首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In natural plant populations, fine-scale spatial genetic structure can result from limited gene flow, selection pressures or historical events, but the role of each factor is in general hard to discern. One way to investigate the origination of spatial genetic structure within a plant population consists of comparing spatial genetic structure among different life history stages. In this study, spatial genetic structure of the food-deceptive orchid Orchis purpurea was determined across life history stages in two populations that were regenerating after many years of population decline. Based on demographic analyses (2001-2004), we distinguished between recruits and adult plants. For both sites, there was no difference in the proportion of polymorphic loci and expected heterozygosity between life history stages. However, spatial autocorrelation analyses showed that spatial genetic structure increased in magnitude with life history stage. Weak or no spatial genetic structure was observed for recruits, whereas adult plants showed a pattern that is consistent with that found in other species with a predominantly outcrossing mating system. The observed differences between seedlings and adults are probably a consequence of changes in management of the two study sites and associated demographic changes in both populations. Our results illustrate that recurrent population crashes and recovery may strongly affect genetic diversity and fine-scale spatial genetic structure of plant populations.  相似文献   

2.
Population genetic structure and intrapopulation levels of genetic variation have important implications for population dynamics and evolutionary processes. Habitat fragmentation is one of the major threats to biodiversity. It leads to smaller population sizes and reduced gene flow between populations and will thus also affect genetic structure. We use a natural system of island and mainland populations of house sparrows along the coast of Norway to characterize the different population genetic properties of fragmented populations. We genotyped 636 individuals distributed across 14 populations at 15 microsatellite loci. The level of genetic differentiation was estimated using F‐statistics and specially designed Mantel tests were conducted to study the influence of population type (i.e. mainland or island) and geographic distance on the genetic population structure. Furthermore, the effects of population type, population size and latitude on the level of genetic variation within populations were examined. Our results suggest that genetic processes on islands and mainland differed in two important ways. First, the intrapopulation level of genetic variation tended to be lower and the occurrence of population bottlenecks more frequent on islands than the mainland. Second, although the general level of genetic differentiation was low to moderate, it was higher between island populations than between mainland populations. However, differentiation increased in mainland populations somewhat faster with geographical distance. These results suggest that population bottleneck events and genetic drift have been more important in shaping the genetic composition of island populations compared with populations on the mainland. Such knowledge is relevant for a better understanding of evolutionary processes and conservation of threatened populations.  相似文献   

3.
Aim We investigated how Pleistocene refugia and recent (c. 12,000 years ago) sea level incursions shaped genetic differentiation in mainland and island populations of the Scinax perpusillus treefrog group. Location Brazilian Atlantic Forest, São Paulo state, south‐eastern Brazil. Methods Using mitochondrial and microsatellite loci, we examined population structure and genetic diversity in three species from the S. perpusillus group, sampled from three land‐bridge islands and five mainland populations, in order to understand the roles of Pleistocene forest fragmentation and sea level incursions on genetic differentiation. We calculated metrics of relatedness and genetic diversity to assess whether island populations exhibit signatures of genetic drift and isolation. Two of the three island populations in this study have previously been described as new species based on a combination of distinct morphological and behavioural characters, thus we used the molecular datasets to determine whether phenotypic change is consistent with genetic differentiation. Results Our analyses recovered three distinct lineages or demes composed of northern mainland São Paulo populations, southern mainland São Paulo populations, and one divergent island population. The two remaining island populations clustered with samples from adjacent mainland populations. Estimates of allelic richness were significantly lower, and estimates of relatedness were significantly higher, in island populations relative to their mainland counterparts. Main conclusions Fine‐scale genetic structure across mainland populations indicates the possible existence of local refugia within São Paulo state, underscoring the small geographic scale at which populations diverge in this species‐rich region of the Atlantic Coastal Forest. Variation in genetic signatures across the three islands indicates that the populations experienced different demographic processes after marine incursions fragmented the distribution of the S. perpusillus group. Genetic signatures of inbreeding and drift in some island populations indicate that small population sizes, coupled with strong ecological selection, may be important evolutionary forces driving speciation on land‐bridge islands.  相似文献   

4.
Landscape-level gene flow in Lobaria pulmonaria, an epiphytic lichen   总被引:2,自引:1,他引:1  
Epiphytes are strongly affected by the population dynamics of their host trees. Owing to the spatio-temporal dynamics of host tree populations, substantial dispersal rates--corresponding to high levels of gene flow--are needed for populations to persist in a landscape. However, several epiphytic lichens have been suggested to be dispersal-limited, which leads to the expectation of low gene flow at the landscape scale. Here, we study landscape-level genetic structure and gene flow of a putatively dispersal-limited epiphytic lichen, Lobaria pulmonaria. The genetic structure of L. pulmonaria was quantified at three hierarchical levels, based on 923 thalli collected from 41 plots situated within a pasture-woodland landscape and genotyped at six fungal microsatellite loci. We found significant isolation by distance, and significant genetic differentiation both among sampling plots and among trees. Landscape configuration, i.e. the effect of a large open area separating two forested regions, did not leave a traceable pattern in genetic structure, as assessed with partial Mantel tests and analysis of molecular variance. Gene pools were spatially intermingled in the pasture-woodland landscape, as determined by Bayesian analysis of population structure. Evidence for local gene flow was found in a disturbed area that was mainly colonized from nearby sources. Our analyses indicated high rates of gene flow of L. pulmonaria among forest patches, which may reflect the historical connectedness of the landscape through gene movement. These results support the conclusion that dispersal in L. pulmonaria is rather effective, but not spatially unrestricted.  相似文献   

5.
选取大连地区大陆与海岛共有植物玉竹为研究对象,采用ISSR分子标记技术对来自5个海岛和4个大陆种群的262个玉竹个体进行遗传多样性的比较和分析。从10个筛选出的ISSR引物扩增得到120个位点信息,其中多态性条带百分率为91.67%,Nei's基因多样性指数(h)为0.346 0,Shannon信息指数(I)为0.510 8。其遗传分化系数(Gst)为0.117 4,基因流(Nm)为3.758 5。研究结果表明玉竹天然种群的遗传多样性较为丰富,种群间基因交流较为频繁,遗传距离与地理距离具有一定的相关性。通过海岛与大陆种群遗传多样性的比对发现,海岛种群的遗传多样性略高于大陆种群,表明在孤立的生境和更为复杂的选择压力下,海岛玉竹种群可能会积累更多的遗传变异从而形成较高的遗传多样性水平。本文研究结果将为进一步探讨隔离生境中天然植物种群遗传进化规律提供证据。  相似文献   

6.

Aim

Tapinoma melanocephalum is listed as one of the most important invasive pest species in China. Information regarding the patterns of invasion and effects of geographic isolation on the population genetics of this species is largely lacking.

Location

South China.

Methods

To address this problem, we genotyped 39 colonies (two colonies were collapsed due to genetic similarity) using microsatellite markers and mitochondrial DNA sequencing to compare colony genetic structure of T. melanocephalum on the mainland and islands of South China.

Results

An analysis of the colony genotypes showed that the genetic diversity of the mainland population was slightly higher than that of the island populations but not significantly so. However, the observed heterozygosity on Shangchuan Island (SCD) was significantly lower than that of the other colonies. We also found six haplotypes in 111 mitochondrial DNA COI sequences. The relatedness (r) value between colonies of SCD was 0.410, higher than that of the other populations. The genetic clusters among colonies were not related to geographic locations and exhibited admixture likely due to frequent human‐mediated dispersal associated with trade between the mainland population and the islands. Pairwise FSTs between populations showed differentiation among mainland populations, while SCD displayed high levels of divergence (FST > 0.15) from most mainland populations. There was no significant isolation by distance among colonies. Most populations showed signs of a bottleneck effect.

Main conclusions

Our study suggests that there was no significant difference in the genetic diversity among the islands and the mainland; however, the lower genetic diversity, the higher degree of genetic divergence from other colonies, and the higher relatedness among nestmates made the SCD population stand out from all the others.  相似文献   

7.
Aim To provide insights into genetic differentiation between insular endemic Weigela coraeensis var. fragrans and its progenitor variety W. coraeensis var. coraeensis, the population genetic structure of both varieties was examined, and factors promoting genetic differentiation between the two taxa were explored. Location The natural range of W. coraeensis (sensu lato) throughout mainland Japan (Honshu) and the Izu Islands. Methods The analysis included 349 and 504 individuals across the mainland (Honshu) and the Izu Islands, respectively, using 10 allozyme and 10 microsatellite loci. The population genetic structure of W. coraeensis was assessed by analysing genetic diversity indices for each population, genetic differentiation among populations, model‐based Bayesian clustering or distance‐based clustering, and bottleneck tests. Results The level of genetic diversity in each of the populations on the Izu Islands was negatively correlated with geographical distance between each island and the mainland. The populations on the mainland and on the Izu Islands were genetically differentiated to a certain extent; however, the microsatellite analyses suggested that gene flow also occurred between the mainland and the islands, and among individual islands. These microsatellite analyses also suggested recent bottlenecks in several populations in both areas. Main conclusions The decrease in genetic diversity throughout the Izu Islands, which correlated with distance to the mainland, Honshu, may be the result of a repeated founder effect occurring at a series of inter‐island colonizations from north to south. The stepping stone‐like configuration of the islands may have played a role in the dispersal of the species. Geographical isolation by sea would effectively result in genetic differentiation of W. coraeensis between mainland Honshu and the Izu Islands, although some gene flow may still occur between Honshu and the northern Izu Islands. The differentiation process of the endemic plants on the Izu Islands is anagenetic but not completed, and the study of these plants will provide insightful knowledge concerning the evolution of insular endemics.  相似文献   

8.
Colonization of vacant habitat is a fundamental ecological process that affects the ability of species to persist and undergo range modifications in continually shifting landscapes. Thus, understanding factors that affect and limit colonization has important ecological and conservation implications. Epiphytic orchids are increasingly threatened by various factors, including anthropogenic habitat disturbance. As cleared areas (e.g. pastures) are recolonized by suitable host trees, the establishment and genetic composition of epiphytic orchid populations are likely a function of their colonization patterns. We used genetic analyses to infer the prevailing colonization pattern of the epiphytic orchid, Brassavola nodosa. Samples from three populations (i.e. individuals within a tree) from each of five pastures in the dry forest of Costa Rica were genotyped with neutral nuclear and chloroplast markers. Spatial autocorrelation and hierarchical genetic structure analyses were used to assess the relatedness of individuals within populations, among populations within pastures and among populations in different pastures. The results showed significant relatedness within populations (mean = 0.166) and significant but lower relatedness among populations within a pasture (mean = 0.058). Our data suggest that colonization of available habitats is by few individuals with subsequent population expansion resulting from in situ reproduction, and that individuals within a tree are not a random sample of the regional seed pool. Furthermore, populations within a pasture were likely colonized by seeds produced by founders of a neighbouring population within that pasture. These results have important ramifications for understanding conservation measures needed for this species and other epiphytic orchids.  相似文献   

9.
Examining population genetic structure can reveal patterns of reproductive isolation or population mixing and inform conservation management. Some avian species are predicted to exhibit minimal genetic differentiation among populations as a result of the species high mobility, with habitat specialists tending to show greater fine‐scale genetic structure. To explore the relationship between habitat specialization and gene flow, we investigated the genetic structure of a saltmarsh specialist with high potential mobility across a wide geographical range of fragmented habitat. Little variation among mitochondrial sequences (620 bp from ND2) was observed among 149 individual Clapper Rails Rallus crepitans sampled along the Atlantic coast of the USA, with the majority of individuals at all sampling sites sharing a single haplotype. Genotyping of nine microsatellite loci across 136 individuals revealed moderate genetic diversity, no evidence of bottlenecks and a weak pattern of genetic differentiation that increased with geographical distance. Multivariate analyses, Bayesian clustering and an AMOVA all suggested a lack of genetic structuring across the Atlantic coast of the USA, with all individuals grouped into a single interbreeding population. Spatial autocorrelation analyses showed evidence of weak female philopatry and a lack of male philopatry. We conclude that high gene flow connecting populations of this habitat specialist may result from the interaction of ecological and behavioural factors that promote dispersal and limit natal philopatry and breeding‐site fidelity. As climate change threatens saltmarshes, the genetic diversity and population connectivity of Clapper Rails may promote resilience of their populations. This finding helps inform about potential fates of other similarly behaving saltmarsh specialists on the Atlantic coast.  相似文献   

10.
The genetic structure of six western Mediterranean island populations of Mus musculus domesticus were investigated by means of an electrophoretic analysis at 34 loci and compared to that of five neighbouring mainland populations. No reduction in variability (H = 0.09 for both island and mainland samples) was observed in the island populations except for a very small island (6 ha), in which one-third of the variability was lost. Patterns of colonization inferred from a Wagner cluster analysis and the distribution of rare variants suggest that, although these island populations are clearly related to European mainland mice, their genetic structure is the result of multiple founding events from sources dispersed throughout the Mediterranean Basin. Furthermore, the presence of the same rare alleles in Sardinia, Corsica and Piana, suggest that the three islands share a common history of colonization.
Estimates of genetic distance and gene flow indicate that the level of genie differentiation is greater between island and mainland populations that between the latter due to geographic isolation. Multiple founder events and post-colonization evolution are the factors that best explain the observed levels of genie variability and differentiation in these Mediterranean islands.  相似文献   

11.
BACKGROUND AND AIMS: Fragmentation of natural habitats can negatively impact plant populations by leading to reduced genetic variation and increased genetic distance as populations become geographically and genetically isolated from one another. To test whether such detrimental effects occur within an urban landscape, the genetic structure of six populations of the perennial herb Viola pubescens was characterized in the metropolitan area of Greater Cincinnati in southwestern Ohio, USA. METHODS: Using three inter-simple sequence repeat (ISSR) markers, 51 loci amplified across all urban populations. For reference, four previously examined agricultural populations in central/northern Ohio and a geographically distant population in Michigan were also included in the analysis. KEY RESULTS: Urban populations retained high levels of genetic variation (percentage of polymorphic loci, P(p) = 80.7 %) with similar genetic distances among populations and an absence of unique alleles. Geographic and genetic distances were correlated with one another, and all populations grouped according to region. Individuals from urban populations clustered together and away from individuals from agricultural populations and from the Michigan population in a principle coordinates analysis. Hierarchical analysis of molecular variance (AMOVA) revealed that most of the genetic variability was partitioned within populations (69.1 %) and among groups (22.2 %) of southwestern Ohio, central/northern Ohio and Michigan groups. Mean F(st) was 0.308, indicating substantial population differentiation. CONCLUSIONS: It is concluded that urban fragmentation does not appear to impede gene flow in V. pubescens in southwestern Ohio. These results are consistent with life history traits of this species and the possibility of high insect abundance in urban habitats due to diverse floral resources and nesting sites. Combined with the cleistogamous breeding system of this species, pollinator availability in the urban matrix may buffer populations against detrimental effects of habitat fragmentation, at least in larger forest fragments. Consequently, it may be inappropriate to generalize about genetic effects of fragmentation across landscapes or even across plant species with different pollination systems.  相似文献   

12.
Understanding the factors that contribute to loss of genetic diversity in fragmented populations is crucial for conservation measurements. Land‐bridge archipelagoes offer ideal model systems for identifying the long‐term effects of these factors on genetic variations in wild populations. In this study, we used nine microsatellite markers to quantify genetic diversity and differentiation of 810 pond frogs (Pelophylax nigromaculatus) from 24 islands of the Zhoushan Archipelago and three sites on nearby mainland China and estimated the effects of the island area, population size, time since island isolation, distance to the mainland and distance to the nearest larger island on reduced genetic diversity of insular populations. The mainland populations displayed higher genetic diversity than insular populations. Genetic differentiations and no obvious gene flow were detected among the frog populations on the islands. Hierarchical partitioning analysis showed that only time since island isolation (square‐root‐transformed) and population size (log‐transformed) significantly contributed to insular genetic diversity. These results suggest that decreased genetic diversity and genetic differentiations among insular populations may have been caused by random genetic drift following isolation by rising sea levels during the Holocene. The results provide strong evidence for a relationship between retained genetic diversity and population size and time since island isolation for pond frogs on the islands, consistent with the prediction of the neutral theory for finite populations. Our study highlights the importance of the size and estimated isolation time of populations in understanding the mechanisms of genetic diversity loss and differentiation in fragmented wild populations.  相似文献   

13.
The last decades have shown a surge in studies focusing on the interplay between fragmented habitats, genetic variation, and conservation. In the present study, we consider the case of a temperate pond‐breeding anuran (the common toad Bufo bufo) inhabiting a naturally strongly fragmented habitat at the Northern fringe of the species’ range: islands offshore the Norwegian coast. A total of 475 individuals from 19 populations (three mainland populations and 16 populations on seven adjacent islands) were genetically characterized using nine microsatellite markers. As expected for a highly fragmented habitat, genetic distances between populations were high (pairwise F st values ranging between 0.06 and 0.33), with however little differences between populations separated by ocean and populations separated by terrestrial habitat (mainland and on islands). Despite a distinct cline in genetic variation from mainland populations to peripheral islands, the study populations were characterized by overall high genetic variation, in line with effective population sizes derived from single‐sample estimators which were on average about 20 individuals. Taken together, our results reinforce the notion that spatial and temporal scales of fragmentation need to be considered when studying the interplay between landscape fragmentation and genetic erosion.  相似文献   

14.
Genetic and phylogenetic consequences of island biogeography   总被引:5,自引:0,他引:5  
Abstract.— Island biogeography theory predicts that the number of species on an island should increase with island size and decrease with island distance to the mainland. These predictions are generally well supported in comparative and experimental studies. These ecological, equilibrium predictions arise as a result of colonization and extinction processes. Because colonization and extinction are also important processes in evolution, we develop methods to test evolutionary predictions of island biogeography. We derive a population genetic model of island biogeography that incorporates island colonization, migration of individuals from the mainland, and extinction of island populations. The model provides a means of estimating the rates of migration and extinction from population genetic data. This model predicts that within an island population the distribution of genetic divergences with respect to the mainland source population should be bimodal, with much of the divergence dating to the colonization event. Across islands, this model predicts that populations on large islands should be on average more genetically divergent from mainland source populations than those on small islands. Likewise, populations on distant islands should be more divergent than those on close islands. Published observations of a larger proportion of endemic species on large and distant islands support these predictions.  相似文献   

15.
Variations in visible genetic polymorphisms are assumed to decrease in populations on small islands because of intense founder effects, genetic drift and inbreeding. However, we have found evidence of a marked enhancement of colour polymorphisms within populations on small oceanic islands that were colonized from the mainland. The source populations on the mainland of the land snail Euhadra peliomphala in four oceanic islands were estimated by phylogenetic analysis of mitochondrial DNA sequences. Diversity of shell colour was higher in the island populations than in the source populations on the mainland. In addition, the shell colour morphs differed not only among populations from different islands but also between the island populations and the source populations on the mainland. By contrast, no mtDNA variations were found in any of the island populations, even though the source populations possessed high mtDNA diversity. Thus, components of colour morphs changed in the island populations after their colonization, and colour polymorphisms are enhanced in these islands despite the loss of genetic variation. The above findings suggest that ecological mechanisms such as morphological release owing to a release from competition may overcome the tendency toward reduced genetic variation in islands to enhance the colour polymorphism.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 81 , 417–425.  相似文献   

16.
Tetragonisca angustula is one of the most widespread stingless bees in the Neotropics. This species swarms frequently and is extremely successful in urban environments. In addition, it is one of the most popular stingless bee species for beekeeping in Latin America, so nest transportation and trading is common. Nest transportation can change the genetic structure of the host population, reducing inbreeding and increasing homogenization. Here, we evaluate the genetic structure of 17 geographic populations of T. angustula in southern Brazil to quantify the level of genetic differentiation between populations. Analyses were conducted on partially sequenced mitochondrial genes and 11 microsatellite loci of 1002 workers from 457 sites distributed on the mainland and on 3 islands. Our results show that T. angustula populations are highly differentiated as demonstrated by mitochondrial DNA (mtDNA) and microsatellite markers. Of 73 haplotypes, 67 were population‐specific. MtDNA diversity was low in 9 populations but microsatellite diversity was moderate to high in all populations. Microsatellite data suggest 10 genetic clusters and low level of gene flow throughout the studied area. However, physical barriers, such as rivers and mountain ranges, or the presence or absence of forest appear to be unrelated to population clusters. Factors such as low dispersal, different ecological conditions, and isolation by distance are most likely shaping the population structure of this species. Thus far, nest transportation has not influenced the general population structure in the studied area. However, due to the genetic structure we found, we recommend that nest transportation should only occur within and between populations that are genetically similar.  相似文献   

17.
Sequence data derived from a 306 bp fragment of mitochondrial cytochrome b and molecular variance estimates were used to investigate the genetic population structure of the endangered and endemic lizard Podarcis atrata of the Columbretes archipelago (Mediterranean, Spain). Our results show a very high and significant among-population genetic differentiation. F ST values and phylogenetic analyses confirm the evolutionary distinctiveness of P. atrata populations, suggesting that the populations of these islands deserve special protection measures. The populations of the two islands Columbrete Grande and Mancolibre are less differentiated than those of Foradada and Lobo, and seem to have retained mainland haplotypes. This situation needs further attention as the origin of the mainland haplotypes is still unclear. If they are a result of recent introductions from mainland specimens, then they may represent a threat to the endemic lizards of the Columbretes islands.  相似文献   

18.
Understanding the mechanisms driving the extraordinary diversification of parasites is a major challenge in evolutionary biology. Co-speciation, one proposed mechanism that could contribute to this diversity is hypothesized to result from allopatric co-divergence of host–parasite populations. We found that island populations of the Galápagos hawk (Buteo galapagoensis) and a parasitic feather louse species (Degeeriella regalis) exhibit patterns of co-divergence across variable temporal and spatial scales. Hawks and lice showed nearly identical population genetic structure across the Galápagos Islands. Hawk population genetic structure is explained by isolation by distance among islands. Louse population structure is best explained by hawk population structure, rather than isolation by distance per se, suggesting that lice tightly track the recent population histories of their hosts. Among hawk individuals, louse populations were also highly structured, suggesting that hosts serve as islands for parasites from an evolutionary perspective. Altogether, we found that host and parasite populations may have responded in the same manner to geographical isolation across spatial scales. Allopatric co-divergence is likely one important mechanism driving the diversification of parasites.  相似文献   

19.
An extraordinary diversity of epiphytic lichens is found in the boreal rainforest of central Norway, the highest-latitude rainforest in the world. These rainforest relicts are located in ravine systems, and clear cutting has increased the distance between remaining patches. We hypothesized that the relatively small lichen populations in the remaining forest stands have suffered a depletion of genetic diversity through bottlenecks and founder events. To test this hypothesis, we assessed genetic diversity and structure in the populations of the tripartite lichen Lobaria pulmonaria using eight SSR loci. We sampled thalli growing on Picea abies branches and propagules deposited in snow at three localities. Contrary to expectations, we found high genetic diversity in lichen and snow samples, and high effective sizes of the studied populations. Also, limited genetic differentiation between populations, high historical migration rates, and a high proportion of first generation immigrants were estimated, implying high connectivity across distances <30km. Almost all genetic variation was attributed to variation within sites; spatial genetic structures within populations were absent or appeared on small scales (5-10m). The high genetic diversity in the remaining old boreal rainforests shows that even relict forest patches might be suitable for conservation of genetic diversity.  相似文献   

20.
Substantial intraspecific variation in life history is rare and potentially a signal of incipient ecological speciation, if variation is driven by geographically heterogenous natural selection. We present the first report of extensive life history polymorphism in Helianthus argophyllus, the silverleaf sunflower, and examine evidence for its evolution by divergent selection. In 18 populations sampled from across the species range and grown in a common garden, most quantitative traits covaried such that individuals could be assigned to two distinct life history syndromes: tall and late flowering with small initial flowerheads, or short and early flowering with larger initial flowerheads. Helianthus argophyllus exhibits regional genetic structure, but this population structure does not closely correspond with patterns of phenotypic variation. The early‐flowering syndrome is primarily observed in populations from coastal barrier islands, while populations from the nearby mainland coast, although geographically and genetically close, are primarily late flowering. Additionally, several traits are more differentiated among regions than expected based on neutral genetic divergence (QST > FST), including the first principal component score corresponding with life history syndrome. This discordance between patterns of phenotypic and genetic variation suggests that divergent selection is driving genetic differences in life history across the species range. If so, the silverleaf sunflower may be in early stages of ecological speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号