首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Haematological changes were studied in cross-country skiers during a 33-week training season (7 h a week). The daily amounts of training were calculated from the duration and the intensity of the exercise and then used to estimate training responses associated with a first order transfer function. The profile of system training responses (STR) was determined by convolution between the amounts of training and a first-order transfer function. Linear regressions were used to determine correlation coefficients between STR and iron status indices. Among the values for the time constants of decay, the one giving the best fit between STR and iron status indices was chosen. A relationship was noted between on the one hand STR and changes in serum ferritin concentration ([FERR]) and on the other hand STR and change in mean cell volume (MCV). The [FERR] was decreased and MCV was increased by training. It is suggested that a decrease in [FERR] could have been related to a decrease in total body iron stores. However, large and rapid changes in [FERR] could not have been a reflection of changes in total body iron stores. Equilibrium between [FERR] and total body iron stores could have been temporarily altered by the effects of training. Moreover, iron stores did not seem to have been sufficiently depleted to restrict erythropoiesis. The MCV increased slightly in response to intense training suggesting that training enhances the proportion of young erythrocytes.  相似文献   

2.
To investigate the effects of a combination of simultaneous strength and endurance training on selected neuromuscular and aerobic performance characteristics seven male cross-country skiers underwent training for a period of 6 weeks. The experimental group trained 6-9 times per week with a programme consisting of 34% explosive type strength training and 66% endurance training during the first 3 weeks of the experiment and 42% and 58% respectively during the last 3 weeks of the experiment. The total volume of training of the control group (eight skiers) was of the same magnitude but consisted of 85% pure endurance training and 15% endurance type strength training. The experimental training regime resulted in specific changes in neuromuscular performance. This was demonstrated by improvements (P less than 0.01) in the maximal heights of rise of the centre of gravity in the squat and countermovement jumps. A significant decrease (P less than 0.05) took place also in the time of rapid isometric force production during experimental training, while no changes occurred in the maximal force of the trained muscles. Aerobic performance characteristics of the experimental group did not change during the experimental training period. No significant changes occurred in neuromuscular or aerobic performance characteristics in the control group. These findings indicated that training-induced improvements in explosive force production may not be fully inhibited by this kind of aerobic training. They also suggested that endurance athletes could undertake explosive type strength training programmes without a concomitant reduction in aerobic capacity, if the overall loading of training were within predefined limits.  相似文献   

3.
With the advent of the ski-skating technique, upper body power has increasingly been shown to be a major factor in cross-country skiing success. The purpose of this study was to evaluate 4 commonly used training methods (weight, circuit, rollerboard, and ski-specific training) for the development of upper body power (UBP) in junior cross-country skiers. Fifty-eight adolescent cross-country skiers (Boys: n = 29, age = 16.0 +/- 1.2 y and Girls: n = 29, age = 15.5 +/- 1.5 y) were assigned to one of the UBP training methods for a 10-week training program. Fourteen cross-country runners served as controls (boys: n = 7, age = 15.8 +/- 1.7 y; girls: n = 7, age = 14.9 +/- 1.3 y). Skiers were evaluated pre- and post-training for upper body strength (UBS) using a 10 repetition maximum (RM) rollerboard test, for UBP using a double-poling ergometer and for upper body endurance (UBE) with a 3-km, arms-only, rollerski endurance time trial. Competitive race results were collected during the winters before and after training as were all training data. Only the rollerboard training group improved significantly greater than the control group (p < 0.05) in UBP and UBS. Improvements in UBP, UPS, and UBE were significantly related (r = 0.545, 0.303, and 0.407, respectively) to improvements in competitive performance. These data suggest that training using a rollerboard with 5-12RM and explosive speed is more effective in developing UBP than other common training methods for adolescent cross-country skiers. The practical importance of these data was verified by the significant relationships between improvements in UBP, UBS, and UBE related to improvements in competitive race performance.  相似文献   

4.
The purpose of the present study was to investigate the relationship between aerobic characteristics and sprint skiing performance, and the effects of high-intensity endurance training on sprint skiing performance and aerobic characteristics. Ten male and 5 female elite junior cross-country skiers performed an 8-week intervention training period. The intervention group (IG, n = 7) increased the volume of high-intensity endurance training performed in level terrain, whereas the control group (CG, n = 8) continued their baseline training. Before and after the intervention period, the skiers were tested for 1.5-km time-trial performance on roller skis outdoors in the skating technique. Maximal oxygen uptake (VO?max) and oxygen uptake at the ventilatory threshold (VO?VT) were measured during treadmill running. VO?max and VO?VT were closely related to sprint performance (r = ~0.75, both p < 0.008). The IG improved sprint performance, VO?max, and VO?VT from pre to posttesting and improved sprint performance and VO?VT when compared to the CG (all p < 0.01). This study shows a close relationship between aerobic power and sprint performance in cross-country skiing and highlights the positive effects of high-intensity endurance training in level terrain.  相似文献   

5.
Various physical demands are placed on soldiers, whose effectiveness and survivability depend on their combat-specific physical fitness. Because sport training programs involving weight-based training have proven effective, this study examined the value of such a program for short-term military training using combat-relevant tests. A male weight-based training (WBT) group (n = 15; mean +/- SD: 27.0 +/- 4.7 years, 173.8 +/- 5.8 cm, 80.9 +/- 12.7 kg) performed full-body weight-based training workouts, 3.2-km runs, interval training, agility training, and progressively loaded 8-km backpack hikes. A male Army Standardized Physical Training (SPT) group (n = 17; mean +/- SD: 29.0 +/- 4.6 years, 179.7 +/- 8.2 cm, 84.5 +/- 10.4 kg) followed the new Army Standardized Physical Training program of stretching, varied calisthenics, movement drills, sprint intervals, shuttle running, and distance runs. Both groups exercised for 1.5 hours a day, 5 days a week for 8 weeks. The following training-induced changes were statistically significant (P < 0.05) for both training groups: 3.2-km run or walk with 32-kg load (minutes), 24.5 +/- 3.2 to 21.0 +/- 2.8 (SPT) and 24.9 +/- 2.8 to 21.1 +/- 2.2 (WBT); 400-m run with 18-kg load (seconds), 94.5 +/- 14.2 to 84.4 +/- 11.9 (SPT) and 100.1 +/- 16.1 to 84.0 +/- 8.4 (WBT); obstacle course with 18-kg load (seconds), 73.3 +/- 10.1 to 61.6 +/- 7.7 (SPT) and 66.8 +/- 10.0 to 60.1 +/- 8.7 (WBT); 5 30-m sprints to prone (seconds), 63.5 +/- 4.8 to 59.8 +/- 4.1 (SPT) and 60.4 +/- 4.2 to 58.9 +/- 2.7 (WBT); and 80-kg casualty rescue from 50 m (seconds), 65.8 +/- 40.0 to 42.1 +/- 9.9 (SPT) and 57.6 +/- 22.0 to 44.2 +/- 8.8 (WBT). Of these tests, only the obstacle course showed significant difference in improvement between the two training groups. Thus, for short-term (i.e., 8-week) training of relatively untrained men, the Army's new Standardized Physical Training program and a weight-based training experimental program can produce similar, significant, and meaningful improvements in military physical performance. Further research would be needed to determine whether weight-based training provides an advantage over a longer training period.  相似文献   

6.
Athletes regularly combine maximal strength, power, and hypertrophy-oriented training within the same workout. Traditionally, it has been suggested that power-oriented exercises precede strength and hypertrophy-oriented training within a workout to avoid the possible negative effects that the latter types of training may have on power output. However, with regard to upper-body training, little study has been performed to verify this commonly held belief. The purpose of this study was to determine the extent, if any, of a high-repetition, short-rest-period, hypertrophy-oriented training dose on upper-body power output. Twenty-seven college-aged rugby league players were tested for average power output during bench press throws with a resistance of 40 kg (BT P40). The experimental group (Hyp, n = 15) then performed a typical hypertrophy-oriented work bout (3 x 10 at 65% 1 repetition maximum bench press, 1RM BP) before being retested for power output with the same resistance. In comparison with the control group (Con, n = 12), whose power output remained unchanged between the pre- and posttest periods, the Hyp group experienced a large, significant decrease in BT P40 power output. Even after further passive rest of 7 minutes, power output remained suppressed from the pretest values. Furthermore, the strongest 5 subjects experienced significantly larger percentage declines in power output than did the 5 less strong subjects. This study shows that a high-repetition, short-rest-period training can acutely decrease power output. Coaches should plan the order of exercises carefully when combining power and hypertrophy training.  相似文献   

7.
On the basis of expert knowledge, an expert model of potential performance covering the motor, morphological, psychological, and sociological subspace was constructed (MMPS). The scores of variables were obtained by application of the computer program Sport Measurement Management System (SMMS). In the subjects included in measurements, trends of the obtained average scores of variables were established through various competition categories and age periods. The sample of subjects consisted of 48 cross-country skiers in three competition categories. Fluctuations in development in individual age periods are larger in the motor and morphological subspace. In the psychological subspace, an upward trend of average scores can be noticed, while the sociological subspace is not subjected to any essential changes in different age and competition categories. Monitoring of cross-country skiers across all three competition categories showed that in these age categories there are periods which owing to laws of development do not allow uniform progress. Therefore, the principle of individuality must be taken into account especially in planning the transformation process.  相似文献   

8.
Whole-body vibration training has recently received a lot of attention with reported enhancements of strength and power qualities in athletes. This study investigated whether upper-body vibration would be able to augment muscular attributes for climbing performance. Twelve healthy active climbers volunteered for the study. All participants underwent 3 treatments--arm cranking (AC), upper-body vibration (UBV), and non-UBV (NUBV)--in a balanced random order, conducted on separate days. Upper-body vibration was generated via a commercialized electric-powered dumbbell with a rotating axis that delivered oscillatory movements to the shoulders and arms. The UBV treatment consisted of performing 5 upper-body exercises for a total duration of 5 minutes. The UBV frequency was set at 26 Hz, amplitude 3 mm. For the NUBV treatment, the participants performed the exact exercises and time constraints as UBV; however, the vibration dumbbell was set at 0 Hz and 0 mm amplitude. The third treatment consisted of AC, which was performed at 75 k.min(-1) for 5 minutes. Pre- and postmuscular performance measures of medicine ball throw, hand grip strength, and a specific climbing maneuver were performed after each treatment. There were no significant treatment differences on medicine ball throw, hand grip strength, and the specific climbing maneuver. Acute UBV exposure did not demonstrate the expected potential neuromuscular enhancements on the climbing performance tests selected for this study.  相似文献   

9.
This study investigated the effect on upper-body power output of manipulating resistances during contrast or complex power training. This power-training strategy typically entails the athlete alternating sets of a heavy resistance in a strength-oriented exercise with sets of lighter resistances in a power-oriented exercise. Sixteen rugby league players, who were experienced in power training and who performed complex training on a regular basis, served as subjects for this study and were divided equally into a control (Con) or experimental (Exp) group. Both groups were pre- and posttested for power output while performing explosive bench press throws in a Smith machine with a resistance of 50 kg (BT P50). The Exp group performed an intervention strategy of a 6-repetition set of bench presses with a resistance of 65% of 1 repetition maximum (65% 1RM) between tests. At the pretest occasion, no differences were observed between the groups in power output; however, at the posttesting, a significant difference in power output was observed between the groups in the BT P50. The 4.5% increase in the power output recorded during the posttesting BT P50 for the Exp group was determined to be significantly different from all other scores (p < or = 0.05). These data indicate that the performance of a set of heavy resistance strength training exercise between power training sets will acutely enhance power output in the second power training set. This effect has been previously theorized as possibly due to some combination of acute neural or mechanical adaptations.  相似文献   

10.
The purpose of this study was to examine the early-phase adaptations of traditional dynamic constant external resistance (DCER) training vs. a portable upper-body training device (Fortex). The Fortex is a concentric training device based on air resistance. Contractions using this device are slow (1.5-3 s) and have a limited range of motion. The exercises potentially allow maximal muscle action during each contraction. Healthy, sedentary men (n = 30) were assigned to begin either 8 weeks of weight training (W, n = 12) or 8 weeks of Fortex training (F, n = 9), and were compared with a control group (C, n = 9). Exercises were chosen for the W group that would train similar muscle groups and contain a similar volume of repetitions as the F group. However, movement patterns and force curves were not identical. Increases in the upper-arm cross-sectional area were not detected in any of the groups. Both training groups showed strength gains in the various strength tests that were distinct from each other. Our results indicate that both Fortex and DCER training proved effective in eliciting strength gains in sedentary men over an 8-week training period. There are, however, limitations with the Fortex in terms of progression needs and training asymmetry that indicate it should be used as a complement to other training.  相似文献   

11.
De Crée, Carl, Peter Ball, BärbelSeidlitz, Gerrit Van Kranenburg, Peter Geurten, and Hans A. Keizer.Effects of a training program on resting plasma2-hydroxycatecholestrogen levels in eumenorrheic women.J. Appl. Physiol. 83(5):1551-1556, 1997.Catecholestrogens (CE) represent a majormetabolic pathway in estrogen metabolism. Previous information on CEand training is limited to two cross-sectional studies that did notinvolve standardized training. Our purpose, by means of a prospective design, was to evaluate the effects of a brief, exhaustive training program on resting plasma concentrations of 2-hydroxy CE. The experimental design spanned two menstrual cycles: a control cycle and atraining cycle. The subjects were nine previously untrained, eumenorrheic women [body fat: 24.8 ± 1.0 (SE) %]. Datawere collected during the follicular (FPh) and the luteal phases (LPh).Posttraining FPh and LPh tests were held the day after the last day ofa 5-day period of training on a cycle ergometer. Total2-hydroxyestrogens (2-OHE) averaged 200 ± 29 pg/ml during the FPhand 420 ± 54 pg/ml during the LPh(P < 0.05). Levels of total2-methoxyestrogens (2-MeOE) were 237 ± 32 pg/ml during the FPh and339 ± 26 pg/ml during the LPh (P < 0.05). After training, although the plasma levels of 2-OHEsignificantly decreased (21%;P < 0.05) during the LPh, the actualCE formation (as estimated from the 2-OHE-to-total estrogens ratio)increased (+29%; P < 0.05). CE activity, as expressed by the 2-MeOE-to-2-OHE ratio, showedsignificantly higher values in both phases (FPh, +14%; LPh, +13%;P < 0.05). At the same time, restinglevels of norepinephrine (NE) were increased by 42%(P < 0.05). CE strongly inhibitbiological decomposition of NE by catechol-O-methyltransferase (COMT).Results of the present study suggest that, in response to training, CEare increasingly competing with the enzyme COMT, thus preventingpremature NE deactivation.

  相似文献   

12.
Makaruk, H, Winchester, JB, Sadowski, J, Czaplicki, A, and Sacewicz, T. Effects of unilateral and bilateral plyometric training on power and jumping ability in women. J Strength Cond Res 25(12): 3311-3318, 2011-The purpose of this study was to examine the effects of unilateral and bilateral plyometric exercise on peak power and jumping performance during different stages of a 12-week training and detraining in women. Forty-nine untrained but physically active female college students were randomly assigned to 1 of 3 groups: unilateral plyometric group (n = 16), bilateral plyometric group (BLE; n = 18), and a control group (n = 15). Peak power and jumping ability were assessed by means of the alternate leg tests (10-second Wingate test and 5 alternate leg bounds), bilateral leg test (countermovement jump [CMJ]) and unilateral leg test (unilateral CMJ). Performance indicators were measured pretraining, midtraining, posttraining, and detraining. Differences between dependent variables were assessed with a 3 × 4 (group × time) repeated analysis of variance with Tukey's post hoc test applied where appropriate. Effect size was calculated to determine the magnitude of significant differences between the researched parameters. Only the unilateral plyometric training produced significant (p < 0.05) improvement in all tests from pretraining to midtraining, but there was no significant (p < 0.05) increase in performance indicators from midtraining to posttraining. The BLE group significantly (p < 0.05) improved in all tests from pretraining to posttraining and did not significantly (p > 0.05) decrease power and jumping ability in all tests during detraining. These results suggest that unilateral plyometric exercises produce power and jumping performance during a shorter period when compared to bilateral plyometric exercises but achieved performance gains last longer after bilateral plyometric training. Practitioners should consider the inclusion of both unilateral and bilateral modes of plyometric exercise to elicit rapid improvements and guard against detraining.  相似文献   

13.
In the last fifteen years, a trend has appeared in cross-country ski racing to increase the use of double poling and, therefore, to increase the load on the shoulder girdle (arm) muscles. The purpose of this study was to compare the aerobic performance of elite cross-country skiers in incremental running (treadmill) and double poling (with manual ski ergometer) tests to exhaustion. Four junior cross-country skiers and four biathletes ( $ \dot V_{O_{2max} } $ = 70 (66?C72) mL/min per kg body weight) participated in the experiment. In the double poling test, the lactate concentration increased more rapidly than in the running test, and the peak oxygen consumption ( $ \dot V_{O_{2peak} } $ ) in the double poling test was 88 (84?C93)% of the maximal oxygen consumption ( $ \dot V_{O_{2max} } $ ) in the running test. The relative anaerobic threshold, which characterizes the relative level of current aerobic performance, in the double poling test was significantly lower than in the running test (79 (57?C83)% vs 94 (90?C98)%, respectively). On the basis of these data, it can be concluded that the main reserve for a further increase in the aerobic performance of cross-country skiers and biathletes is the increase in the aerobic capacity of arm and trunk muscles.  相似文献   

14.
The purpose of this investigation was to examine the influence of upper-body static stretching and dynamic stretching on upper-body muscular performance. Eleven healthy men, who were National Collegiate Athletic Association Division I track and field athletes (age, 19.6 +/- 1.7 years; body mass, 93.7 +/- 13.8 kg; height, 183.6 +/- 4.6 cm; bench press 1 repetition maximum [1RM], 106.2 +/- 23.0 kg), participated in this study. Over 4 sessions, subjects participated in 4 different stretching protocols (i.e., no stretching, static stretching, dynamic stretching, and combined static and dynamic stretching) in a balanced randomized order followed by 4 tests: 30% of 1 RM bench throw, isometric bench press, overhead medicine ball throw, and lateral medicine ball throw. Depending on the exercise, test peak power (Pmax), peak force (Fmax), peak acceleration (Amax), peak velocity (Vmax), and peak displacement (Dmax) were measured. There were no differences among stretch trials for Pmax, Fmax, Amax, Vmax, or Dmax for the bench throw or for Fmax for the isometric bench press. For the overhead medicine ball throw, there were no differences among stretch trials for Vmax or Dmax. For the lateral medicine ball throw, there was no difference in Vmax among stretch trials; however, Dmax was significantly larger (p 相似文献   

15.
The purpose of this study was to determine the effects of an 18-week strength training program on variables related to low-handicap golfers' performance. Ten right-handed male golfers, reporting a handicap of 5 or less, were randomly divided into two groups: the control group (CG) (N = 5, age: 23.9 ± 6.7 years) and the treatment group (TG) (N = 5, age: 24.2 ± 5.4 years). CG players followed the standard physical conditioning program for golf, which was partially modified for the TG. The TG participated in an 18-week strength training program divided into three parts: maximal strength training including weightlifting exercises (2 days a week for 6 weeks), explosive strength training with combined weights and plyometric exercises (2 days a week for 6 weeks), and golf-specific strength training, including swings with a weighted club and accelerated swings with an acceleration tubing system (3 days a week for 6 weeks). Body mass, body fat, muscle mass, jumping ability, isometric grip strength, maximal strength (RM), ball speed, and golf club mean acceleration were measured on five separate occasions. The TG demonstrated significant increases (p < 0.05) in maximal and explosive strength after 6 weeks of training and in driving performance after 12 weeks. These improvements remained unaltered during the 6-week golf-specific training period and even during a 5-week detraining period. It may be concluded that an 18-week strength training program can improve maximal and explosive strength and these increases can be transferred to driving performance; however, golfers need time to transfer the gains.  相似文献   

16.
The purpose of this investigation was to observe changes in maximal upper-body strength and power and shifts in the load-power curve across a multiyear period in experienced resistance trainers. Twelve professional rugby league players who regularly performed combined maximal strength and power training were observed across a 4-year period with test data reported every 2 years (years 1998, 2000, and 2002). Upper-body strength was assessed by the 1 repetition maximum bench press and maximum power during bench press throws (BT Pmax) with various barbell resistances of 40-80 kg. During the initial testing, players also were identified as elite (n = 6) or subelite (n = 6), depending upon whether they participated in the elite first-division national league or second-division league. This subgrouping allowed for a comparison of the scope of changes dependent upon initial strength and training experience. The subelite group was significantly younger, less strong, and less powerful than the elite group, but no other difference existed in height or body mass in 1998. Across the 4-year period, significant increases in strength occurred for the group as a whole and larger increases were observed for the subelite than the elite group, verifying the limited scope that exists for strength gain in more experienced, elite resistance-trained athletes. A similar trend occurred for changes in BT Pmax. This long-term observation confirms that the rate of progress in strength and power development diminishes with increased strength levels and resistance training experience. Furthermore, it also indicates that strength and power can still be increased despite a high volume of concurrent resistance and endurance training.  相似文献   

17.
The purpose of this investigation was to evaluate four protocols for their effectiveness in eliciting maximal aerobic power (peak VO2) during arm-crank exercise. Comparisons were made 1) between a continuous (CON) and an intermittent (INT) protocol (both employed a crank rate of 50 rpm) and 2) among the CON protocols employing crank rates of 30, 50, or 70 rpm. For the first group of experiments no significant (P greater than 0.05) differences were found between the CON and INT protocols for peak VO2, maximal pulmonary ventilation (VEmax), maximal heart rate (HRmax), or maximal blood lactate (LAmax) responses. For the second group of experiments, the CON-50 was compared with the CON-30 and CON-70 protocols. In comparison to the CON-50, significantly higher peak VO2 (+10%) and VEmax (+14%) responses were elicited by the CON-70 protocol, whereas significantly lower peak VO2 (-11%), VEmax (-23%), HRmax (-8%), and LAmax (-29%) responses were elicited by the CON-30 protocol. Of the arm-crank protocols examined the combination of a continuous design and a crank rate of 70 rpm provided the most effective protocol to elicit peak VO2 values.  相似文献   

18.
19.
Older adulthood is accompanied by declines in muscular strength, coordination, function, and increased risk of falling. Resistance training increases muscular strength in this population but its effect on proprioception is unknown. To evaluate the effect of resistance training on proprioception, community dwelling older women completed a three-month exercise study. A resistance training (RT) group (N=19) underwent supervised weight training three times per week while a non-strength trained control (NSTC) group (N=19) performed range-of-motion activities that mimicked the movements of the RT group without the benefit of muscle loading. Subjects were evaluated at baseline, 6, and 12 weeks for strength and proprioception. Muscular strength was assessed by measuring the subject's one repetition maximum performance on four different exercises. Static proprioception was measured by the subject's ability to reproduce a target knee joint angle while dynamic proprioception was measured by the subject's ability to detect passive knee motion. The RT group made significant strength improvements compared to the NSTC group. Proprioception significantly improved in both groups by 6 weeks. Our findings suggest that improvements in proprioception can be obtained via regular activity that is independent of heavy muscle loading.  相似文献   

20.
This study attempted to quantify the difference in heart rate and exercise stage at which blood lactate threshold (T(bla)) occurs using 3 different modes of exercise: running, double poling (DP) on roller skis, and skating (SK) on roller skis. Nine elite collegiate cross-country ski racers (4 men, 5 women) served as test subjects. Testing was conducted on a motorized FitNex treadmill, specially designed for roller skiing. Heart rate was monitored via telemetry with values averaged over the last 30 seconds of each stage. A 40-micro l blood sample was obtained at the fingertip at the end of each 4-minute stage, and 25 micro l was analyzed for whole blood lactate concentration. The T(bla) was determined by the first exercise stage that elicited a concentration over 4.0 mmol.L(-1). The same test protocol was used for all 3 exercise modes. Mean heart rate, in beats per minute (b.min(-1)), at T(bla) was not significantly different (P < or = 0.05) for SK (mean 187 +/- 14 b.min(-1) SD) vs. running (mean 187 +/- 12 b.min(-1) SD); however, heart rate was significantly lower at T(bla) for DP (mean 161 +/- 17 b.min(-1) SD) vs. running and DP vs. SK. The mean exercise protocol stage that induced a blood lactate value which exceeded T(bla) was significantly different (P < or = 0.05) for running (5.22 +/- 1.20 mmol.L(-1) SD) vs. DP (1.89 +/- 0.78 mmol.L(-1) SD), running vs. SK (3.67 +/- 0.71 mmol.L(-1) SD), and SK vs. DP. It was concluded that T(bla) occurs at a lower heart rate and exercise stage during DP as compared with SK or running. Therefore, it stands to reason that the heart rate at T(bla) may vary based on mode of exercise, and when using heart rate to estimate blood lactate concentration, coaches and athletes should be aware that different modes of exercise elicit a different blood lactate concentration at a given heart rate depending on exercise mode used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号