首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using juvenile coho salmon, Oncorhynchus kisutch, we tested predictions arising from dynamic optimization models of foraging under predation risk. Coho juveniles from two size groups raised in the laboratory were individually fed varying food rations. Their willingness to risk predation was measured as the time to resume foraging after presentation of a predator model. Small fish (mean weight 1.5 g) resumed feeding earlier than larger fish (3.5 g) as predicted by dynamic models under summer photoperiod but not under autumn photoperiod. Contrary to predictions, larger fish did not increase risk taking and small fish decreased risk taking between summer and autumn treatments. Food ration significantly influenced time to resume feeding only in small coho. A simple mechanistic model we proposed to explain feeding motivation under risk as a function of body size and prior growth rate was not sufficient to explain observed variation in risk taking. This study suggests that coho salmon use photoperiod and their own body size as cues for long-term, state-dependent adjustments of feeding behaviour. The lower risk taking of larger fish is probably an example of asset protection, whereby larger animals accept less predation risk to protect their greater accumulated fitness value. The decrease of risk taking in small fish in the autumn was possibly caused by a switch of life history trajectory towards delayed smolting. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

2.
We analyzed variation in phenotypic plasticity of life history traits between two Cardamine flexuosa populations based on differences in plasticity of age and size at maturity. C. flexuosa (Cruciferae) is a facultative, vernalization-sensitive, long-day annual, and its phenology and the phenotypic expressions of many life history traits are largely controlled by photoperiod and vernalization in natural populations. We used plants from two populations which differed in their responses to chilling and photoperiod treatments. The timing of developmental processes was changed by controlling temperature and photoperiod regimes in growth chambers. Plasticity in size at maturity was analyzed as changes in a growth trajectory using two parameters, age at maturity (Δt) and growth rate (k). Both traits showed plasticity, but differences between the populations were found mostly for Δt. Distinctive differences in size at maturity of individuals in the two populations were mainly due to different amounts of plasticity in Δt. Variations in plasticity of nine other life history traits and their associations to age and size at maturity were also analyzed. Variation for eight of the traits can be described, at least in part, as a function of age and size at maturity for both populations, and most of the variation in the total number of seeds was explained by age and size at maturity. Only age at maturity had any effect on changes in resource allocation. The nine life history traits were integrated through associated character expressions with age and size at maturity. Changes in the association between a trait and age and/or size at maturity were rather conservative compared to changes in the plasticity of a trait between the two populations. Associations with age and size at maturity are mostly explicable in terms of inherent relationships in the developmental processes, and they may limit the ecological range expansion and the adaptive evolution of plasticity in C. flexuosa. The negative correlation between reproductive allocation and age at maturity can be a cost of delaying maturation in C. flexuosa.  相似文献   

3.
1. Temporally constrained environments, such as habitats with short growth seasons or short hydroperiods, cause potentially strong selection on life histories. Depending on the predictability of these events and the extent of spatial and temporal heterogeneity, local populations could become adapted either via a fixed phenotype or via life history plasticity in response to these environmental cues. 2. We used a common garden experiment to investigate microgeographic variation in life history responses to combined changes in photoperiod (ambient/late) and hydroperiod (constant/drying) time constraint cues in an alpine caddisfly (Trichoptera). We compared six populations (three permanent/three temporary streams) originating from a small, alpine floodplain and which spanned an expected gradient in growth period duration (GPD) with distance from glaciers. 3. We made two main predictions in relation to locally varying selection pressures: (i) populations nearest glaciers (shorter GPD and strongest time constraints) should have the fastest development rates and (ii) populations from permanent streams should be less able to respond to drying hydroperiods than populations from temporary streams. 4. All populations and both sexes accelerated development in response to late season photoperiod cues. However, only permanent stream populations showed an increase in development time with increasing GPD, suggesting that other factors were influencing populations in temporary streams. 5. Permanent stream populations showed countergradient variation (genetic and environmental influences were in opposition) in development time, and under‐compensation of growth rates resulted in a converse Bergmann cline in body size (smaller body size along gradients of declining season length). The extent of plasticity in response to hydroperiod, and the combined effects of both time constraints, differed between populations and sexes, but were not consistent among populations. 6. Taken together, our results suggest adaptive plasticity in response to season length. The lack of a predictable pattern in response to hydroperiod may be due to gene flow or weak selection. We conclude that spatially structured populations can strongly differ in phenotypic plasticity even at microgeographic scales.  相似文献   

4.
Whether shrinking body size is a universal response to climate change remains controversial. Moreover, the mechanisms underlying body size shifts are poorly understood. Here, assuming that life history traits evolve to maximize fitness according to life history plasticity theory, we hypothesized that under global warming temperate multivoltine insects should emerge earlier with a smaller body mass in the early growing season, but emerge later with a larger body mass in the late season. We tested this hypothesis by conducting two field artificial warming experiments in an alpine meadow: 1) with one pre‐dispersal seed predator species (tephritid flies, Tephritis femoralis) and its two host‐plant species flowering in early and late growing seasons, respectively, and 2) with the tephritid flies and one host species with a flowering season that occupies parts of both the early and late growing seasons. These experiments were complemented by a microcosm chamber warming experiment, in which increasing and decreasing temperature trends were set to simulate temperature variation pattern in early and late growing seasons, respectively, but photoperiod was held constant. Warming generally advanced the adult emergence and decreased the body size (adult body mass) in the early season but delayed the emergence and increased the size in the late season in both field experiments, indicating that the seasonally different effects of warming on the fly body size was constant regardless of host‐plant identity. The chamber warming resulted in consistent responses of emerging timing and body size to the simulated seasonal warming, demonstrating that the temperature increase per se and its interaction with direction of temperature change, but not other correlated effects, should be primarily responsible for the observed contrasting shifts of body size at different times of the season. Our results indicate that taking into account temperate seasonal patterns of temperature variation could be of general importance for predicting animal body size changes in the warmed future.  相似文献   

5.
We investigated the life history alterations of coexisting Daphnia species responding to environmental temperature and predator cues. In a laboratory experiment, we measured Daphnia life history plasticity under different predation risk and temperature treatments that simulate changing environmental conditions. Daphnia pulicaria abundance and size at first reproduction (SFR) declined, while ephippia (resting egg) formation increased at high temperatures. Daphnia mendotae abundance and clutch size increased with predation risk at high temperatures, but produced few ephippia. Thus, each species exhibited phenotypic plasticity, but responded in sharply different ways to the same environmental cues. In Glen Elder reservoir, Kansas USA, D. pulicaria dominance shifted to D. mendotae dominance as temperature and predation risk increased from March to June in both 1999 and 2000. Field estimates of life history shifts mirrored the laboratory experiment results, suggesting that similar phenotypic responses to seasonal cues contribute to seasonal Daphnia population trends. These results illustrate species-specific differences in life history plasticity among coexisting zooplankton taxa.  相似文献   

6.
Organisms living in seasonal environments are often limited by the time available to complete their development. Especially individuals in northern populations may face severe time constraints in their need of completing development before the end of the growth season. Larval amphibians have been widely used in studies of phenotypic plasticity. However, their responses to changes in photoperiod, the main seasonal cue in many organisms, are unknown. In a laboratory experiment, we studied whether common frog (Rana temporaria) tadpoles originating from two populations (separated latitudinally by 1600 km) adjust their growth and development according to the progress of the season by using photoperiodic cues, and whether these responses are temperature dependent. We hypothesised that if frogs use photoperiod as a cue, they should increase growth and development rates as a response to photoperiodic treatments mimicking progressing season. Although our predictions were not verified in either of the populations, photoperiod manipulations had effects on larval life history in both populations. When exposed to progressing season treatments and high temperature, tadpoles from the southern population ceased feeding, which led to delayed metamorphosis and increased mortality. In the northern population, age at metamorphosis was unaffected by the photoperiod treatments, but growth rate until metamorphosis and metamorphic size were slightly larger in the treatments with shorter (increasing or decreasing) day length. Irrespective of photoperiod treatments, growth and development rates, size at metamorphosis and food consumption were higher in the northern as compared to the southern population. These results indicate that in contrast to several insect species, the critical life history decisions in amphibian larvae may not be strongly influenced by photoperiodic cues, but different populations seem to differ in this respect. However, the strong temperature×photoperiod interactions in several traits in the southern population suggest that the role of photoperiodic cues may be affected by other environmental factors, although the ecological significance of these differences remains unclear.  相似文献   

7.
Robby Stoks  Frank Johansson 《Oikos》2000,91(3):559-567
Life history theory predicts that size and age at emergence depend on the slope and shape of the relationship between mortality rate and foraging effort. Given the high expected foraging effort in obligate univoltine species compared with semivoltine species we expected a low slope and an increase in foraging effort in the presence of a predator for the former and the opposite pattern for the latter. We tested these predictions in two damselfly species of the univoltine genus Lestes , and the semivoltine genus Coenagrion when confronted with perch. We determined for each of the four study species the relationships between mortality rate and foraging effort at an individual level. As expected by the different growth demands associated with differences in life cycle length, both Lestes species had a higher foraging effort than the two Coenagrion species in the absence as well as in the presence of perch. As a result, lestids also suffered a higher mortality rate. The slope of the regression between mortality rate and foraging effort was, as predicted, lower for lestids than for coenagrionids, for one species pair. Despite this, and opposite to our prediction, the lestids decreased foraging effort even more than coenagrionids in the presence of perch. We discuss these findings in the light of life history responses in species that differ in life cycle length.  相似文献   

8.
We investigate sexual differences in reaction norms in directly developing individuals of the copper butterfly Lycaena tityrus predicted from sexual selection theory. As recent studies on butterflies revealed a high degree of adaptive plasticity in growth and development, which may undermine the basic trade‐offs assumed in life‐history theory, we focus on effects of temperature, trying to drive growth rates to their physiological upper limit and thus disclosing otherwise potentially concealed responses. Development time strongly depended on temperature, leading in accordance with a central assumption in life‐history theory to a larger size at low temperatures, and vice versa. At all temperatures larval development time of males was significantly shorter compared to females, as was predicted by protandry theory. This was partially due to an invariably higher growth rate of males. However, sexes responded in different ways to developmental time constraints caused by increasing temperatures. Despite the shorter larval time of males, both sexes achieved similar body sizes at lower temperatures, because males avoided a reduction in weight due to plastic growth. At high temperatures, in contrast, males were forced to make a trade‐off in which they favoured early emergence over large size, leading to a dramatic weight loss. Weight of females, however, remained similar throughout showing no trade‐off. These different reaction norms reflect divergent selective pressures acting on males and females, which can be explained in relation to the reproductive system. The strong selection for early emergence in males is likely to be due to monandry, discrete non‐overlapping generations (as was already predicted by theory), and territoriality, because prior ownership of a territory seems to be a major advantage for successful reproduction. On the other hand, the preference of females for large body size was expected due to the close relationship between this trait and fecundity. Thus, our results highlight the extraordinary importance of the specific reproductive system, which can influence central life‐history traits in manifold ways.  相似文献   

9.
We studied costs and benefits of life history shifts of water fleas (genus Daphnia ) in response to infochemicals from planktivorous fish. We applied a dynamic energy budget model to investigate the resource allocation patterns underlying the observed life history shifts and their adaptive value under size selective predation in one coherent analysis. Using a published data set of life history shifts in response to fish infochemicals we show that Daphnia invests less energy in somatic growth in the fish treatment. This observation complies with theoretical predictions on optimal resource allocation. However, the observed patterns of phenotypic plasticity cannot be explained by changes in resource allocation patterns alone because our model-based analysis of the empirical data clearly identified additional bioenergetic costs in the fish treatments. Consequently, the response to fish kairomone only becomes adaptive if the intensity of size selective predation surpasses a certain critical level. We believe that this is the first study that puts resource allocation, energetic costs, and adaptive value of predator induced life-history shifts – using empirical data – into one theoretical framework.  相似文献   

10.
Temperature is considered one of the most important mediators of phenotypic plasticity in ectotherms. However, the costs and benefits shaping the evolution of different thermal responses are poorly elucidated. One of the possible constraints to phenotypic plasticity is its intrinsic genetic cost, such as genetic linkage or pleiotropy. Genetic coupling of the thermal response curves for different life history traits may significantly affect the evolution of thermal sensitivity in thermally fluctuating environments. We used the collembolan Orchesella cincta to study if there is genetic variation in temperature-induced phenotypic plasticity in life history traits, and if the degree of temperature-induced plasticity is correlated across traits. Egg development rate, juvenile growth rate and egg size of 19 inbred isofemale lines were measured at two temperatures. Our results show that temperature was a highly significant factor for all three traits. Egg development rate and juvenile growth rate increased with increasing temperature, while egg size decreased. Line by temperature interaction was significant for all traits tested; indicating that genetic variation for temperature-induced plasticity existed. The degree of plasticity was significantly positively correlated between egg development rate and growth rate, but plasticity in egg size was not correlated to the other two plasticity traits. The findings suggest that the thermal plasticities of egg development rate and growth rate are partly under the control of the same genes or genetic regions. Hence, evolution of the thermal plasticity of traits cannot be understood in isolation of the response of other traits. If traits have similar and additive effects on fitness, genetic coupling between these traits may well facilitate the evolution of optimal phenotypes. However, for this we need to know the selective forces under field conditions.  相似文献   

11.
Temperature-mediated plasticity in life history traits strongly affects the capability of ectotherms to cope with changing environmental temperatures. We hypothesised that temperature-mediated reaction norms of ectotherms are constrained by the availability of essential dietary lipids, i.e. polyunsaturated fatty acids (PUFA) and sterols, as these lipids are involved in the homeoviscous adaptation of biological membranes to changing temperatures. A life history experiment was conducted in which the freshwater herbivore Daphnia magna was raised at four different temperatures (10, 15, 20, 25°C) with food sources differing in their PUFA and sterol composition. Somatic growth rates increased significantly with increasing temperature, but differences among food sources were obtained only at 10°C at which animals grew better on PUFA-rich diets than on PUFA-deficient diets. PUFA-rich food sources resulted in significantly higher population growth rates at 10°C than PUFA-deficient food, and the optimum temperature for offspring production was clearly shifted towards colder temperatures with an increased availability of dietary PUFA. Supplementation of PUFA-deficient food with single PUFA enabled the production of viable offspring and significantly increased population growth rates at 10°C, indicating that dietary PUFA are crucial for the acclimation to cold temperatures. In contrast, cumulative numbers of viable offspring increased significantly upon cholesterol supplementation at 25°C and the optimum temperature for offspring production was shifted towards warmer temperatures, implying that sterol requirements increase with temperature. In conclusion, essential dietary lipids significantly affect temperature-mediated reaction norms of ectotherms and thus temperature-mediated plasticity in life history traits is subject to strong food quality constraints.  相似文献   

12.
Invasive species cope with novel environments through both phenotypic plasticity and evolutionary change. However, the environmental factors that cause evolutionary divergence in invasive species are poorly understood. We developed predictions for how different life‐history traits, and plasticity in those traits, may respond to environmental gradients in seasonal temperatures, season length and natural enemies. We then tested these predictions in four geographic populations of the invasive cabbage white butterfly (Pieris rapae) from North America. We examined the influence of two rearing temperatures (20 and 26.7 °C) on pupal mass, pupal development time, immune function and fecundity. As predicted, development time was shorter and immune function was greater in populations adapted to longer season length. Also, phenotypic plasticity in development time was greater in regions with shorter growing seasons. Populations differed significantly in mean and plasticity of body mass and fecundity, but these differences were not associated with seasonal temperatures or season length. Our study shows that some life‐history traits, such as development time and immune function, can evolve rapidly in response to latitudinal variation in season length and natural enemies, whereas others traits did not. Our results also indicate that phenotypic plasticity in development time can also diverge rapidly in response to environmental conditions for some traits.  相似文献   

13.
Climate-mediated shifts in species’ phenologies are expected to alter species interactions, but predicting the consequences of this is difficult because phenological shifts may be driven by different climate factors that may or may not be correlated. Temperature could be an important factor determining effects of phenological shifts by altering species’ growth rates and thereby the relative size ratios of interacting species. We tested this hypothesis by independently manipulating temperature and the relative hatching phenologies of two competing amphibian species. Relative shifts in hatching time generally altered the strength of competition, but the presence and magnitude of this effect was temperature dependent and joint effects of temperature and hatching phenology were non-additive. Species that hatched relatively early or late performed significantly better or worse, respectively, but only at higher temperatures and not at lower temperatures. As a consequence, climate-mediated shifts in hatching phenology or temperature resulted in stronger or weaker effects than expected when both factors acted in concert. Furthermore, consequences of phenological shifts were asymmetric; arriving relatively early had disproportional stronger (or weaker) effects than arriving relatively late, and this varied with species identity. However, consistent with recent theory, these seemingly idiosyncratic effects of phenological shifts could be explained by species-specific differences in growth rates across temperatures and concordant shifts in relative body size of interacting species. Our results emphasize the need to account for environmental conditions when predicting the effects of phenological shifts, and suggest that shifts in size-structured interactions can mediate the impact of climate change on natural communities.  相似文献   

14.
Temperature and photoperiod play major roles in insect ecology. Many insect species have fixed degree‐days for embryogenesis, with minimum and maximum temperature thresholds for egg and larval development and hatching. Often, photoperiodic changes trigger the transfer into the next life‐cycle stadium. However, it is not known whether this distinct pattern also exist in a species with a high level of phenotypic plasticity in life‐history traits. In the present study, eggs of the dragonfly Sympetrum striolatum Charpentier (Odonata: Libellulidae) are reared under different constant and fluctuating temperatures and photoperiodic conditions in several laboratory and field experiments. In general, and as expected, higher temperatures cause faster egg development. However, no general temperature or light‐days for eyespot development and hatching are found. The minimum temperature thresholds are distinguished for survival (2 °C), embryogenesis (6 °C) and larval hatching (above 6 °C). Low winter temperatures synchronize hatching. Above 36 °C, no eyespots are visible and no larvae hatch. In laboratory experiments, light is neither necessary for eyespot development, nor for hatching. By contrast to the laboratory experiments, the field experiment show that naturally changing temperature and photoperiod play a significant role in the seasonal regulation of embryonic development. The post‐eyespot development is more variable and influenced by temperature and photoperiod than the pre‐eyespot development. This developmental plasticity at the end of the embryogenesis might be a general pattern in the Libellulidae, helping them to cope with variation in environmental conditions.  相似文献   

15.
A rapidly changing climate has the potential to interfere with the timing of environmental cues that ectothermic organisms rely on to initiate and regulate life history events. Short‐lived ectotherms that exhibit plasticity in their life history could increase the number of generations per year under warming climate. If many individuals successfully complete an additional generation, the population experiences an additional opportunity to grow, and a warming climate could lead to a demographic bonanza. However, these plastic responses could become maladaptive in temperate regions, where a warmer climate could trigger a developmental pathway that cannot be completed within the growing season, referred to as a developmental trap. Here we incorporated detailed demography into commonly used photothermal models to evaluate these demographic consequences of phenological shifts due to a warming climate on the formerly widespread, multivoltine butterfly (Pieris oleracea). Using species‐specific temperature‐ and photoperiod‐sensitive vital rates, we estimated the number of generations per year and population growth rate over the set of climate conditions experienced during the past 38 years. We predicted that populations in the southern portion of its range have added a fourth generation in recent years, resulting in higher annual population growth rates (demographic bonanzas). We predicted that populations in the Northeast United States have experienced developmental traps, where increases in the thermal window initially caused mortality of the final generation and reduced growth rates. These populations may recover if more growing degree days are added to the year. Our framework for incorporating detailed demography into commonly used photothermal models demonstrates the importance of using both demography and phenology to predict consequences of phenological shifts.  相似文献   

16.
Marjan De Block  Robby Stoks 《Oikos》2004,106(3):587-597
There is increasing awareness that combinations of biotic and time stress interact in shaping life history plasticity. Despite being widespread and abundant, the role of cannibalism in linking both types of constraints to life history plasticity has been largely neglected. Moreover, no studies disentangled direct (due to the extra meal) and indirect (due to the elimination of the competitor) life history effects of cannibalism, and little is known about their differential dependency on these constraints. We studied effects of cannibalism on the life history of the damselfly Lestes viridis under combinations of time stress (by manipulating the perceived time available in the growth season) and food stress. We reared larvae per two and disentangled direct and indirect effects of cannibalism by preventing cannibalism in half of the cups and by manipulating the per capita food increase after cannibalism. Cannibalism was more frequent under both time stress and food stress and our results show it may help cannibals to compensate for the negative effects of these constraints imposed on life history. Both direct and indirect benefits of cannibalism (increased development and growth rates, larger mass at emergence) were dependent on the timing of cannibalism, being more pronounced or only present when cannibalism occurred early. Moreover, we found that the ecological constraints (time stress and food stress) also differentially shaped some of the direct and indirect effects. Given the differential context-dependency of direct and indirect effects and the fact that direct and indirect life history effects may be both important in shaping life history, disentangling these effects is critical to mechanistically understand under which conditions cannibalism is expected to be adaptive or not.  相似文献   

17.
Temperature not only has direct effects on microbial activity, but can also affect activity indirectly by changing the temperature dependency of the community. This would result in communities performing better over time in response to increased temperatures. We have for the first time studied the effect of soil temperature (5–50 °C) on the community adaptation of both bacterial (leucine incorporation) and fungal growth (acetate-in-ergosterol incorporation). Growth at different temperatures was estimated after about a month using a short-term assay to avoid confounding the effects of temperature on substrate availability. Before the experiment started, fungal and bacterial growth was optimal around 30 °C. Increasing soil temperature above this resulted in an increase in the optimum for bacterial growth, correlated to soil temperature, with parallel shifts in the total response curve. Below the optimum, soil temperature had only minor effects, although lower temperatures selected for communities growing better at the lowest temperature. Fungi were affected in the same way as bacteria, with large shifts in temperature tolerance at soil temperatures above that of optimum for growth. A simplified technique, only comparing growth at two contrasting temperatures, gave similar results as using a complete temperature curve, allowing for large scale measurements also in field situations with small differences in temperature.  相似文献   

18.
1. Although there is a great deal of theoretical and empirical data about the life history responses of time constraints in organisms, little is known about the latitude‐compensating mechanism that enables northern populations' developmental rates to compensate for latitude. To investigate the importance of photoperiod on development, offspring of the obligatory univoltine damselfly Lestes sponsa from two populations at different latitudes (53°N and 63°N) were raised in a common laboratory environment at both northern and southern photoperiods that corresponded to the sites of collection. 2. Egg development time was shorter under northern photoperiod regimes for both populations. However, the northern latitude population showed a higher phenotypic plasticity response to photoperiod compared with the southern latitude population, suggesting a genetic difference in egg development time in response to photoperiod. 3. Larvae from both latitudes expressed shorter larval development time and faster growth rates under northern photoperiod regimes. There was no difference in phenotypic plastic response between northern and southern latitude populations with regard to development time. 4. Data on field collected adults showed that adult sizes decreased with an increase in latitude. This adult size difference was a genetically fixed trait, as the same size difference between populations was also found when larvae were reared in the laboratory. 5. The results suggest phenotypic plasticity responses in life history traits to photoperiod, but also genetic differences between north and south latitude populations in response to photoperiod, which indicates the presence of a latitudinal compensating mechanism that is triggered by a photoperiod.  相似文献   

19.
Summary Several predictions of central place foraging theory were tested. As predicted, beavers foraged more selectively at increasing distance from the central place. With increasing distance from the river's edge, beavers cut fewer branches and deleted small branches from their diet. Large branches were favored at all distances, which differs from patterns observed in previous studies of beaver foraging. This difference, however, is expected and supports Schoener's (1979) predictions which are based on differences between provisioning costs and item size.The selective harvesting of branches predicted by foraging theory affects plant growth form and may influence plant reproductive patterns. High rates of branch removal caused cottonwoods to develop a shrubby architecture. The importance of selective branch choice by beavers on patterns of cottonwood reproduction (i.e., delayed sexual maturity and induced cloning) is discussed.  相似文献   

20.
Life history responses depend on timing of cannibalism in a damselfly   总被引:1,自引:0,他引:1  
1. Cannibalism has often been suggested as an important mechanism to reach the necessary developmental stage and size before a critical time horizon is reached, but this role has been largely unexplored. We studied effects of cannibalism on the life history of the damselfly Lestes viridis under combinations of a time constraint (by manipulating the perceived time available in the growth season) and a biotic constraint (density). 2. Larvae had a faster development and growth rate when reared at high time stress (late photoperiod). They also had a higher growth rate and mass at emergence when cannibalism occurred (density 2 and 4). Cannibalism occurred earlier at higher density. Accelerated life history responses (faster development and growth rate) and a higher mass at emergence were dependent upon the timing of cannibalism. Responses were more pronounced or only present if cannibalism occurred early in the larval period. 3. Our data suggest that cannibalism may not only act as a lifeboat mechanism by enabling cannibals to survive detrimental ecological conditions, but may also act as a compensatory mechanism to keep life history variables near‐optimal at life history transitions, even under sub‐optimal conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号