2021,(2):329-341
细胞焦亡是一类与炎症反应密切相关、由Gasdermin蛋白介导、依赖于caspase活性的程序性细胞死亡方式,其典型特征是细胞膜肿胀破裂,促炎性因子和细胞内容物释放到细胞外环境,引起机体产生炎症反应.在炎症反应期间,NLRP3、caspase、Gasdermin D(GSDMD)、IL-1β等细胞焦亡相关因子在心血管疾...  相似文献   

18.
动脉粥样硬化是脂代谢紊乱和炎症共同作用的结果,在动脉粥样硬化中可以观察到细胞死亡,并且在动脉粥样硬化病变的发生发展中起重要作用。炎症是先天免疫的主要反应,被认为是动脉粥样硬化的启动者和驱动者。尽管大量研究揭示了凋亡、自噬和细胞坏死在动脉粥样硬化中的作用,但参与动脉粥样硬化的细胞死亡机制仍然在很大程度上是未知的。细胞焦亡是新近发现的一种程序性细胞死亡方式,其通过促使炎性因子释放而参与动脉粥样硬化的形成与进展,并与斑块的稳定性密切相关。本文就细胞焦亡在动脉粥样硬化中的作用作一综述。  相似文献   

19.
铁死亡是铁依赖性的脂质过氧化作用驱动的一种独特的细胞死亡方式。与细胞凋亡、自噬性程序性细胞死亡和细胞焦亡等细胞死亡方式不同,铁死亡的主要特征是线粒体形态的改变,包括线粒体膜变得致密并伴随体积变小,以及外膜破裂和线粒体嵴的减少或消失。线粒体作为细胞代谢的核心,是铁代谢、脂质代谢和能量代谢中的重要细胞器。但是,线粒体如何参与铁死亡并在其进程中发挥怎样的作用仍存在争议。本文综述了现有对铁死亡发生和防御机制的认识,并且对线粒体在铁死亡进程中的促进和抑制作用进行了描述和分析,包括线粒体三羧酸循环和糖酵解、线粒体活性氧、线粒体脂质代谢对铁死亡的积极驱动过程,以及通过线粒体铁蛋白、线粒体二氢乳酸脱氢酶等分子对线粒体脂质过氧化物解毒并抑制铁死亡的作用机制。最后补充说明了其他涉及铁死亡的线粒体分子调控机制。本文通过综述线粒体在铁死亡进程中的最新研究进展,旨在对深入了解铁死亡中线粒体的功能及其对铁死亡发生发展的作用机制,为细胞生物学基础研究及临床相关疾病的研究提供理论依据和参考。  相似文献   

20.
炎性小体激活与细胞焦亡的研究进展   总被引:1,自引:0,他引:1  
细胞焦亡是一种依赖天冬氨酸特异性半胱氨酸蛋白酶1(cysteinyl aspartate specific proteinase 1,caspase-1)/caspase-11的程序性细胞死亡方式。炎性小体的激活在细胞焦亡过程中扮演重要角色。当病原体入侵时,核苷酸结合寡聚化结构域样受体(nucleotide-binding oligomerization domain-like receptor,NLR)和黑色素瘤缺乏因子2(absent in melanoma 2,AIM2)等胞内模式识别受体(pattern recognition receptor,PRR)与相应配体结合,导致炎性小体多蛋白复合物组装和caspase-1/caspase-11激活,进而诱导细胞焦亡发生。深入研究炎性小体激活和细胞焦亡的相关机制,对认识炎症性疾病的发生发展非常重要。本文就炎性小体激活与细胞焦亡的研究进展进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号