首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The purpose of this study was to examine the changes to block start and early acceleration sprint kinematics with resisted sled towing. Ten male sprinters performed 12 sprints (four each of unresisted and approximately 10 and 20% body mass [BM]) for 10 m from a block start. Two-dimensional high-speed video footage (250 Hz) of the starting action and the first three steps of each sprint were recorded to enable the sagittal sprinting kinematic parameters to be obtained using APAS motion analysis software. The overall results of this study indicated that early acceleration sprint performance from starting blocks decreases with increasing load during resisted sled towing. A load of approximately 10% BM had no "negative" effect on sprint start technique or step kinematic variables measured in this study (with the exception of one variable) and was also within the "no greater than 10% decrease in speed" limits suggested by Jakalski. Towing a load of approximately 20% BM increased the time spent in the starting blocks and induced a more horizontal position during the push-off (drive) phase. The approximately 20% BM load also caused the sprinters to shorten their initial strides (length), which may have resulted from the decreased flight distances. Such results suggest that the kinematic changes produced by the 10% BM load may be more beneficial than those of the 20% BM load. Future training studies will, however, need to investigate how these acute changes in sprinting technique impact on long-term adaptations in sprinting performance from resisted sprinting.  相似文献   

2.
Acceleration is a significant feature of game-deciding situations in the various codes of football. However little is known about the acceleration characteristics of football players, the effects of acceleration training, or the effectiveness of different training modalities. This study examined the effects of resisted sprint (RS) training (weighted sled towing) on acceleration performance (0-15 m), leg power (countermovement jump [CMJ], 5-bound test [5BT], and 50-cm drop jump [50DJ]), gait (foot contact time, stride length, stride frequency, step length, and flight time), and joint (shoulder, elbow, hip, and knee) kinematics in men (N = 30) currently playing soccer, rugby union, or Australian football. Gait and kinematic measurements were derived from the first and second strides of an acceleration effort. Participants were randomly assigned to 1 of 3 treatment conditions: (a) 8-week sprint training of two 1-h sessions x wk(-1) plus RS training (RS group, n = 10), (b) 8-week nonresisted sprint training program of two 1-h sessions x wk(-1) (NRS group, n = 10), or (c) control (n = 10). The results indicated that an 8-week RS training program (a) significantly improves acceleration and leg power (CMJ and 5BT) performance but is no more effective than an 8-week NRS training program, (b) significantly improves reactive strength (50DJ), and (c) has minimal impact on gait and upper- and lower-body kinematics during acceleration performance compared to an 8-week NRS training program. These findings suggest that RS training will not adversely affect acceleration kinematics and gait. Although apparently no more effective than NRS training, this training modality provides an overload stimulus to acceleration mechanics and recruitment of the hip and knee extensors, resulting in greater application of horizontal power.  相似文献   

3.
We studied the specificity of elastic-cord towing by measuring selected kinematics of the acceleration phase of sprinting. Nine collegiate sprinters ran two 20-m maximal sprints (MSs) and towed sprints (TSs) that were recorded on high-speed video (180 Hz). Sagittal plane kinematics of a 4-segment model of the right side of the body were digitized for a complete stride at the 15-m point for the fastest trial. Significant (p < 0.001) differences were observed for horizontal velocity of the center of mass (CoM), stride length (SL), and horizontal distance from the CoM of the foot to the CoM of the body. There was no significant difference in stride rate between the MS and TS conditions. Omega-squared analysis showed that elastic-cord towing accounted for most of the variance in acute changes in horizontal velocity (73%), SL (68%), and horizontal position of the CoM at foot contact (64%). Elastic-cord tow training resulted in significant acute changes in sprint kinematics in the acceleration phase of an MS that do not appear to be sprint specific. More research is needed on the specificity of TS training and long-term effects on sprinting performance.  相似文献   

4.
A variety of resistance training interventions are used to improve field sport acceleration (e.g., free sprinting, weights, plyometrics, resisted sprinting). The effects these protocols have on acceleration performance and components of sprint technique have not been clearly defined in the literature. This study assessed 4 common protocols (free sprint training [FST], weight training [WT], plyometric training [PT], and resisted sprint training [RST]) for changes in acceleration kinematics, power, and strength in field sport athletes. Thirty-five men were divided into 4 groups (FST: n = 9; WT: n = 8; PT: n = 9; RST: n = 9) matched for 10-m velocity. Training involved two 60-minute sessions per week for 6 weeks. After the interventions, paired-sample t-tests identified significant (p ≤ 0.05) within-group changes. All the groups increased the 0- to 5-m and 0- to 10-m velocity by 9-10%. The WT and PT groups increased the 5- to 10-m velocity by approximately 10%. All the groups increased step length for all distance intervals. The FST group decreased 0- to 5-m flight time and step frequency in all intervals and increased 0- to 5-m and 0- to 10-m contact time. Power and strength adaptations were protocol specific. The FST group improved horizontal power as measured by a 5-bound test. The FST, PT, and RST groups all improved reactive strength index derived from a 40-cm drop jump, indicating enhanced muscle stretch-shortening capacity during rebound from impacts. The WT group increased absolute and relative strength measured by a 3-repetition maximum squat by approximately 15%. Step length was the major limiting sprint performance factor for the athletes in this study. Correctly administered, each training protocol can be effective in improving acceleration. To increase step length and improve acceleration, field sport athletes should develop specific horizontal and reactive power.  相似文献   

5.
There is currently no consensus with regard to the most effective method to train for improved acceleration, or with regard to which kinematic variable provides the greatest opportunity for improvement in this important performance characteristic. The purpose of this study was to determine the effects of resistive ground-based speed training and incline treadmill speed training on speed-related kinematic measures and sprint start speed. The hypothesis tested was that incline treadmill training would improve sprint start time, while the ground-based resistive training would not. Corollary hypotheses were that treadmill training would increase stride frequency and ground-based training would not affect kinematics during the sprint start. Thirty-one high school female soccer players (15.7 +/- 0.5 years) were assigned to either treadmill (n = 17) or ground-based (n = 14) training groups and trained 2 times a week for 6 weeks. The treadmill group utilized incline speed training on a treadmill, while the ground-based group utilized partner band resistance ground-based techniques. Three-dimensional motion analysis was used (4.5 m mark) before and after training to quantify kinematics during the fastest of 3 recorded sprint starts (9.1 m). Both groups decreased average sprint start time from 1.75 +/- 0.12 to 1.68 +/- 0.08 seconds (p < 0.001). Training increased stride frequency (p = 0.030) but not stride length. After training, total vertical pelvic displacement and stride length predicted 62% of the variance in sprint start time for the resistive ground-based group, while stride length and stride frequency accounted for 67% prediction of the variance in sprint start time for the treadmill group. The results of this study indicate that both incline treadmill and resistive ground-based training are effective at improving sprint start speed, although they potentially do so through differing mechanisms.  相似文献   

6.
Resisted sprint running is a common training method for improving sprint-specific strength. For maximum specificity of training, the athlete's movement patterns during the training exercise should closely resemble those used when performing the sport. The purpose of this study was to compare the kinematics of sprinting at maximum velocity to the kinematics of sprinting when using three of types of resisted sprint training devices (sled, parachute, and weight belt). Eleven men and 7 women participated in the study. Flying sprints greater than 30 m were recorded by video and digitized with the use of biomechanical analysis software. The test conditions were compared using a 2-way analysis of variance with a post-hoc Tukey test of honestly significant differences. We found that the 3 types of resisted sprint training devices are appropriate devices for training the maximum velocity phase in sprinting. These devices exerted a substantial overload on the athlete, as indicated by reductions in stride length and running velocity, but induced only minor changes in the athlete's running technique. When training with resisted sprint training devices, the coach should use a high resistance so that the athlete experiences a large training stimulus, but not so high that the device induces substantial changes in sprinting technique. We recommend using a video overlay system to visually compare the movement patterns of the athlete in unloaded sprinting to sprinting with the training device. In particular, the coach should look for changes in the athlete's forward lean and changes in the angles of the support leg during the ground contact phase of the stride.  相似文献   

7.
The purpose of this study was to examine the effects of non-resisted (NRS) and partner-towing resisted (RS) sprint training on legs explosive force, sprint performance and sprint kinematic parameters. Sixteen young elite soccer players (age 16.6 ± 0.2 years, height 175.6 ± 5.7 cm, and body mass 67.6 ± 8.2 kg) were randomly allocated to two training groups: resisted sprint RS (n = 7) and non-resisted sprint NRS (n = 9). The RS group followed a six-week sprint training programme consisting of two “sprint training sessions” per week in addition to their usual soccer training. The NRS group followed a similar sprint training programme, replicating the distances of sprints but without any added resistance. All players were assessed before and after training: vertical and horizontal jumping (countermovement jump (CMJ), squat jump (SJ), and 5-jump test (5JT)), 30 m sprint performance (5, 10, and 20 m split times), and running kinematics (stride length and frequency). In the RS group significant (p < 0.05) changes were: decreased sprint time for 0–5 m, 0–10 m and 0–30 m (-6.31, -5.73 and -2.00%; effect size (ES) = 0.70, 1.00 and 0.41, respectively); higher peak jumping height (4.23% and 3.59%; ES = 0.35 and 0.37, for SJ and CMJ respectively); and 5JT (3.10%; ES = 0.44); and increased stride frequency (3.96%; ES = 0.76). In the NRS group, significant (p < 0.05) changes were: decreased sprint time at 0–30 m (-1.34%, ES = 0.33) and increased stride length (1.21%; ES = 0.17). RS training (partner towing) for six weeks in young soccer players showed more effective performances in sprint, stride frequency and lower-limb explosive force, while NRS training improved sprint performance at 0–30 m and stride length. Consequently, coaches and physical trainers should consider including RS training as part of their sprint training to ensure optimal sprint performance.  相似文献   

8.
A comparison of resistance running, normal sprint running, and supramaximal running was performed. Nineteen young, generally well-trained subjects were divided into 3 training groups: resistance, normal, and supramaximal groups. Resistance and supramaximal training was done using a towing device, providing extra resistance or propulsion forces, resulting in running speed differences of about 3.3% (supramaximal) and 8.5% (resistance), compared to normal sprinting. The training period was 6 weeks, with 3 training sessions per week (5 sprint-runs over 22 m). Running times were measured using photocells, and average step length and cadence were recorded by digital video. A small (0.5%) but significant (p < 0.05) overall pre-post difference was found in running velocity, but the 3 groups changed differently over the running conditions. All individual subjects improved sprinting velocity most on the trained form, at 1-2% (p < 0.001), and thus, the principle of velocity specificity in sprint training was supported. This indicates that to obtain short-distance sprinting improvement in a short period of time, one may prefer normal sprinting over other training forms.  相似文献   

9.
Training at a load maximizing power output (Pmax) is an intuitively appealing strategy for enhancement of performance that has received little research attention. In this study we identified each subject's Pmax for an isoinertial resistance training exercise used for testing and training, and then we related the changes in strength to changes in sprint performance. The subjects were 18 well-trained rugby league players randomized to two equal-volume training groups for a 7-week period of squat jump training with heavy loads (80% 1RM) or with individually determined Pmax loads (20.0-43.5% 1RM). Performance measures were 1RM strength, maximal power at 55% of pretraining 1RM, and sprint times for 10 and 30 m. Percent changes were standardized to make magnitude-based inferences. Relationships between changes in these variables were expressed as correlations. Sprint times for 10 m showed improvements in the 80% 1RM group (-2.9 +/- 3.2%) and Pmax group (-1.3 +/- 2.2%), and there were similar improvements in 30-m sprint time (-1.9 +/- 2.8 and -1.2 +/- 2.0%, respectively). Differences in the improvements in sprint time between groups were unclear, but improvement in 1RM strength in the 80% 1RM group (15 +/- 9%) was possibly substantially greater than in the Pmax group (11 +/- 8%). Small-moderate negative correlations between change in 1RM and change in sprint time (r approximately -0.30) in the combined groups provided the only evidence of adaptive associations between strength and power outputs, and sprint performance. In conclusion, it seems that training at the load that maximizes individual peak power output for this exercise with a sample of professional team sport athletes was no more effective for improving sprint ability than training at heavy loads, and the changes in power output were not usefully related to changes in sprint ability.  相似文献   

10.
Crewther, BT, Kilduff, LP, Cook, CJ, Middleton, MK, Bunce, PJ, and Yang, G-Z. The acute potentiating effects of back squats on athlete performance. J Strength Cond Res 25(12): 3319-3325, 2011-This study examined the acute potentiating effects of back squats on athlete performance with a specific focus on movement specificity and the individual timing of potentiation. Nine subelite male rugby players performed 3 protocols on separate occasions using a randomized, crossover, and counterbalanced design. Each protocol consisted of performance testing before a single set of 3 repetition maximum (3RM) back squats, followed by retesting at ~15 seconds, 4, 8, 12, and 16 minutes. The 3 tests were countermovement jumps (CMJs), sprint performance (5 and 10 m), and 3-m horizontal sled pushes with a 100-kg load. Relationships between the individual changes in salivary testosterone and cortisol concentrations and performance were also examined. The 3RM squats significantly (p < 0.001) improved CMJ height at 4 (3.9 ± 1.9%), 8 (3.5 ± 1.5%), and 12 (3.0 ± 1.4%) minutes compared with baseline values, but no temporal changes in sprinting and sled times were identified. On an individual level, the peak relative changes in CMJ height (6.4 ± 2.1%, p < 0.001) were greater than the 3-m sled (1.4 ± 0.6%), 5-m (2.6 ± 1.0%), and 10-m sprint tests (1.8 ± 1.0%). In conclusion, a single set of 3RM squats was found effective in acutely enhancing CMJ height in the study population, especially when the recovery period was individualized for each athlete. The study results also suggest that the potentiating effects of squats may exhibit some degree of movement specificity, being greater for those exercises with similar movement patterns. The current findings have practical implications for prescribing warm-up exercises, individualizing training programs, and for interpreting postactivation potentiation research.  相似文献   

11.
Whiplash injuries are common following rear-end collisions. During such collisions, initially relaxed occupants exhibit brisk, stereotypical muscle responses consisting of postural and startle responses that may contribute to the injury. Using prestimulus inhibition, we sought to determine if the startle response elicited during a rear-end collision contributes to head stabilization or represents a potentially harmful overreaction of the body. Three experiments were performed. In the first two experiments, two groups of 14 subjects were exposed to loud tones (124 dB) preceded by prestimulus tones at either four interstimulus intervals (100-1,000 ms) or five prestimulus intensities (80-124 dB). On the basis of the results of the first two experiments, 20 subjects were exposed to a simulated rear-end collision (peak sled acceleration = 2 g; speed change = 0.75 m/s) preceded by one of the following: no prestimulus tone, a weak tone (85 dB), or a loud tone (105 dB). The prestimulus tones were presented 250 ms before sled acceleration onset. The loud prestimulus tone decreased the amplitude of the sternocleidomastoid (16%) and cervical paraspinal (29%) muscles, and key peak kinematics: head retraction (17%), horizontal head acceleration (23%), and head angular acceleration in extension (23%). No changes in muscle amplitude or kinematics occurred for the weak prestimulus. The reduced muscle and kinematic responses observed with loud tones suggest that the startle response represents an overreaction that increases the kinematics in a way that potentially increases the forces and strains in the neck tissues. We propose that minimizing this overreaction during a car collision may decrease the risk of whiplash injuries.  相似文献   

12.
The Alaskan sled dog offers a unique mechanism for studying the genetics of elite athletic performance. They are a group of mixed breed dogs, comprised of multiple common breeds, and a unique breed entity seen only as a part of the sled dog mix. Alaskan sled dogs are divided into 2 primary groups as determined by their racing skills. Distance dogs are capable of running over 1000 miles in 10 days, whereas sprint dogs run much shorter distances, approximately 30 miles, but in faster times, that is, 18-25 mph. Finding the genes that distinguish these 2 types of performers is likely to illuminate genetic contributors to human athletic performance. In this study, we tested for association between polymorphisms in 2 candidate genes; angiotensin-converting enzyme (ACE) and myostatin (MSTN) and enhanced speed and endurance performance in 174 Alaskan sled dogs. We observed 81 novel genetic variants within the ACE gene and 4 within the MSTN gene, including a polymorphism within the ACE gene that significantly (P value 2.38 × 10(-5)) distinguished the sprint versus distance populations.  相似文献   

13.
Alaskan sled dogs are a genetically distinct population shaped by generations of selective interbreeding with purebred dogs to create a group of high-performance athletes. As a result of selective breeding strategies, sled dogs present a unique opportunity to employ admixture-mapping techniques to investigate how breed composition and trait selection impact genomic structure. We used admixture mapping to investigate genetic ancestry across the genomes of two classes of sled dogs, sprint and long-distance racers, and combined that with genome-wide association studies (GWAS) to identify regions that correlate with performance-enhancing traits. The sled dog genome is enhanced by differential contributions from four non-admixed breeds (Alaskan Malamute, Siberian Husky, German Shorthaired Pointer, and Borzoi). A principal components analysis (PCA) of 115,000 genome-wide SNPs clearly resolved the sprint and distance populations as distinct genetic groups, with longer blocks of linkage disequilibrium (LD) observed in the distance versus sprint dogs (7.5-10 and 2.5-3.75?kb, respectively). Furthermore, we identified eight regions with the genomic signal from either a selective sweep or an association analysis, corroborated by an excess of ancestry when comparing sprint and distance dogs. A comparison of elite and poor-performing sled dogs identified a single region significantly associated with heat tolerance. Within the region we identified seven SNPs within the myosin heavy chain 9 gene (MYH9) that were significantly associated with heat tolerance in sprint dogs, two of which correspond to conserved promoter and enhancer regions in the human ortholog.  相似文献   

14.
The effects of loading on sprint kinematics were examined in 24 male students. The moment of inertia of either the arms or legs was increased by up to 50% of their unloaded values and the time for distances of 0.5–15 m and 15–30 m from a sprint start was measured. An increase in leg loading was associated with a gradual decrease in velocity of both sprint phases, while the change associated with arm loading was modest and significant only in the second phase. The decrease in sprint velocity was predominantly due to a reduction in stride rate, while the stride length remained almost unchanged. It was concluded that leg loading affected sprint velocity more than arm loading, and also that the velocity was reduced due to a decrease in the stride rate rather than in the stride length. Accepted: 10 November 1997  相似文献   

15.
Stride length analysis represents an easy method for assessing race walking kinematics. However, the stride parameters emerging from such an analysis have never been used to design a training protocol aimed at increasing stride length. With this aim, we investigated the effects of stride frequency manipulation during three weeks of uphill (2%) training on stride length at iso-efficiency speed. Twelve male race walkers were randomly allocated to one of two training groups: stride frequency manipulation (RWM, n=6) and free stride frequency (RWF, n=6). Results. Kinematic parameters measured before and after the 3-week training in RWM showed increased stride length (4.54%; p<0.0001) and contact time (4.58%; p<0.001); inversely, a decreased stride frequency (4.44%; p<0.0001) and internal work (7.09%; p<0.05) were found. In RWF the effect of the training showed a decrease in stride length (1.18%; p<0.0001) and contact time (<1%; p<0.0001) with respect to baseline conditions and an increased stride frequency and internal work of 1.19% (p<0.0001). These results suggest that using slopes (2%) as RWM could help coaches to provide some training methods that would improve an athlete''s performance, through increasing stride length without altering his or her race walking technique or metabolic demands.  相似文献   

16.
Resisted movement training is that in which the sports movement is performed with added resistance. To date, the effectiveness on enhancing sprint speed or vertical jump height had not been reviewed. The objectives of this review were to collate information on resisted training studies for sprinting and vertical jumping, ascertain whether resisted movement training was superior to normal unresisted movement training, and identify areas for future research. The review was based on peer-reviewed journal articles identified from electronic literature searches using MEDLINE and SPORTDiscus data bases from 1970 to 2010. Resisted sprint training was found to increase sprint speed but, in most cases, was no more effective than normal sprint training. There was some evidence that resisted sprint training was superior in increasing speed in the initial acceleration phase of sprinting. Resisted jump training in the form of weighted jump squats was shown to increase vertical jump height, but it was no more effective than plyometric depth jump training. Direct comparisons between resisted jump training and unresisted normal jump training were limited, but loaded eccentric countermovement jump squat training with unloaded concentric phase and eccentric landing was shown to generate superior results for elite jumpers. More prospective studies on resisted sprint training are required along with monitoring both kinematic and kinetic adaptations to fully determine any underlying mechanisms for any improvements in sprint speed. Based on the available data, the benefits and superiority of resisted sprint training have not been fully established. As for resisted jump training, although there are some promising findings, these results need to be duplicated by other researchers before resisted jump training can be claimed to be more effective than other forms of jump training.  相似文献   

17.
The purpose of this study was to investigate whether the deadlift could be effectively incorporated with explosive resistance training (ERT) and to investigate whether the inclusion of chains enhanced the suitability of the deadlift for ERT. Twenty-three resistance trained athletes performed the deadlift with 30, 50, and 70% 1-repetition maximum (1RM) loads at submaximal velocity, maximal velocity (MAX), and MAX with the inclusion of 2 chain loads equal to 20 or 40% of the subjects' 1RM. All trials were performed on force platforms with markers attached to the barbell to calculate velocity and acceleration using a motion capture system. Significant increases in force, velocity, power, rate of force development, and length of the acceleration phase (p < 0.05) were obtained when repetition velocity increased from submaximal to maximal. During MAX repetitions with a constant resistance, the mean length of the acceleration phase ranged from 73.2 (±7.2%) to 84.9 (±12.2%) of the overall movement. Compared to using a constant resistance, the inclusion of chains enabled greater force to be maintained to the end of the concentric action and significantly increased peak force and impulse (p < 0.05), while concurrently decreasing velocity, power, and rate of force development (p < 0.05). The effects of chains were influenced by the magnitude of the chain and barbell resistance, with greater increases and decreases in mechanical variables obtained when heavier chain and barbell loads were used. The results of the investigation suggest that the deadlift can be incorporated effectively in ERT programs. Coaches and athletes should be aware that the inclusion of heavy chains may have both positive and negative effects on kinematics and kinetics of an exercise.  相似文献   

18.
Contractile properties of the fast-twitch glycolytic (FG) portion of the iliofibularis muscle and sprint running performance were studied at approximately 5 degrees C intervals from 15-44 degrees C in the lizard Dipsosaurus dorsalis. Maximal running velocity (VR) and stride frequency (f) were both greatest when body temperature (Tb) was 40 degrees C, the field-active Tb in Dipsosaurus. At 40 degrees C VR was 4.3 +/- 0.2 m/s and f was 13.5 +/- 0.5 s-1. Between 25 and 40 degrees C, the thermal dependencies of VR and f were approximately constant (Q10's of 1.31 and 1.36 got VR and f, respectively). Below 25 degrees C performance declined more markedly with decreasing temperature. At 20 degrees C strides were qualitatively normal, but VR was only half of the value at 25 degrees C. At 15 degrees C the lizards were substantially incapacitated, and VR was 10% of the value at 20 degrees C. Stride length was approximately 0.33 m and changed very little with Tb from 20-44 degrees C. The time dependent contractile properties of FG muscle were affected more by temperature than was sprint performance. The maximal velocity of shortening at zero load (VO) was 18.7 0/s at 40 degrees C and had a Q10 of 1.7 from 25-40 degrees C. Maximal power output (Wmax) determined from the force-velocity curve was 464 W/kg at 40 degrees C. Below 40 degrees C max varied with temperature with a Q10 of 2-3. The shape of the force-velocity curve changed little with temperature (Wmax/POVO = 0.11). Between 25 and 40 degrees C a relatively temperature-independent process must modulate the effects of temperature on the contractile properties of the muscles that supply the power for burst locomotion. Storage and recovery of elastic energy appears to be a likely candidate for such a process. Below 25 degrees C, however, the contraction time is prolonged to such an extent that the f attainable is limited by the minimum time taken to contract and relax the muscles.  相似文献   

19.
A new benthic sled is described.Favourable features of the sled include: simple operation, broad runners, balanced towing position, simple height adjustment of the sediment cutting edge and quick exchange of the collecting bag. Metallic parts are aluminium, making the sled light (15 kg). This sled has functioned well in coastal research for more than a decade.  相似文献   

20.
ABSTRACT: Lockie, RG, Murphy, AJ, Scott, BR, and Janse de Jonge, XAK. Quantifying session ratings of perceived exertion for field-based speed training methods in team sport athletes. J Strength Cond Res 26(10): 2721-2728, 2012-Session ratings of perceived exertion (session RPE) are commonly used to assess global training intensity for team sports. However, there is little research quantifying the intensity of field-based training protocols for speed development. The study's aim was to determine the session RPE of popular training protocols (free sprint [FST], resisted sprint [RST], and plyometrics [PT]) designed to improve sprint acceleration over 10 m in team sport athletes. Twenty-seven men (age = 23.3 ± 4.7 years; mass = 84.5 ± 8.9 kg; height = 1.83 ± 0.07 m) were divided into 3 groups according to 10-m velocity. Training consisted of an incremental program featuring two 1-hour sessions per week for 6 weeks. Subjects recorded session RPE 30 minutes post training using the Borg category-ratio 10 scale. Repeated measures analysis of variance found significant (p < 0.05) changes in sprint velocity and session RPE over 6 weeks. All groups significantly increased 0- to 5-m velocity and 0- to 10-m velocity by 4-7%, with no differences between groups. There were no significant differences in session RPE between the groups, suggesting that protocols were matched for intensity. Session RPE significantly increased over the 6 weeks for all groups, ranging from 3.75 to 5.50. This equated to intensities of somewhat hard to hard. Post hoc testing revealed few significant weekly increases, suggesting that session RPE may not be sensitive to weekly load increases in sprint and plyometric training programs. Another explanation, however, could be that the weekly load increments used were not great enough to increase perceived exertion. Nonetheless, the progressive overload of each program was sufficient to improve 10-m sprint performance. The session RPE values from the present study could be used to assess workload for speed training periodization within a team sports conditioning program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号