首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Within populations of the seed beetle Callosobruchus maculatus (F.) (Coleoptera: Bruchidae), female longevity is positively correlated with fecundity, both phenotypically and genetically. Yet manipulations of egg-laying rate (through deprivation of seeds or mates) consistently suggest a trade-off between these traits. In this study, females were exposed to four levels of seed availability and the relationship between fecundity and longevity was examined both across and within environments. The expected trade-off was observed across environments, as females with few or no seeds laid fewer eggs and lived longer than females with many seeds. Within environments, however, the relationship was inconsistent; individual longevity and fecundity were positively correlated when seeds were abundant, uncorrelated when seeds were few and negatively correlated when seeds were absent. Body mass at adult emergence was positively correlated with fecundity, but its effect was stronger when seeds were present than when they were absent. After the effects of mass were statistically controlled, longevity and fecundity remained positively correlated among females with many seeds and negatively correlated among those without seeds. Thus, even a single technique (phenotypic correlation) can produce divergent conclusions about the ‘cost of reproduction’ in insects. The reversal in the correlation appears to depend on variation in reproductive allocation; when seeds are scarce or absent, differences in reproductive effort among individuals may be large enough to overwhelm differences in resource acquisition.  相似文献   

2.
Abstract.  Many studies of life-history traits have failed to find trade-offs where they are predicted by theory. A hypothesis that explains the lack of trade-offs between fecundity and longevity in the seed beetle, Callosobruchus maculatus , is proposed. By manipulating host availability time and host size, trade-offs mediated by behavioural responses of the female to adapt to environmental change are tested. Females show no decrease in lifetime fecundity when host availability time is limited to only 4 h on each day. However, longevity significantly increases when the female is provided with small beans after host deprivation. Because neither acquisition, nor utilization by females of these four manipulation treatments significantly differs, studies are carried out to demonstrate whether the energy shifted from increased longevity without decreasing fecundity. Providing abundant small or large beans each day directly after host deprivation, significantly increases the number of daily eggs laid by the female for several days, whereas the female decreases the uniformity of her egg dispersion only when small beans are provided. Therefore, the female shows a response to a change in the environment by adjusting egg-laying rate and/or egg-dispersion pattern. This may change the traits of reproduction and survival. Because energy allocations can be shifted between components of reproduction (e.g. host-selection behaviour and fecundity) or between reproduction and survival, fecundity and longevity may be inappropriate indices for trade-off analyses in this study. A framework for exploring the costs of reproduction mediated by physiological and behavioural changes in C. maculatus is proposed and discussed.  相似文献   

3.
Sexual selection should cause sex differences in patterns of resource allocation. When current and future reproductive effort trade off, variation in resource acquisition might further cause sex differences in age‐dependent investment, or in sensitivity to changes in resource availability over time. However, the nature and prevalence of sex differences in age‐dependent investment remain unclear. We manipulated resource acquisition at juvenile and adult stages in decorated crickets, Gryllodes sigillatus, and assessed effects on sex‐specific allocation to age‐dependent reproductive effort (calling in males, fecundity in females) and longevity. We predicted that the resource and time demands of egg production would result in relatively consistent female strategies across treatments, whereas male investment should depend sharply on diet. Contrary to expectations, female age‐dependent reproductive effort diverged substantially across treatments, with resource‐limited females showing much lower and later investment in reproduction; the highest fecundity was associated with intermediate lifespans. In contrast, long‐lived males always signalled more than short‐lived males, and male age‐dependent reproductive effort did not depend on diet. We found consistently positive covariance between male reproductive effort and lifespan, whereas diet altered this covariance in females, revealing sex differences in the benefits of allocation to longevity. Our results support sex‐specific selection on allocation patterns, but also suggest a simpler alternative: males may use social feedback to make allocation decisions and preferentially store resources as energetic reserves in its absence. Increased calling effort with age therefore could be caused by gradual resource accumulation, heightened mortality risk over time, and a lack of feedback from available mates.  相似文献   

4.

Background and Aims

A plant investing in reproduction partitions resources between flowering and seed production. Under resource limitation, altered allocations may result in floral trait variations, leading to compromised fecundity. Floral longevity and timing of selfing are often the traits most likely to be affected. The duration of corolla retention determines whether fecundity results from outcrossing or by delayed selfing-mediated reproductive assurance. In this study, the role of pollination schedules and soil water availability on floral longevity and seed production is tested in Collinsia heterophylla (Plantaginaceae).

Methods

Using three different watering regimes and pollination schedules, effects on floral longevity and seed production were studied in this protandrous, flowering annual.

Key Results

The results reveal that soil water status and pollination together influence floral longevity with low soil water and hand-pollinations early in the floral lifespan reducing longevity. However, early pollinations under excess water did not extend longevity, implying that resource surplus does not lengthen the outcrossing period. The results also indicate that pollen receipt, a reliable cue for fecundity, accelerates flower drop. Early corolla abscission under drought stress could potentially exacerbate sexual conflict in this protandrous, hermaphroditic species by ensuring self-pollen paternity and enabling male control of floral longevity. While pollination schedules did not affect fecundity, water stress reduced per-capita seed numbers. Unmanipulated flowers underwent delayed autonomous selfing, producing very few seeds, suggesting that inbreeding depression may limit benefits of selfing.

Conclusions

In plants where herkogamy and dichogamy facilitate outcrossing, floral longevity determines reproductive success and mating system. Reduction in longevity under drought suggests a strong environmental effect that could potentially alter the preferred breeding mode in this mixed-mated species. Extrapolating the findings to unpredictable global drought cycles, it is suggested that in addition to reducing yield, water stress may influence the evolutionary trajectory of plant mating system.  相似文献   

5.
Evolutionary responses to selection can be complicated when there is substantial nonadditivity, which limits our ability to extrapolate from simple models of selection to population differentiation and speciation. Studies of Drosophila melanogaster indicate that lifespan and the rate of senescence are influenced by many genes that have environment- and sex-specific effects. These studies also demonstrate that interactions among alleles (dominance) and loci (epistasis) are common, with the degree of interaction differing between the sexes and among environments. However, little is known about the genetic architecture of lifespan or mortality rates for organisms other than D. melanogaster. We studied genetic architecture of differences in lifespan and shapes of mortality curves between two populations of the seed beetle, Callosobruchus maculatus (South India and Burkina Faso populations). These two populations differ in various traits (such as body size and adult lifespan) that have likely evolved via host-specific selection. We found that the genetic architecture of lifespan differences between populations differs substantially between males and females; there was a large maternal effect on male lifespan (but not on female lifespan), and substantial dominance of long-life alleles in females (but not males). The large maternal effect in males was genetically based (there was no significant cytoplasmic effect) likely due to population differences in maternal effects genes that influence lifespan of progeny. Rearing host did not affect the genetic architecture of lifespan, and there was no evidence that genes on the Y-chromosome influence the population differences in lifespan. Epistatic interactions among loci were detectable for the mortality rate of both males and females, but were detectable for lifespan only after controlling for body size variation among lines. The detection of epistasis, dominance, and sex-specific genetic effects on C. maculatus lifespan is consistent with results from line cross and quantitative trait locus studies of D. melanogaster.  相似文献   

6.
Abstract In many organisms, large offspring have improved fitness over small offspring, and thus their size is under strong selection. However, due to a trade-off between offspring size and number, females producing larger offspring necessarily must produce fewer unless the total amount of reproductive effort is unlimited. Because differential gene expression among environments may affect genetic covariances among traits, it is important to consider environmental effects on the genetic relationships among traits. We compared the genetic relationships among egg size, lifetime fecundity, and female adult body mass (a trait linked to reproductive effort) in the seed beetle, Stator limbatus , between two environments (host-plant species Acacia greggii and Cercidium floridum ). Genetic correlations among these traits were estimated through half-sib analysis, followed with artificial selection on egg size to observe the correlated responses of lifetime fecundity and female body mass. We found that the magnitude of the genetic trade-off between egg size and lifetime fecundity differed between environments–a strong trade-off was estimated when females laid eggs on C. floridum seeds, yet this trade-off was weak when females laid eggs on A. greggii seeds. Also differing between environments was the genetic correlation between egg size and female body mass–these traits were positively genetically correlated for egg size on A. greggii seeds, yet uncorrelated on C. floridum seeds. On A. greggii seeds, the evolution of egg size and traits linked to reproductive effort (such as female body mass) are not independent from each other as commonly assumed in life-history theory.  相似文献   

7.
Maintaining an immune system is costly. Resource allocation to immunity should therefore trade off against other fitness components. Numerous studies have found phenotypic trade-offs after immune challenge, but few have investigated genetic correlations between immune components and other traits. Furthermore, empirical evidence for the costs of maintaining an innate immune system in the absence of challenges is rare. We examined responses to artificial selection on phenoloxidase (PO) activity, an important part of the insect innate defense against multicellular pathogens, in yellow dung flies, Scathophaga stercoraria (L.). After 15 generations of successful selection on PO activity, we measured reproductive characters: clutch size, egg hatching rates, adult emergence rates, and adult longevity. We found no evidence for negative genetic correlations between PO activity and reproduction. In fact, flies of lines selected for increased PO activity had larger first clutches, and flies of lines selected for decreased PO activity had smaller ones. However, flies from high-PO lines died earlier than did low-PO flies when no food was available; that is, there is a survival cost of running at high PO levels in the absence of challenge. Variation in resource acquisition or use may lead to positive genetic correlations between PO and fertility and fecundity. The negative correlation between PO and longevity under starvation may indicate that variation for resource acquisition is maintained by a cost of acquisition, based on a genotype-environment interaction.  相似文献   

8.
Knowledge of heritability and genetic correlations are of central importance in the study of adaptive trait evolution and genetic constraints. We use a paternal half-sib-full-sib breeding design to investigate the genetic architecture of three life-history and morphological traits in the seed beetle, Callosobruchus maculatus. Heritability was significant for all traits under observation and genetic correlations between traits (r(A)) were low. Interestingly, we found substantial sex-specific genetic effects and low genetic correlations between sexes (r(MF)) in traits that are only moderately (weight at emergence) to slightly (longevity) sexually dimorphic. Furthermore, we found an increased sire ([Formula: see text]) compared to dam ([Formula: see text]) variance component within trait and sex. Our results highlight that the genetic architecture even of the same trait should not be assumed to be the same for males and females. Furthermore, it raises the issue of the presence of unnoticed environmental effects that may inflate estimates of heritability. Overall, our study stresses the fact that estimates of quantitative genetic parameters are not only population, time, environment, but also sex specific. Thus, extrapolation between sexes and studies should be treated with caution.  相似文献   

9.
Encountering mates and avoiding predators are ubiquitous challenges faced by many organisms and they can affect the expression of many traits including growth, timing of maturity and resource allocation to reproduction. However, these two factors are commonly considered in isolation rather than simultaneously. We examined whether predation risk and mate availability interact to affect morphology and life-history traits (including lifetime fecundity) of a hermaphroditic snail (Physa acuta). We found that mate availability reduced juvenile growth rate and final size. Predator cues from crayfish induced delayed reproduction, but there were no reduced fecundity costs associated with predator induction. Although there were interactive effects on longevity, lifetime fecundity was determined by the number of reproductive days. Therefore, our results indicate a resource-allocation trade-off among growth, longevity and reproduction. Future consideration of this interaction will be important for understanding how resource-allocation plasticity affects the integration of defensive, life-history and mating-system traits.  相似文献   

10.
Examining variation in pollinator effectiveness and seed production resulting from single pollinator visits can provide a deeper understanding of how pollinators may influence reproduction in plant populations. When comparing populations, differences in the number of seeds produced from single pollinator visits to flowers may not always be attributable to differences in pollen deposition, but rather to differences in plant fecundity or resource availability. Pollinator effectiveness and seed production were studied for two populations over a 4-year period and were measured using single bee visit manipulations of flowers. No significant difference in pollinator effectiveness (pollen deposited on stigmas) was observed between the two populations. However, a significant difference between the two populations was observed in the number of seeds produced per flower. The Wellhouse population produced approximately three times as many seeds/flower from a single pollinator visit as did the Firefly Meadow population. Within each population, pollinators (Bombus pennsylvanicus and Apis mellifera) did not differ in the number of pollen grains deposited on stigmas or seeds produced per flower from single visit experiments. Differences in plant density, pollen viability, and ovules per flower also could not account for a significant amount of the variation. A resource augmentation experiment (water and fertilizer application) resulted in a decrease in seeds per flower per bee visit for the water treatment at the Wellhouse population only. For both populations, pollen deposition, pollen viability, and ovules per flower were unaffected by the resource augmentation. Alternative possibilities for the observed differences in seeds per flower per bee visit are discussed.  相似文献   

11.
Body size is an important trait involved in overall fitness through its effects on mating success, fecundity, resource acquisition and mortality, and desiccation resistance. In this study, we raised inbred Culex quinquefasciatus mosquito cohorts at different developmental temperatures of 20°, 23°, and 27° C. As an indicator of the amount of genetic variation in body size, we estimated the narrow-sense heritability of body sizes defined as wing aspect ratios. Our results show that narrow-sense heritability of the body size increased as the developmental temperature increased. We also detected the presence of strong genotype-by-environment (G × E) interaction from low cross-environmental correlations. The body size of each temperature regime followed the general rule that higher temperatures produce smaller individuals. We suggest that the increase in genetic variation with increasing temperature might be due to an unleashing of the cryptic genetic variation of the putative genes affecting body size. We conclude that this increase in genetic variation tracking the environmental (developmental temperature) change could have considerable implications for the distribution and range expansion of Cx. quinquefasciatus, especially in warmer environments.  相似文献   

12.
A sib analysis of adult life-history characters was performed on about twelve hundred females from a laboratory Drosophila melanogaster population that had been sampled from nature and cultured so as to preserve its genetic variability. The following results were found. There was no detectable trend with age in additive or dominance genetic variances for age-specific fecundity. Environmental variance for age-specific fecundity increased with age. The genetic variance for fecundity characters was primarily additive. The genetic variance for longevity was primarily dominance variance. There were negative genetic correlations between early fecundity and lifespan, as well as between mean egg-laying rate and longevity.  相似文献   

13.
Coexistence of species with different seed sizes is a long‐standing issue in community ecology, and a trade‐off between fecundity and stress tolerance has been proposed to explain co‐occurrence in heterogeneous environments. Here we tested an intraspecific extension of this model: whether such trade‐off also explains seed trait variation among populations of widespread plants under stress gradients. We collected seeds from 14 populations of Plantago coronopus along the Atlantic coast in North Africa and Europe. This herb presents seed dimorphism, producing large basal seeds with a mucilaginous coat that facilitates water absorption (more stress tolerant), and small apical seeds without coats (less stress tolerant). We analysed variation among populations in number, size and mucilage production of basal and apical seeds, and searched for relationships between local environment and plant size. Populations under higher stress (higher temperature, lower precipitation, lower soil organic matter) had fewer seeds per fruit, higher predominance of basal relative to apical seeds, and larger basal seeds with thicker mucilaginous coats. These results strongly suggest a trade‐off between tolerance and fecundity at the fruit level underpins variation in seed traits among P. coronopus populations. However, seed production per plant showed the opposite pattern to seed production per fruit, and seemed related to plant size and other life‐cycle components, as an additional strategy to cope with environmental variation across the range. The tolerance–fecundity model may constitute, under stress gradients, a broader ecological framework to explain trait variation than the classical seed size–number compromise, although several fecundity levels and traits should be considered to understand the diverse strategies of widespread plants to maximise fitness in each set of local conditions.  相似文献   

14.
Genetic correlations for a trait across environments are predicted to decrease as environments diverge. However, estimates of genetic correlations from natural populations are typically defined across a limited environmental range and prone to very large standard errors, making it difficult to test this prediction. We address the importance of environmental distance on genetic correlations by employing data from domestic cattle in which abundant and accurate estimates are available from a wide range of environments. Three production traits related to milk yield show a clear decrease in genetic correlations with increasing environmental divergence. This pattern was also evident for growth traits and other yield traits but not for traits related to reproduction, morphology, physiology, or disease. We suspect that this reflects weaker selection on these latter trait classes compared to production traits, or alternatively the effects of selection are constrained by unfavorable genetic correlations between traits. The results support the notion that traits that historically have been under strong directional selection in a small range of frequently encountered environments will evolve high genetic correlations across these environments, while exposure to uncommon (and dissimilar) environments lead to a reranking of gene effects and a decrease in genetic correlations across environments.  相似文献   

15.
Hornoy B  Tarayre M  Hervé M  Gigord L  Atlan A 《PloS one》2011,6(10):e26275
Several hypotheses that attempt to explain invasive processes are based on the fact that plants have been introduced without their natural enemies. Among them, the EICA (Evolution of Increased Competitive Ability) hypothesis is the most influential. It states that, due to enemy release, exotic plants evolve a shift in resource allocation from defence to reproduction or growth. In the native range of the invasive species Ulex europaeus, traits involved in reproduction and growth have been shown to be highly variable and genetically correlated. Thus, in order to explore the joint evolution of life history traits and susceptibility to seed predation in this species, we investigated changes in both trait means and trait correlations. To do so, we compared plants from native and invaded regions grown in a common garden. According to the expectations of the EICA hypothesis, we observed an increase in seedling height. However, there was little change in other trait means. By contrast, correlations exhibited a clear pattern: the correlations between life history traits and infestation rate by seed predators were always weaker in the invaded range than in the native range. In U. europaeus, the role of enemy release in shaping life history traits thus appeared to imply trait correlations rather than trait means. In the invaded regions studied, the correlations involving infestation rates and key life history traits such as flowering phenology, growth and pod density were reduced, enabling more independent evolution of these key traits and potentially facilitating local adaptation to a wide range of environments. These results led us to hypothesise that a relaxation of genetic correlations may be implied in the expansion of invasive species.  相似文献   

16.
E Immonen  M Collet  J Goenaga  G Arnqvist 《Heredity》2016,116(3):338-347
Mitochondria are involved in ageing and their function requires coordinated action of both mitochondrial and nuclear genes. Epistasis between the two genomes can influence lifespan but whether this also holds for reproductive senescence is unclear. Maternal inheritance of mitochondria predicts sex differences in the efficacy of selection on mitonuclear genotypes that should result in differences between females and males in mitochondrial genetic effects. Mitonuclear genotype of a focal individual may also indirectly affect trait expression in the mating partner. We tested these predictions in the seed beetle Callosobruchus maculatus, using introgression lines harbouring distinct mitonuclear genotypes. Our results reveal both direct and indirect sex-specific effects of mitonuclear epistasis on reproductive ageing. Females harbouring coadapted mitonuclear genotypes showed higher lifetime fecundity due to slower senescence relative to novel mitonuclear combinations. We found no evidence for mitonuclear coadaptation in males. Mitonuclear epistasis not only affected age-specific ejaculate weight, but also influenced male age-dependent indirect effects on traits expressed by their female partners (fecundity, egg size, longevity). These results demonstrate important consequences of sex-specific mitonuclear epistasis for both mating partners, consistent with a role for mitonuclear genetic constraints upon sex-specific adaptive evolution.  相似文献   

17.
Growth and reproduction in higher plants depend on meristems, which have three developmental fates. A meristem can become reproductive, but doing so terminates its activity, it can differentiate vegetatively, or it can remain quiescent for extended periods. The first two fates are mutually exclusive, and only the second leads to the production of additional meristems for subsequent growth and reproduction. In Polygonum arenastrum (frequently referred to as P. aviculare in North American Floras), an annual species lacking quiescent meristems, a quantitative genetic analysis of inbred full-sibling families revealed genetic variation in the developmental pattern of axillary meristem commitment to vegetative growth versus reproduction. Developmental variation resulted in family differences in the age of first reproduction, in age-specific fecundity and growth, and in final plant size and reproductive output. Furthermore, there were strong negative genetic correlations between age-specific growth and fecundity. Early commitment of meristems to reproduction favors high early fecundity, but reduces the number of meristems available for vegetative differentiation, and leads to lowered growth rates and fecundity later in life, when meristems are limiting. Conversely, meristem commitment to vegetative growth early in life results in low early fecundity but high late fecundity and growth. Meristem limitation, like resource limitation, is a proximate mechanism that generates trade-offs between life history traits. Differences between meristem limitation and resource limitation are discussed. Meristem limitation leads automatically to a senescent life history because of the determinate fate of reproductive meristems. Developmental characters were also found to be genetically correlated with metamer characters (leaf size, internode length) and seed size in this selfing species. The pattern of correlation is suggestive of selection for particular suites of life history and morphological characters.  相似文献   

18.
干热河谷植物叶片,树高和种子功能性状比较   总被引:3,自引:1,他引:2  
植物功能性状 (plant functional trait)是近年来生态学研究的热点。以云南怒江和澜沧江干热河谷36种木本植物为研究对象,选取比叶面积 (SLA)、植株高 (H) 和种子干重 (SM) 3个功能性状,研究它们的相互关系,比较其在河谷间、河谷内的差异。结果表明:1)两个河谷内36种木本植物的以上3种功能性状间没有显著的相关性 (P值分别为0.8739,0.5763,0.5517);2)河谷间的比叶面积存在显著差异 (P=0.02944),植株高和种子干重无显著差异 (P分别为0.4070, 0.8867);3)两个河谷内木本植物功能性状中,种子干重差异最大,植株高次之,比叶面积最小。  相似文献   

19.
Kathleen Donohue 《Oecologia》1997,110(4):520-527
A factorial design of three densities of siblings at three local distances from seed parents was employed to distinguish effects of density from effects of dispersal distance on lifespan and fruit production of Cakile edentula var. lacustris, a plant with heteromorphic seeds. The segmented fruits produce two seed types: proximal and distal, with distal seeds having greater mass and greater dispersibility. Effects of longer distances (0.5 km and 30 km) on lifespan and fruit production were investigated using plants at low density. The prediction was tested that the greater seed mass of distal seeds increases fitness when seeds are dispersed into sites of unknown quality away from the home site or when seeds are dispersed to low density. High density caused earlier mortality and lower probability of reproduction. Distance from the maternal plant did not influence lifespan or reproduction at distances of 15 m or less, but lifespan was longer 0.5 km from the home site. No interaction was detected between the effects of density and distance on either lifespan or total fitness. Environmental conditions that influence fitness did not vary as a function of dispersal distance in this system, and favorable conditions at the home site did not persist between generations. Therefore, selection on dispersion patterns in natural conditions is likely to be through effects of density rather than dispersal distance. Proximal seeds had greater reproduction than distal seeds at the home site, and distal seeds had greater reproduction at the more distant sites (but not the most distant site), as expected, but these performance differences could not be attributed to differences in mass between the two seed types. Reduced seed mass was favored at the most distant site, but larger seed mass was favored most strongly at low density. Seeds that are dispersed to low density are larger, suggesting that although kin selection may limit the effectiveness of individual selection to increase seed mass under conditions of sibling competition, density-dependent individual selection on seed mass, rather than distant-dependent selection, also contributes to the observed associations among seed type, seed mass and dispersal ability. Received: 21 October 1996 / Accepted: 4 December 1996  相似文献   

20.
Abstract.  If host seeds are absent, females of the seed beetle Callosobruchus maculatus sometimes 'dump' eggs on unsuitable substrates, which causes complete larval mortality and decreases female lifespan. To understand the possible function of this behaviour, the present study examines genetic variation in dumping behaviour between and within populations. When deprived of hosts, females from an African population are much more prone to dump eggs than Asian females, most of which dump no eggs over their lifetimes. Egg dumping therefore cannot be explained as a simple, species-wide constraint imposed by the accumulation of mature oocytes. A transfer experiment tested the hypothesis that dumping eggs improves a female's ability to exploit the subsequent availability of seeds, perhaps by preventing a disruption of oocyte maturation. Contrary to prediction, the number of eggs laid after females are transferred to seeds is inversely related to the number dumped during deprivation. Two bidirectional selection experiments revealed heritable variation in egg-dumping behaviour within the African population. Deprived females from the dumper line dump more than twice as many eggs as do females from the nondumper line. Pre-adult development time is significantly longer in the nondumper line, which suggests that trade-offs with other fitness components could maintain variation in egg-laying behaviour within populations. The divergent responses to host availability by African and Asian females may represent a pleiotropic effect of similarly divergent responses to host quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号