首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gu P  Min JN  Wang Y  Huang C  Peng T  Chai W  Chang S 《The EMBO journal》2012,31(10):2309-2321
The proper maintenance of telomeres is essential for genome stability. Mammalian telomere maintenance is governed by a number of telomere binding proteins, including the newly identified CTC1-STN1-TEN1 (CST) complex. However, the in vivo functions of mammalian CST remain unclear. To address this question, we conditionally deleted CTC1 from mice. We report here that CTC1 null mice experience rapid onset of global cellular proliferative defects and die prematurely from complete bone marrow failure due to the activation of an ATR-dependent G2/M checkpoint. Acute deletion of CTC1 does not result in telomere deprotection, suggesting that mammalian CST is not involved in capping telomeres. Rather, CTC1 facilitates telomere replication by promoting efficient restart of stalled replication forks. CTC1 deletion results in increased loss of leading C-strand telomeres, catastrophic telomere loss and accumulation of excessive ss telomere DNA. Our data demonstrate an essential role for CTC1 in promoting efficient replication and length maintenance of telomeres.  相似文献   

2.
The telomere complex must allow nucleases and helicases to process chromosome ends to make them substrates for telomerase, while preventing these same activities from disrupting chromosome end-protection. Replication protein A (RPA) binds to single-stranded DNA and is required for DNA replication, recombination, repair, and telomere maintenance. In fission yeast, the telomere binding protein Taz1 protects telomeres and negatively regulates telomerase. Here, we show that taz1-d rad11-D223Y double mutants lose their telomeric DNA, indicating that RPA (Rad11) and Taz1 are synergistically required to prevent telomere loss. Telomere loss in the taz1-d rad11-D223Y double mutants was suppressed by additional mutation of the helicase domain in a RecQ helicase (Rqh1), or by overexpression of Pot1, a single-strand telomere binding protein that is essential for protection of chromosome ends. From our results, we propose that in the absence of Taz1 and functional RPA, Pot1 cannot function properly and the helicase activity of Rqh1 promotes telomere loss. Our results suggest that controlling the activity of Rqh1 at telomeres is critical for the prevention of genomic instability.  相似文献   

3.
Telomere length is maintained in species-specific equilibrium primarily through a competition between telomerase-mediated elongation and the loss of terminal DNA through the end-replication problem. Recombinational activities are also capable of both lengthening and shortening telomeres. Here we demonstrate that elongated telomeres in Arabidopsis Ku70 mutants reach a new length set point after three generations. Restoration of wild-type Ku70 in these mutants leads to discrete telomere-shortening events consistent with telomere rapid deletion (TRD). These findings imply that the longer telomere length set point is achieved through competition between overactive telomerase and TRD. Surprisingly, in the absence of telomerase, a subset of elongated telomeres was further lengthened, suggesting that in this background a mechanism of telomerase-independent lengthening of telomeres operates. Unexpectedly, we also found that plants possessing wild-type-length telomeres exhibit TRD when telomerase is inactivated. TRD is stochastic, and all chromosome ends appear to be equally susceptible. The frequency of TRD decreases as telomeres shorten; telomeres less than 2 kb in length are rarely subject to TRD. We conclude that TRD functions as a potent force to regulate telomere length in Arabidopsis.  相似文献   

4.
5.
Regulated permeability changes have been detected in mitochondria across species. We review here their key features, with the goal of assessing whether a “permeability transition” similar to that observed in higher eukaryotes is present in other species. The recent discoveries (i) that treatment with cyclosporin A (CsA) unmasks an inhibitory site for inorganic phosphate (Pi) [Basso, E., Petronilli, V., Forte, M.A. and Bernardi, P. (2008) Phosphate is essential for inhibition of the mitochondrial permeability transition pore by cyclosporin A and by cyclophilin D ablation. J. Biol. Chem. 283, 26307-26311], the classical inhibitor of the permeability transition of yeast and (ii) that under proper experimental conditions a matrix Ca2+-dependence can be demonstrated in yeast as well [Yamada, A., Yamamoto, T., Yoshimura, Y., Gouda, S., Kawashima, S., Yamazaki, N., Yamashita, K., Kataoka, M., Nagata, T., Terada, H., Pfeiffer, D.R. and Shinohara Y. (2009) Ca2+-induced permeability transition can be observed even in yeast mitochondria under optimized experimental conditions. Biochim. Biophys. Acta 1787, 1486-1491] suggest that the mitochondrial permeability transition has been conserved during evolution.  相似文献   

6.
Some human cancer cells achieve immortalization by using a recombinational mechanism termed ALT (alternative lengthening of telomeres). A characteristic feature of ALT cells is the presence of extremely long and heterogeneous telomeres. The molecular mechanism triggering and maintaining this pathway is currently unknown. In Kluyveromyces lactis, we have identified a novel allele of the STN1 gene that produces a runaway ALT-like telomeric phenotype by recombination despite the presence of an active telomerase pathway. Additionally, stn1-M1 cells are synthetically lethal in combination with rad52 and display chronic growth and telomere capping defects including extensive 3' single-stranded telomere DNA and highly elevated subtelomere gene conversion. Strikingly, stn1-M1 cells undergo a very high rate of telomere rapid deletion (TRD) upon reintroduction of STN1. Our results suggest that the protein encoded by STN1, which protects the terminal 3' telomere DNA, can regulate both ALT and TRD.  相似文献   

7.
Telomeres protect eukaryotic chromosomes from illegitimate end-to-end fusions. When this function fails, dicentric chromosomes are formed, triggering breakage-fusion-bridge cycles and genome instability. How efficient is this protection mechanism in normal cells is not fully understood. We created a positive selection assay aimed at capturing chromosome-end fusions in Schizosaccharomyces pombe. We placed telomere sequences with a head to head arrangement in an intron of a selectable marker contained on a plasmid. By linearizing the plasmid between the telomere sequences, we generated a stable mini-chromosome that fails to express the reporter gene. Whenever the ends of the mini-chromosome join, the marker gene is reconstituted and fusions are captured by direct selection. Using telomerase mutants, we recovered several fusion events that lacked telomere sequences. The end-joining reaction involved specific homologous subtelomeric sequences capable of forming hairpins, suggestive of ssDNA stabilization prior to fusing. These events occurred via microhomology-mediated end-joining (MMEJ)/single-strand annealing (SSA) repair and also required MRN/Ctp1. Strikingly, we were able to capture spontaneous telomere-to-telomere fusions in unperturbed cells. Similar to disruption of the telomere regulator Taz1/TRF2, end-joining reactions occurred via non-homologous end-joining (NHEJ) repair. Thus, telomeres undergo fusions prior to becoming critically short, possibly through transient deprotection. These dysfunction events induce chromosome instability and may underlie early tumourigenesis.  相似文献   

8.
Girao H  Geli MI  Idrissi FZ 《FEBS letters》2008,582(14):2112-2119
Genetic analysis of endocytosis in yeast early pointed to the essential role of actin in the uptake step. Efforts to identify the machinery involved demonstrated the important contribution of Arp2/3 and the myosins-I. Analysis of the process using live-cell fluorescence microscopy and electron microscopy have recently contributed to refine molecular models explaining clathrin and actin-dependent endocytic uptake. Increasing evidence now also indicates that actin plays important roles in post-internalization events along the endocytic pathway in yeast, including transport of vesicles, motility of endosomes and vacuole fusion. This review describes the present knowledge state on the roles of actin in endocytosis in yeast and points to similarities and differences with analogous processes in mammals.  相似文献   

9.
Storage and degradation of triglycerides are essential processes to ensure energy homeostasis and availability of precursors for membrane lipid synthesis. Recent evidence suggests that an emerging class of enzymes containing a conserved patatin domain are centrally important players in lipid degradation. Here we describe the identification and characterization of a major triglyceride lipase of the adipose triglyceride lipase/Brummer family, Tgl4, in the yeast Saccharomyces cerevisiae. Elimination of Tgl4 in a tgl3 background led to fat yeast, rendering growing cells unable to degrade triglycerides. Tgl4 and Tgl3 lipases localized to lipid droplets, independent of each other. Serine 315 in the GXSXG lipase active site consensus sequence of the patatin domain of Tgl4 is essential for catalytic activity. Mouse adipose triglyceride lipase (which also contains a patatin domain but is otherwise highly divergent in primary structure from any yeast protein) localized to lipid droplets when expressed in yeast, and significantly restored triglyceride breakdown in tgl4 mutants in vivo. Our data identify yeast Tgl4 as a functional ortholog of mammalian adipose triglyceride lipase.  相似文献   

10.
Genetic analyses of adaptin function from yeast to mammals   总被引:9,自引:0,他引:9  
Boehm M  Bonifacino JS 《Gene》2002,286(2):175-186
Adaptor protein (AP) complexes are heterotetrameric assemblies of subunits named adaptins. Four AP complexes, termed AP-1, AP-2, AP-3, and AP-4, have been described in various eukaryotic organisms. Biochemical and morphological evidence indicates that AP complexes play roles in the formation of vesicular transport intermediates and the selection of cargo molecules for inclusion into these intermediates. This understanding is being expanded by the application of genetic interference procedures. Here, we review recent progress in the genetic analysis of the function of AP complexes, focusing on studies that make use of targeted interference or naturally-occurring mutations in various model organisms.  相似文献   

11.
12.
Mammalian communities alter their taxonomic composition through time as the species composing them change their biogeographic range, become extinct, or evolve into new species. When taxonomic compositions change through these processes, inevitably the links between taxa and communities change too, resulting in evolution from one ecosystem into the next. Late Quaternary examples suggest that on a timescale encompassing a few thousand to a few hundred thousand years (the “multi‐millennial timescale"), climatic change is perhaps the most important driver of ecosystem evolution because it periodically forces biogeographic changes and extinction. Climatic change over this timescale, which essentially slips between “geological time”; and “ecological time”;, is not very closely in phase with population‐level evolution of a species analyzed for this study, the meadow vole Microtus pennsylvanicus; therefore climatic oscillations on the multi‐millennial timescale may not stimulate speciation much. Instead, speciation may contribute to ecosystem evolution independent of climatic change and over a longer time scale.  相似文献   

13.
Throughout evolution, all organisms have harnessed the redox properties of copper (Cu) and iron (Fe) as a cofactor or structural determinant of proteins that perform critical functions in biology. At its most sobering stance to Earth's biome, Cu biochemistry allows photosynthetic organisms to harness solar energy and convert it into the organic energy that sustains the existence of all nonphotosynthetic life forms. The conversion of organic energy, in the form of nutrients that include carbohydrates, amino acids and fatty acids, is subsequently released during cellular respiration, itself a Cu-dependent process, and stored as ATP that is used to drive a myriad of critical biological processes such as enzyme-catalyzed biosynthetic processes, transport of cargo around cells and across membranes, and protein degradation. The life-supporting properties of Cu incur a significant challenge to cells that must not only exquisitely balance intracellular Cu concentrations, but also chaperone this redox-active metal from its point of cellular entry to its ultimate destination so as to avert the potential for inappropriate biochemical interactions or generation of damaging reactive oxidative species (ROS). In this review we chart the travels of Cu from the extracellular milieu of fungal and mammalian cells, its path within the cytosol as inferred by the proteins and ligands that escort and deliver Cu to intracellular organelles and protein targets, and its journey throughout the body of mammals. This article is part of a Special Issue entitled: Cell Biology of Metals.  相似文献   

14.
The amino acid sensitive TOR pathway from yeast to mammals   总被引:1,自引:0,他引:1  
Dann SG  Thomas G 《FEBS letters》2006,580(12):2821-2829
The target of rapamycin (TOR) is an ancient effector of cell growth that integrates signals from growth factors and nutrients. Two downstream effectors of mammalian TOR, the translational components S6K1 and 4EBP1, are commonly used as reporters of mTOR activity. The conical signaling cascade initiated by growth factors is mediated by PI3K, PKB, TSC1/2 and Rheb. However, the process through which nutrients, i.e., amino acids, activate mTOR remains largely unknown. Evidence exists for both an intracellular and/or a membrane bound sensor for amino acid mediated mTOR activation. Research in eukaryotic models, has implicated amino acid transporters as nutrient sensors. This review describes recent advances in nutrient signaling that impinge on mTOR and its targets including hVps34, class III PI3K, a transducer of nutrient availability to mTOR.  相似文献   

15.
16.
Regulation of ornithine decarboxylase in vertebrates involves a negative feedback mechanism requiring the protein antizyme. Here we show that a similar mechanism exists in the fission yeast Schizosaccharomyces pombe. The expression of mammalian antizyme genes requires a specific +1 translational frameshift. The efficiency of the frameshift event reflects cellular polyamine levels creating the autoregulatory feedback loop. As shown here, the yeast antizyme gene and several newly identified antizyme genes from different nematodes also require a ribosomal frameshift event for their expression. Twelve nucleotides around the frameshift site are identical between S.pombe and the mammalian counterparts. The core element for this frameshifting is likely to have been present in the last common ancestor of yeast, nematodes and mammals.  相似文献   

17.
18.
19.
Cdc13 is a Saccharomyces cerevisiae protein that binds to telomeric single-stranded DNA and regulates telomerase activity. Stnl has been shown by two-hybrid analysis to form a physical complex with Cdc13. Temperature-sensitive mutations in CDC13 and STN1, which are both essential genes, activate a DNA damage-dependent checkpoint which is the cause of the arrest seen in the mutant strains. The stn1-13 mutation induces dramatic telomere elongation which is telomerase dependent, as shown here. Additional mutants for STN1, which show a tighter arrest phenotype than stn1-13, were generated in order to perform genetic screens aiming at uncovering new regulators of telomerase. HSC82, which encodes a conserved molecular chaperone of the Hsp90 family, was thus isolated as a high-dosage suppressor of a temperature-sensitive mutation in STN1. Overexpression of HSC82 also partially suppressed the growth defect of cdc13-1 cells. Overexpression of HSC82 was found to correct the telomeric defect associated with stn1 mutations. Shortening of telomeres was also observed in wild-type cells upon overexpression of HSC82, or of its temperature-inducible homologue, HSP82. These results identify Hsc82/Hsp82 as potential regulators of telomerase in yeast cells.  相似文献   

20.
Telomeres protect the ends of linear chromosomes from activities that cause sequence losses or challenge chromosome integrity. Furthermore, these ends must be hidden from detection by the DNA damage recognition and response pathways. In particular, they must not fuse with each other. These fundamental and very first functions attributed to telomeres are also summarized with the term ‘chromosome capping’. However, telomeres can become uncapped and the foremost cellular responses to such events aim to restore genome stability in the most conservative fashion possible. I will provide an outline of cellular responses to uncapping in budding yeast and briefly discuss the reverse, namely avoidance mechanisms that prevent telomere formation at inappropriate places.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号