首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Catsper3 and Catsper4 are two recently identified testis-specific genes homologous to Catsper1 and Catsper2 that have been shown to play an essential role in sperm hyperactivated motility and male fertility in mice. Here we report that Catsper3 and Catsper4 knockout male mice are completely infertile due to a quick loss of motility and a lack of hyperactivated motility under capacitating conditions. Our data demonstrate that both CATSPER3 and CATSPER4 are required for hyperactivated sperm motility during capacitation and for male fertility. The present study also demands a revisit to the idiopathic male infertility patients who show normal sperm counts and normal initial motility for defects in sperm hyperactivated motility and for potential CATSPER gene mutations. The CATSPER channel also may be an excellent drug target for male contraceptives.  相似文献   

2.
Previous studies (Carr and Acott , 1984) indicate that bovine sperm are maintained in a quiescent state in the caudal epididymis (CE) by a pH-dependent inhibitory factor. Here, we have determined that the pH of bovine CE fluid and of CE semen is approximately 5.8, and that the motility of CE sperm in undiluted CE fluid increases as the pH is elevated. Therefore, the acidity of CE fluid may play a physiological role in the maintenance of sperm quiescence. The changes in sperm motility, in response to changes in the pH of CE fluid, are reversible and rapid. Dilution of CE fluid with buffers at either pH 5.5 or 7.6 produces a much slower initiation of motility. In buffer a significantly lower pH is required to inhibit sperm motility than is required in CE fluid. The apparent pKs for inhibition are 5.3 in buffer and 6.6 in CE fluid. However, the motility of sperm in buffers that contain lactate, shows a pH dependence similar to sperm in CE fluid. That is, lactate inactivates sperm in buffer at pH 5.5 but not at pH 7.6. Lactate, and several other permeant weak acids, have previously been shown to reduce the intracellular pH of bovine sperm and many other types of cells. We show that these permeant weak acids, but not impermeant weak acids, reversibly reduce CE sperm motility in buffer at pH 5.5 but not at pH 7.6. Weak bases, which have previously been shown to elevate intracellular pH, initiate sperm motility in CE fluid. These results suggest that intracellular pH can regulate CE sperm motility and may be the intracellular messenger for the pH-dependent quiescence factor. Although sperm cyclic AMP levels have been previously correlated with motility stimulation, cyclic AMP levels do not change when the pH of CE fluid is elevated, even though full motility is initiated.  相似文献   

3.
The Na,K-ATPase generates electrochemical gradients that are used to drive the coupled transport of many ions and nutrients across the plasma membrane. The functional enzyme is comprised of an alpha and beta subunit and families of isoforms for both subunits exist. Recent studies in this laboratory have identified a biological role for the Na,K-ATPase alpha4 isoform in sperm motility. Here we further investigate the role of the Na,K-ATPase carrying the alpha4 isoform, showing again that ouabain eliminates sperm motility, and in addition, that nigericin, a H+/K+ ionophore, and monensin, a H+/Na+ ionophore, reinitiate motility. These data, along with the observation that the K+ ionophore valinomycin has no effect on the motility of ouabain-inhibited sperm, suggest that ouabain may change intracellular H+ levels in a manner that is incompatible with sperm motility. We have also localized NHE1 and NHE5, known regulators of intracellular H+ content, to the same region of the sperm as the Na,K-ATPase alpha4 isoform. These data highlight the important role of the Na,K-ATPase alpha4 isoform in regulating intracellular H(+) levels, and provide evidence suggesting the involvement of the Na+/H+ exchanger, which is critical for maintaining normal sperm motility.  相似文献   

4.
The relationships between sperm lipid peroxidation (LP) or cyclic nucleotides and sperm motility in normospermic and asthenozoospermic specimens were analyzed. Sperm motility was measured by the transmembrane migration method; LP was measured by thiobarbituric acid (TBA) method and the intracellular cAMP and cGMP contents was measured by radioimmunoassay in 20 fertile and 20 asthenozoospermic infertile human semen specimens. Results showed that in both fertile and infertile individual, there was a close negative correlation between sperm LP formation and motility (r = -0.76; P < 0.001 and r = -0.68; P < 0.001); there were significant positive correlations between intracellular cAMP (r = 0.64; P < 0.01 and r = 0.59; P < 0.01) or cGMP (r = 0.60; P < 0.01 and r = 0.55; P < 0.05) and sperm motility; and the correlation between LP and motility was the closest. These results suggest a causative role for LP in the aetiology of male infertility due to defective sperm motility, and confirmed that intra-cellular cyclic nucleotides likely also have influences on sperm motility.  相似文献   

5.
The role of Bax inhibitor-1 (BI-1) in the protective mechanism against apoptotic stimuli has been studied; however, as little is known about its role in death receptor-mediated cell death, this study was designed to investigate the effect of BI-1 on Fas-induced cell death, and the underlying mechanisms. HT1080 adenocarcinoma cells were cultured in high concentration of glucose media and transfected with vector alone (Neo cells) or BI-1-vector (BI-1 cells), and treated with Fas. In cell viability, apoptosis, and caspase-3 analyses, the BI-1 cells showed enhanced sensitivity to Fas. Fas significantly decreased cytosolic pH in BI-1 cells, compared with Neo cells, and this decrease correlated with BI-1 oligomerization, mitochondrial Ca2+ accumulation, and significant inhibition of sodium-hydrogen exchanger (NHE) activity. Compared with Neo cells, a single treatment of BI-1 cells with the NHE inhibitor EIPA or siRNA against NHE significantly increased cell death, which suggests that the viability of BI-1 cells is affected by the maintenance of intracellular pH homeostasis through NHE. [BMB Reports 2014; 47(7): 393-398]  相似文献   

6.
Uroguanylin (UGN) has been proposed as a key regulator of salt and water intestinal transport. Uroguanylin activates cell-surface guanylate cyclase C receptor (GC-C) and modulates cellular function via cyclic GMP (cGMP), thus increasing electrolyte and net water secretion. It has been suggested that the action of UGN could involve the Na(+)/H(+) exchanger, but the actual contribution of this transporter still remains unclear. The objective of our study was to investigate the putative effects of UGN on some members of the Na(+)/H(+) exchanger family (NHEs), as well as to clarify its consequences on transepithelial fluid flow in T84 cells. In order to do so, transepithelial fluid flow (J(v)) was studied by optic techniques and intracellular pH (pH(i)) was measured with a fluorescence method. Results showed that NHE2 is found at the apical membrane and has a major role in Na(+) absorption; NHE1 and NHE4 are localized at the basolateral membrane with a house-keeping role in steady state pH(i). In the assayed conditions, cell exposure to apical UGN increases net secretory J(v), without changing short-circuit currents nor transepithelial resistance, and reduces NHE2 activity. Therefore, at physiological pH, the effect on net J(v) was produced mainly by a reduction in normal Na(+) absorption through NHE2, rather than by the stimulation of electrolyte secretion. Our study shows that the effect of UGN on pH(i) is GC-C/cGMP-mediated and enhanced by sildenafil, thus involving PDE5 enzyme. Additionally, cell exposure to apical UGN results in intracellular alkalinization, probably due to indirect effects on basolateral NHE1 and NHE4, which have a major role in pH(i) regulation.  相似文献   

7.
Treatment of washed, ejaculated bovine sperm with 30 mM sodium fluoride immobilized the cells in a characteristically rigid form. In cells metabolizing endogenous substrates, fluoride decreased respiration by about 60%, but did not inhibit the cells' ability to produce adenosine-5'-triphosphate (ATP) via oxidative phosphorylation and did not block access to endogenous substrates. Fluoride-immobilized sperm maintained maximal ATP titers for at least 60 min, but oligomycin treatment rapidly depleted ATP, indicating that ATP synthesis and metabolism was occurring in immobilized sperm. The putative phosphodiesterase inhibitor caffeine (2.5 mM) restored motility and increased respiration in fluoride-treated sperm, but 8-bromo-adenosine-3',5'-monophosphate (8-bromo-cAMP) did not, even though 8-bromo-cAMP stimulated respiration in control (untreated) sperm. Carboxyfluorescein analysis of the intracellular pH of untreated sperm indicated a normal pH of 6.3. Fluoride addition decreased the apparent intracellular pH slightly, but this effect was attributable to dilution. Caffeine did not change internal pH in untreated or fluoride-immobilized sperm. Fluoride did not appear to affect cAMP metabolism, but caffeine increased intracellular cAMP titers by about 35% in both untreated and fluoride-inhibited sperm. However, caffeine treatment did not mimic 8-bromo-cAMP, as analyzed by electrophoresis and autoradiography of sperm proteins labeled with 32P from endogenously generated [32P]ATP. Clearly, caffeine is not stimulating motility in fluoride-treated sperm by affecting the cyclic AMP system. Fluoride also inhibited motility in digitonin-permeabilized sperm by a mechanism that may have involved magnesium depletion, but caffeine had no stimulatory effect on either untreated or fluoride-immobilized, permeabilized sperm.  相似文献   

8.
In the natural process of the migration of chum salmon from the sea to the river, spermatozoa moved from the testis to the sperm duct, and the pH value of seminal plasma, concentration of cyclic adenosine monophosphate (AMP) in the sperm cells, and potential for sperm motility increased. Cyclic AMP levels and the potential for motility gradually increased when testis spermatozoa with no capacity for movement were incubated in the artificial seminal plasma of which the pH was much the same as, or higher than, the pH of natural seminal plasma from the sperm duct. Such correlation in motility, pH, and cyclic AMP suggests that the increases in seminal pH and intracellular cyclic AMP level during passage of spermatozoa from the testis to the sperm duct cause the acquisition of potential for motility. Motility of testicular spermatozoa demembranated with Triton X-100 was very low in fish caught in the sea, while motility of spermatozoa from the posterior portion of the sperm duct was much higher in fish caught in the river. Furthermore, nondemembranated, intact spermatozoa showed a lag in the timing of the acquisition of potential for motility vs. demembranated spermatozoa: The demembranated sperm exhibited the potential earlier than the nondemembranated sperm. These data suggest that increase in activity of the motile apparatus, the axoneme, is a prerequisite, in part, for the acquisition of sperm motility, whereas the development of some function of the plasma membrane also contributes to this phenomenon. © 1993 Wiley-Liss, Inc.  相似文献   

9.
Several studies have been reported on the occurrence of sperm motility inhibiting factors in the male reproductive fluids of different mammalian species, but these proteins have not been adequately purified and characterized. A novel sperm motility inhibiting factor (MIF-II) has been purified from caprine epididymal plasma (EP) by Hydroxylapatite gel adsorption chromatography, DEAE-Cellulose ion-exchange chromatography and chromatofocusing. The MIF-II has been purified to apparent homogeneity and the molecular weight estimated by Sephacryl S-300 gel filtration is 160 kDa. MIF-II is a dimeric protein, made up of two subunits each having a molecular mass of 80 kDa as shown by SDS-PAGE. The isoelectric point of MIF-II is 5.1 as determined by chromatofocusing and isoelectric focusing. It is a heat labile protein and maximal active at the pH 6.9 to 7.5. The sperm motility inhibiting protein factor at 2 µg/ml (12.5 nM) level showed maximal motility-inhibiting activity. The observation that the epididymal plasma factor lowered the intracellular cAMP level of spermatozoa in a concentration-dependent manner suggests that it may block the motility of caprine cauda spermatozoa by interfering the cAMP dependent motility function. The results revealed that the purified protein factor has the potential of sperm motility inhibition and may serve as a vaginal contraceptive. The antibody raised against the MIF-II has the potential for enhancement of forward motility of cauda-spermatozoa. This antibody may thus be useful for solving some of the problems of male infertility due to low sperm motility.  相似文献   

10.
The sodium-hydrogen exchanger (NHE) helps the cell to recover from intracellular acidosis. In this study, we have investigated the effect of HOE 642 (a specific NHE1 blocker) on papillary muscles from rats and guinea pigs during transient acidosis and PKC activation by recording developed force (DF), action potential characteristics, and electrical conductance (stimulus-response interval). Two protocols were used, with or without HOE 642 (10(-5) mol/L): papillary muscle was exposed (i) for 15 min to a glucose-free, nonoxygenated HEPES buffer containing lactate (20 mmol/L) (pH 6.8) followed by 15 min recovery or (ii) to a PKC activator (phorbolmyristate acetate (PMA) (10(-9) mol/L)) for 30 min. The DF after acidification remained significantly decreased in the NHE-blocked papillary muscles. During recovery from acidosis, papillary muscles exposed to HOE 642 remained at a higher electrical resistance. The present study shows that post-acidotic continued depression of DF and change in tissue electrophysiological properties might occur as a result of blocking the NHE. During infarct development, the tissue-protecting effect of NHE blockade has been well documented. When acidosis or reduced contractile function is present, however, blocking NHE by HOE 642 might not improve the situation.  相似文献   

11.
Male reproductive success is determined by the ability of males to gain sexual access to females and by their ability to fertilize ova. Among polygynous mammals, males differ markedly in their reproductive success, and a great deal of effort has been made to understand how selective forces have shaped traits that enhance male competitiveness both before and after copulation (i.e., sperm competition). However, the possibility that males also may differ in their fertility has been ignored under the assumption that male infertility is rare in natural populations because selection against it is likely to be strong. In the present study, we examined which semen traits correlate with male fertility in natural populations of Iberian red deer (Cervus elaphus hispanicus). We found no trade-offs between semen traits. Our analyses revealed strong associations between sperm production and sperm swimming velocity, sperm motility and proportion of morphologically normal spermatozoa, and sperm viability and acrosome integrity. These last two variables had the lowest coefficients of variation, suggesting that these traits have stabilized at high values and are unlikely to be related to fitness. In a fertility trial, our results show a large degree of variation in male fertility, and differences in fertility were determined mainly by sperm swimming velocity and by the proportion of morphologically normal sperm. We conclude that male fertility varies substantially in natural populations of Iberian red deer and that, when sperm numbers are equal, it is determined mainly by sperm swimming velocity and sperm morphology.  相似文献   

12.
13.
Bicarbonate ion, the local anesthetics procaine and dibucaine, and the ionophores monensin and nigericin have been shown to markedly increase the ability of agents that elevate cyclic adenosine monophosphate (cAMP) levels to initiate motility in bovine caput spermatozoa. A number of other weak bases, including theophylline, D-600 and dipyridamole, elevate cAMP levels maximally in caput sperm at low levels but induce motility only at high levels. These compounds thus appear to have a dual role in the initiation of motility, i.e., they elevate both cAMP levels and internal pH. Confirmation of this view was provided by the demonstration that bicarbonate ion and procaine permit initiation of motility by theophylline, D-600 and dipyridamole at markedly reduced levels. Also, forskolin (a neutral adenylate cyclase activator) elevates cyclic AMP levels in caput sperm but initiates motility only in the presence of bicarbonate or procaine, and the membrane-permeant cAMP analogue 8-bromo-cAMP is capable of inducing motility only in the presence of bicarbonate. Thus, motility in caput sperm is induced only under conditions that elevate both intracellular cAMP and pH, whereas caudal sperm motility is stimulated by an elevation of either cAMP or pH. These data suggest that the epididymal development of motility requires a maturational increase in internal pH. This suggestion was confirmed by direct measurement of the internal pH of caput and caudal sperm; the internal pH of the former was found to be 5.84 +/- 0.1 and the latter 6.27 +/- 0.05.  相似文献   

14.
In spite of the importance of sperm motility to fertility in the stallion, little is known about the signaling pathways that regulate motility in this species. In other mammals, calcium/calmodulin signaling and the cyclic AMP/protein kinase-A pathway are involved in sperm motility regulation. We hypothesized that these pathways also were involved in the regulation of sperm motility in the stallion. Using immunoblotting, calmodulin and the calmodulin-dependent protein kinase II β were shown to be present in stallion sperm and with indirect immunofluorescence calmodulin was localized to the acrosome and flagellar principal piece. Additionally, inhibition of either calmodulin or protein kinase-A significantly reduced sperm motility without affecting viability. Following inhibition of calmodulin, motility was not restored with agonists of the cyclic AMP/protein kinase-A pathway. These data suggest that calcium/calmodulin and cyclic AMP/protein kinase-A pathways are involved in the regulation of stallion sperm motility. The failure of cyclic AMP/protein kinase-A agonists to restore motility of calmodulin inhibited sperm suggests that both pathways may be required to support normal motility.  相似文献   

15.
《Reproductive biology》2020,20(4):460-464
In the past, semen parameters have been the primary diagnostic criteria used to establish male infertility. However, with the exception of sperm motility, which is known to be linked to rates of in vitro fertilization success, these parameters are generally unreliable at accurately predicting the potential fertility of a couple. More recent research has suggested that sperm DNA fragmentation index (DFI) may be a more robust and reliable means of predicting assisted reproductive outcomes.The present study aimed to assess the relationship between sperm motility, sperm DFI, and rates of clinical pregnancy by analyzing data from 3000 couples dealing with infertility. Using the most recent semen analysis reports available from male partners in these couples, we assessed these parameters and found that the lower the sperm DFI value, the higher the rate of clinical pregnancy. When we assessed the correlation between sperm DFI, sperm motility, and clinical pregnancy, we observed a strong negative correlation between DFI and motility, but observed no significant relationship between sperm motility and pregnancy rates. These results thus indicate that the measurement of DFI via a sperm chromatin structure assay (SCSA) may be a valuable tool for analyzing semen in order to better predict and improve pregnancy rates in infertile couples.  相似文献   

16.
Extracellular vesicles (EVs) play a key role in various diseases. However, their effect on endometriosis (EMs)-associated infertility is poorly understood. We co-cultured EVs from the female vaginal secretions with human sperm and also generated a mouse model of EMs by allogenic transplant to explore the effect of EVs on fertility. EVs from individuals with EMs-associated infertility (E-EVs) significantly inhibited the total motility (26.46% vs. 47.1%), progressive motility (18.78% vs. 41.06%), linear velocity (21.98 vs. 41.91 µm/s) and the acrosome reaction (AR) rate (5% vs. 22.3%) of human sperm in contrast to the control group (PBS). Furthermore, E-EVs dose-dependently decreased the intracellular Ca2+ ([Ca2+]i), a pivotal regulator of sperm function. Conversely, healthy women (H-EVs) increased human sperm motion parameters, the AR rate, and sperm [Ca2+]i. Importantly, the mouse model of EMs confirmed that E-EVs further decreased the conception rate and the mean number of embryo implantations (7.6 ± 3.06 vs. 4.5 ± 3.21) compared with the control mice by inducing the production of inflammatory cytokines leading to a Th17/Treg imbalance. H-EVs could restore impaired fertility by restoring the Th17/Treg balance. We determined the impact of EVs derived from the female genital tract on human sperm function and studied the possible mechanisms by which it affects fertility. Our findings provide a novel rationale to ameliorate EMs-associated infertility.  相似文献   

17.
Nomura M  Beltrán C  Darszon A  Vacquier VD 《Gene》2005,353(2):231-238
A previously identified, calmodulin-binding, sea urchin sperm flagellar adenylyl cyclase (AC) was cloned and sequenced and found to be a homologue of mammalian sperm soluble adenylyl cyclase (sAC). Compared to the mammalian sAC, the sea urchin sAC (susAC) has several long amino acid insertions, some of which contain protein kinase A phosphorylation sites. The enzymatic activity of susAC shows a steep pH dependency curve, the specific activity doubling when the pH is increased from 7.0 to 7.5. This suggests that like sperm dynein ATPase, the susAC is probably activated by increases in intracellular pH occurring upon spawning into seawater and also when sperm respond to contact with the egg jelly layer. The susAC is strongly activated by manganese, but has low activity in magnesium. Gene database searches identified sAC homologues in species known to have cyclic AMP-dependent sperm motility. This implies (as shown in mouse) that susAC has a role in sperm motility, most probably through axonemal protein phosphorylation or ion channel regulation.  相似文献   

18.
Our previous work identified NHA1, a testis-specific sodium–hydrogen exchanger, is specifically localized on the principal piece of mouse sperm flagellum. Our subsequent study suggested that the number of newborns and fertility rate of NHA1-vaccinated female mice are significantly stepped down. In order to define the physiological function of NHA1 in spermatozoa, we generated Nha1Fx/Fx, Zp3-Cre (hereafter called Nha1 cKO) mice and found that Nha1 cKO males were viable and subfertile with reduced sperm motility. Notably, cyclic AMP (cAMP) synthesis by soluble adenylyl cyclase (sAC) was attenuated in Nha1 cKO spermatozoa and cAMP analogs restored sperm motility. Similar to Nha1 cKO males, Nha2Fx/Fx, Zp3-Cre (hereafter called Nha2 cKO) male mice were subfertile, indicating these two Nha genes may be functionally redundant. Furthermore, we demonstrated that male mice lacking Nha1 and Nha2 genes (hereafter called Nha1/2 dKO mice) were completely infertile, with severely diminished sperm motility owing to attenuated sAC-cAMP signaling. Importantly, principal piece distribution of NHA1 in spermatozoa are phylogenetically conserved in spermatogenesis. Collectively, our data revealed that NHA1 and NHA2 function as a key sodium–hydrogen exchanger responsible for sperm motility after leaving the cauda epididymidis.As many as 15% of human couples are infertile, and male infertility is about half of these cases.1 To fertilized egg, spermatozoa from the cauda epididymis must travel a long journey in the female reproductive tract to reach ampulla of uterine tube. Interestingly, in most mammalian species examined, the sperm journey experiences a natural increase in Na+/HCO3 concentration and pH value (pH<7, Na+<25 mM, HCO3<1 mM in cauda epididymis, whereas pH~7.4, Na+>100 mM, HCO3>10 mM in female reproductive tract).2, 3 It is thus clear that intracellular pH (pHi) regulation is of the utmost importance for sperm physiology, including motility, maturation and the acrosome reaction.4 The maintenance of sperm pHi is kept through the involvement of several mechanisms, among which is included the sodium (Na+)–hydrogen (H+) exchangers (NHEs).5NHEs, also known as Na+/H+ antiporters (NHAs), are integral membrane proteins that catalyze the exchange of Na+ for H+ across lipid bilayers and are ubiquitously distributed in almost all living organisms.6 The SLC9 gene family encodes NHEs and can be divided into three subgroups (reviewed in Martins et al.7). The SLC9A subgroup encompasses plasmalemmal isoforms NHE1–5 (SLC9A1–5) and the predominantly intracellular isoforms NHE6–9 (SLC9A6–9). The SLC9B subgroup consists of two recently cloned isoforms, NHA1 and NHA2 (SLC9B1 and SLC9B2, also known as NHEDC1 and NHEDC2). The SLC9C subgroup consist of a sperm-specific plasmalemmal NHE (SLC9C1, also known as sNHE) and a putative NHE, SLC9C2, for which there is currently no functional data.Four Na+/H+ exchangers (NHE1,8 NHE5,9 sNHE10 and NHA111) are reported to be expressed in spermatozoa. However, normal sperm motility is maintained in Nhe1-null mice, suggesting that Nhe1 gene is male fertility independent.12 Testis histology, sperm numbers and morphology are normal, but sNhe null males are completely infertile with severely diminished sperm motility.10 Further study suggests that cyclic AMP (cAMP) metabolism is impaired in spermatozoa lacking sNHE.13 A recent study showed that NHE8 is highly expressed in the Leydig cells and male mice lacking Nhe8 gene are infertile through its effect on modifying luteinizing hormone receptor (LHR) function.14Second messenger cAMP has been reported to be essential for sperm function, including activation of motility, hyperactivation and acrosome reaction, mainly via activation of holoenzyme protein kinase A (PKA).15 In mammalian spermatozoa, cAMP is synthesized by a soluble isoform of the adenylyl cyclase (sAC) family.16, 17 There are two alternative splicing products, which independently encode full-length sAC (sACfl) and truncated forms of sAC (sACt).18 sAC-null male mice are infertile because of a severe defect in sperm motility.19, 20 In addition, as HCO3 directly regulates sAC, this enzyme is able to translate pH changes into cAMP levels.21, 22The sperm flagellum-specific NHE identified by Liu et al.23 in our laboratory in 2010 is now classified into a new family of NHE, NHA1 (SLC9B1, also known as NHEDC1). Our subsequent study demonstrates that anti-NHA1 antibody reduced sperm motility and the rate of in vitro fertilization.23 Therefore, NHA1 is proposed to regulate sperm motility. The critical role for NHA1 in human male fertility is highlighted by the finding that NHA1 expression is either reduced or absent in patients with teratozoospermia.24In order to define the physiological function of NHA1 in spermatozoa, we generated Nha1 cKO, Nha2 cKO and Nha1/2 dKO male mice. Although single conditional knockouts for Nha1 or Nha2 were subfertile, male double knockout mice exhibited completely infertile with severely diminished sperm motility. cAMP synthesis by sAC was attenuated in cKO and dKO spermatozoa. Furthermore, the sperm motility defects could be rescued by the addition of cell-permeable cAMP analogs. In addition, the number of newborns and fertility rate of Nha1/2-vaccinated female mice were significantly stepped down, suggesting NHA1 and 2 may be an excellent target molecules for developing a novel male contraceptive.  相似文献   

19.
The objective of this case report was to identify the cause of apparent idiopathic infertility in a Red Angus (beef) bull. Semen was collected by electroejaculation and submitted to a series of assays, including evaluation of sperm motility by computer-assisted sperm analysis (CASA), sperm morphology and DNA integrity, semen cryopreservation, AI, IVF, induction of the acrosome reaction, and determination of the level of sperm proteins associated with bull fertility potential. Total (92 ± 2%) and progressive (79 ± 4%) sperm motility; sperm concentration (1647 ± 429 × 106 sperm/mL); proportions of morphologically normal sperm (83 ± 6%) and DNA integrity (96 ± 2), and acrosome-intact sperm (64 ± 4%) exceeded minimum acceptable values. Frozen sperm had good total (58.7 ± 6.7%) and progressive (43.9 ± 9.2%) motility immediately after thawing. However, AI of 16 heifers resulted in no pregnancies and blastocyst production rate (following IVF using sperm from this infertile bull) was nearly identical to that produced using dead sperm (a control of parthenogenesis; 2 ± 2 and 2 ± 3%; respectively P < 0.05). Treatment with a calcium ionophore (A23187) failed to induce the acrosome reaction in sperm from the infertile bull (P < 0.05). Evaluation of several proteins associated with the fertility potential of bulls revealed that the level of Binder Sperm Protein-1 (BSP1), known to be associated with the capacitation process, was much greater on sperm from the infertile bull compared to that of his sire. In conclusion, we inferred that the idiopathic infertility in this bull was caused by a failure to complete the capacitation process.  相似文献   

20.
The effect of intracellular acidification and subsequent pH recovery in sensory neurons has not been well characterized. We have studied the mechanisms underlying Ca(2+)-induced acidification and subsequent recovery of intracellular pH (pH(i)) in rat trigeminal ganglion neurons and report their effects on neuronal excitability. Glutamate (500 μM) and capsaicin (1 μM) increased intracellular Ca(2+) concentration ([Ca(2+)](i)) with a following decrease in pH(i). The recovery of [Ca(2+)](i) to the prestimulus level was inhibited by LaCl(3) (1 mM) and o-vanadate (10 mM), a plasma membrane Ca(2+)/ATPase (PMCA) inhibitor. Removal of extracellular Ca(2+) also completely inhibited the acidification induced by capsaicin. TRPV1 was expressed only in small and medium sized trigeminal ganglion neurons. mRNAs for Na(+)/H(+) exchanger type 1 (NHE1), pancreatic Na(+)-HCO(3)(-) cotransporter type 1 (pNBC1), NBC3, NBC4, and PMCA types 1-3 were detected by RT-PCR. pH(i) recovery was significantly inhibited by pretreatment with NHE1 or pNBC1 siRNA. We found that the frequency of action potentials (APs) was dependent on pH(i). Application of the NHE1 inhibitor 5'-(N-ethyl-N-isopropyl) amiloride (5 μM) or the pNBC1 inhibitor 4',4'-di-isothiocyanostilbene-2',2'-sulfonic acid (500 μM) delayed pH(i) recovery and decreased AP frequency. Simultaneous application of 5'-(N-ethyl-N-isopropyl) amiloride and 4',4'-di-isothiocyanostilbene-2',2'-sulfonic acid almost completely inhibited APs. In summary, our results demonstrate that the rise in [Ca(2+)](i) in sensory neurons by glutamate and capsaicin causes intracellular acidification by activation of PMCA type 3, that the pH(i) recovery from acidification is mediated by membrane transporters NHE1 and pNBC1 specifically, and that the activity of these transporters has direct consequences for neuronal excitability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号