首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Haldane's rule is one of the ‘two rules of speciation’. It states that if one sex is ‘absent, rare or sterile’ in a hybrid population, then that sex will be heterogametic. Since Haldane first made this observation, 100 years have passed and still questions arise over how many independent examples exist and what the underlying causes of Haldane's rule are. This review aims to examine research that has occurred over the last century. It seeks to do so by discussing possible causes of Haldane's rule, as well as gaps in the research of these causes that could be readily addressed today. After 100 years of research, it can be concluded that Haldane's rule is a complicated one, and much current knowledge has been accrued by studying the model organisms of speciation. This has led to the primacy of dominance theory and faster-male theory as explanations for Haldane's rule. However, some of the most interesting findings of the 21st century with regard to Haldane's rule have involved investigating a wider range of taxa emphasizing the need to continue using comparative methods, including ever more taxa as new cases are discovered.  相似文献   

2.
Hybridization between incipient species is more likely to produce sterile or inviable F1 offspring in the heterogametic (XY or ZW) sex than in the homogametic (XX or ZZ) sex, a phenomenon known as Haldane's rule. Population dynamics associated with Haldane's rule may play an important role in early speciation of sexually reproducing organisms. The dynamics of the hybrid zone maintained by incomplete hybrid inferiority (sterility/inviability) in the heterogametic sex (a ‘weak’ Haldane's rule) caused by a Bateson–Dobzhansky–Muller incompatibility was modelled. The influences and interplays of the strengths of incompatibility, dispersal, density‐dependent regulation (DDR) and local adaptation of incompatible alleles in a scenario of short‐range dispersal (the stepping‐stone model) were examined. It was found that a partial heterogametic hybrid incompatibility could efficiently impede gene flow and maintain characteristic clinal noncoincidence and discordance of alleles. Density‐dependent regulation appears to be an important factor affecting hybrid zone dynamics: it can effectively skew the effects of the partial incompatibility and dispersal as measured by effective dispersal, clinal structures and density depression. Unexpectedly, local adaptation of incompatible alleles in the parental populations, which would be critical for the establishment of the incompatibility, exerts little effect on hybrid zone dynamics. These results strongly support the plausibility of the adaptive origin of hybrid incompatibility and ecological speciation: an adaptive mutation, if it confers a marginal fitness advantage in the local population and happens to cause epistatic inferiority in hybrids, could efficiently drive further genetic divergence that may result in the gene becoming an evolutionary hotspot.  相似文献   

3.
The process of speciation is a crucial aspect of evolutionary biology. In this study, we analysed the patterns of evolution of postzygotic reproductive isolation in Galliformes using information on hybridization and genetic distance among species. Four main patterns arose: (1) hybrid inviability and sterility in F1 hybrids increase as species diverge; (2) the presence of geographical overlap does not affect the evolution of postzygotic isolation; (3) the galliforms follow Haldane's rule; (4) hybrid inviability is higher in F2 than in F1 hybrids, but does not appear to be increased in the backcrosses. This study contributes to the growing evidence suggesting that the patterns of evolution of postzygotic isolation and the process of speciation are shared among avian groups (and animals in general). In particular, our results support the notion of F2 hybrid inviability as being key for the maintenance of species genetic integrity when prezygotic isolation barriers are overcome in closely related species, in which postzygotic isolation in the F1 hybrid might still not be fully developed. To the contrary, hybrids from backcrosses did not show serious inviability problems (at least not more than F1 hybrids), demonstrating that they could generate gene flow among bird species. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 528–542.  相似文献   

4.
The role of hybridization in animal speciation is controversial and recent research has challenged the long-standing criterion of complete reproductive isolation to attain species status. The speciation-with-gene-flow model posits that the genome is semi-permeable and hybridization may be a phase in the process of divergence. Here, we apply these concepts to a previously identified zone of mtDNA introgression between the two strongly morphologically differentiated subspecies of red-tailed chipmunk ( Tamias ruficaudus ) in the US Inland Northwest. Using multilocus genotype data from the southern, older contact zone, we demonstrate that neutral gene flow is unusually low between the subspecies across the Lochsa River. This is geographically congruent with the discontinuity in bacular morphology, indicating that the cline of mitochondrial DNA (mtDNA) haplotypes is displaced. Furthermore, we elucidate the evolutionary forces responsible by testing hypotheses of lineage sorting and hybridization. We determined that introgressive hybridization is the cause of mtDNA/morphology incongruence because there are non-zero levels of migration and gene flow. Although our estimate of the age of the hybrid zone has wide credibility intervals, the hybridization events occurred in the Late Pleistocene and the divergence occurred in the Middle Pleistocene. Finally, we assessed substructure within and adjacent to the hybrid zone and found that the hybrid zone constitutes a set of populations that are genetically differentiated from parental sets of populations; therefore, hybridization in this system is not likely an evolutionary sink, but has generated novel combinations of genotypes.  相似文献   

5.
The common shrew, Sorex araneus, exhibits an unusually high level of karyotypic variation. Populations with identical or similar karyotypes are defined as chromosome races, which are, in turn, grouped into larger evolutionary units, karyotypic groups. Using six microsatellite markers, we investigated the genetic structure of a hybrid zone between the Sidensjö and Abisko chromosome races, representatives of two distinct karyotypic groups believed to have been separated during the last glacial maximum, the West European karyotypic group (western group) and the North European karyotypic group (northern group), respectively. Significant FST values among populations suggest some weak genetic structure. All hierarchical levels show similar levels of genetic differentiation, equivalent to levels of genetic structure in several intraracial studies of common shrew populations from central Europe. Notably, genetic differentiation was of the same order of magnitude between and within karyotypic groups. Although the genetic differentiation was weak, the correlation between genetic and geographical distance was positive and significant, suggesting that the genetic variation observed between populations is a function of geographical distance rather than racial origin. Hence, considerable chromosomal differences do not seem to prevent extensive gene flow.  相似文献   

6.
Field DL  Ayre DJ  Whelan RJ  Young AG 《Heredity》2011,106(5):841-853
The patterns of hybridization and asymmetrical gene flow among species are important for understanding the processes that maintain distinct species. We examined the potential for asymmetrical gene flow in sympatric populations of Eucalyptus aggregata and Eucalyptus rubida, both long-lived trees of southern Australia. A total of 421 adults from three hybrid zones were genotyped with six microsatellite markers. We used genealogical assignments, admixture analysis and analyses of spatial genetic structure and spatial distribution of individuals, to assess patterns of interspecific gene flow within populations. A high number of admixed individuals were detected (13.9–40% of individuals), with hybrid populations consisting of F1 and F2 hybrids and backcrosses in both parental directions. Across the three sites, admixture proportions were skewed towards the E. aggregata genetic cluster (x=0.56–0.65), indicating that backcrossing towards E. aggregata is more frequent. Estimates of long-term migration rates also indicate asymmetric gene flow, with higher migration rates from E. aggregata to hybrids compared with E. rubida. Taken together, these results indicate a greater genetic input from E. aggregata into the hybrid populations. This asymmetry probably reflects differences in style lengths (E. rubida: ∼7 mm, E. aggregata: ∼4 mm), which can prevent pollen tubes of smaller-flowered species from fertilizing larger-flowered species. However, analyses of fine-scale genetic structure suggest that localized seed dispersal (<40 m) and greater clustering between hybrid and E. aggregata individuals may also contribute to directional gene flow. Our study highlights that floral traits and the spatial distributions of individuals can be useful predictors of the directionality of interspecific gene flow in plant populations.  相似文献   

7.
8.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号