首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 545 毫秒
1.
2.
MOTIVATION: Functional annotation of unknown proteins is a major goal in proteomics. A key annotation is the prediction of a protein's subcellular localization. Numerous prediction techniques have been developed, typically focusing on a single underlying biological aspect or predicting a subset of all possible localizations. An important step is taken towards emulating the protein sorting process by capturing and bringing together biologically relevant information, and addressing the clear need to improve prediction accuracy and localization coverage. RESULTS: Here we present a novel SVM-based approach for predicting subcellular localization, which integrates N-terminal targeting sequences, amino acid composition and protein sequence motifs. We show how this approach improves the prediction based on N-terminal targeting sequences, by comparing our method TargetLoc against existing methods. Furthermore, MultiLoc performs considerably better than comparable methods predicting all major eukaryotic subcellular localizations, and shows better or comparable results to methods that are specialized on fewer localizations or for one organism. AVAILABILITY: http://www-bs.informatik.uni-tuebingen.de/Services/MultiLoc/  相似文献   

3.
4.
Short motifs are known to play diverse roles in proteins, such as in mediating the interactions with other molecules, binding to membranes, or conducting a specific biological function. Standard approaches currently employed to detect short motifs in proteins search for enrichment of amino acid motifs considering mostly the sequence information. Here, we presented a new approach to search for common motifs (protein signatures) which share both physicochemical and structural properties, looking simultaneously at different features. Our method takes as an input an amino acid sequence and translates it to a new alphabet that reflects its intrinsic structural and chemical properties. Using the MEME search algorithm, we identified the proteins signatures within subsets of protein which encompass common sequence and structural information. We demonstrated that we can detect enriched structural motifs, such as the amphipathic helix, from large datasets of linear sequences, as well as predicting common structural properties (such as disorder, surface accessibility, or secondary structures) of known functional‐motifs. Finally, we applied the method to the yeast protein interactome and identified novel putative interacting motifs. We propose that our approach can be applied for de novo protein function prediction given either sequence or structural information. Proteins 2013; © 2012 Wiley Periodicals, Inc.  相似文献   

5.
6.
7.
Due to advances in molecular biology the DNA sequences of structural genes coding for proteins are often known before a protein is characterized or even isolated. The function of a protein whose amino acid sequence has been deduced from a DNA sequence may not even be known. This has created greater interest in the development of methods to predict the tertiary structures of proteins. The a priori prediction of a protein's structure from its amino acid sequence is not yet possible. However, since proteins with similar amino acid sequences are observed to have similar three-dimensional structures, it is possible to use an analogy with a protein of known structure to draw some conclusions about the structure and properties of an uncharacterized protein. The process of predicting the tertiary structure of a protein relies very much upon computer modeling and analysis of the structure. The prediction of the structure of the bacteriophage 434 cro repressor is used as an example illustrating current procedures.  相似文献   

8.
Prediction of a complex super-secondary structure is a key step in the study of tertiary structures of proteins. The strand-loop-helix-loop-strand (βαβ) motif is an important complex super-secondary structure in proteins. Many functional sites and active sites often occur in polypeptides of βαβ motifs. Therefore, the accurate prediction of βαβ motifs is very important to recognizing protein tertiary structure and the study of protein function. In this study, the βαβ motif dataset was first constructed using the DSSP package. A statistical analysis was then performed on βαβ motifs and non-βαβ motifs. The target motif was selected, and the length of the loop-α-loop varies from 10 to 26 amino acids. The ideal fixed-length pattern comprised 32 amino acids. A Support Vector Machine algorithm was developed for predicting βαβ motifs by using the sequence information, the predicted structure and function information to express the sequence feature. The overall predictive accuracy of 5-fold cross-validation and independent test was 81.7% and 76.7%, respectively. The Matthew’s correlation coefficient of the 5-fold cross-validation and independent test are 0.63 and 0.53, respectively. Results demonstrate that the proposed method is an effective approach for predicting βαβ motifs and can be used for structure and function studies of proteins.  相似文献   

9.
In the past, a large number of methods have been developed for predicting various characteristics of a protein from its composition. In order to exploit the full potential of protein composition, we developed the web-server COPid to assist the researchers in annotating the function of a protein from its composition using whole or part of the protein. COPid has three modules called search, composition and analysis. The search module allows searching of protein sequences in six different databases. Search results list database proteins in ascending order of Euclidian distance or descending order of compositional similarity with the query sequence. The composition module allows calculation of the composition of a sequence and average composition of a group of sequences. The composition module also allows computing composition of various types of amino acids (e.g. charge, polar, hydrophobic residues). The analysis module provides the following options; i) comparing composition of two classes of proteins, ii) creating a phylogenetic tree based on the composition and iii) generating input patterns for machine learning techniques. We have evaluated the performance of composition-based (or alignment-free) similarity search in the subcellular localization of proteins. It was found that the alignment free method performs reasonably well in predicting certain classes of proteins. The COPid web-server is available at http://www.imtech.res.in/raghava/copid/.  相似文献   

10.
We develop a probabilistic system for predicting the subcellular localization of proteins and estimating the relative population of the various compartments in yeast. Our system employs a Bayesian approach, updating a protein's probability of being in a compartment, based on a diverse range of 30 features. These range from specific motifs (e.g. signal sequences or the HDEL motif) to overall properties of a sequence (e.g. surface composition or isoelectric point) to whole-genome data (e.g. absolute mRNA expression levels or their fluctuations). The strength of our approach is the easy integration of many features, particularly the whole-genome expression data. We construct a training and testing set of approximately 1300 yeast proteins with an experimentally known localization from merging, filtering, and standardizing the annotation in the MIPS, Swiss-Prot and YPD databases, and we achieve 75 % accuracy on individual protein predictions using this dataset. Moreover, we are able to estimate the relative protein population of the various compartments without requiring a definite localization for every protein. This approach, which is based on an analogy to formalism in quantum mechanics, gives better accuracy in determining relative compartment populations than that obtained by simply tallying the localization predictions for individual proteins (on the yeast proteins with known localization, 92% versus 74%). Our training and testing also highlights which of the 30 features are informative and which are redundant (19 being particularly useful). After developing our system, we apply it to the 4700 yeast proteins with currently unknown localization and estimate the relative population of the various compartments in the entire yeast genome. An unbiased prior is essential to this extrapolated estimate; for this, we use the MIPS localization catalogue, and adapt recent results on the localization of yeast proteins obtained by Snyder and colleagues using a minitransposon system. Our final localizations for all approximately 6000 proteins in the yeast genome are available over the web at: http://bioinfo.mbb.yale. edu/genome/localize.  相似文献   

11.
We have developed a pattern comparative method for identifying functionally important motifs in protein sequences. The essence of most standard pattern comparative methods is a comparison of patterns occurring in different sequences using an optimized weight matrix. In contrast, our approach is based on a measure of similarity among all the candidate motifs within the same sequence. This method may prove to be particularly efficient for proteins encoding the same biochemical function, but with different primary sequences, and when tertiary structure information from one or more sequences is available. We have applied this method to a special class of zinc-binding enzymes known as endopeptidases.  相似文献   

12.
Skrabanek L  Niv MY 《Proteins》2008,72(4):1138-1147
Sequence signature databases such as PROSITE, which include protein pattern motifs indicative of a protein's function, are widely used for function prediction studies, cellular localization annotation, and sequence classification. Correct annotation relies on high precision of the motifs. We present a new and general approach for increasing the precision of established protein pattern motifs by including secondary structure constraints (SSCs). We use Scan2S, the first sequence motif-scanning program to optionally include SSCs, to augment PROSITE pattern motifs. The constraints were derived from either the DSSP secondary structure assignment or the PSIPRED predictions for PROSITE-documented true positive hits. The secondary structure-augmented motifs were scanned against all SwissProt sequences, for which secondary structure predictions were precalculated. Against this dataset, motifs with PSIPRED-derived SSCs exhibited improved performance over motifs with DSSP-derived constraints. The precision of 763 of the 782 PSIPRED-augmented motifs remained unchanged or increased compared to the original motifs; 26 motifs showed an absolute precision increase of 10-30%. We provide the complete set of augmented motifs and the Scan2S program at http://physiology.med.cornell.edu/go/scan2s. Our results suggest a general protocol for increasing the precision of protein pattern detection via the inclusion of SSCs.  相似文献   

13.
Superdomain is uniquely defined in this work as a conserved combination of different globular domains in different proteins. The amino acid sequences of 25 structurally and functionally diverse proteins from fungi, plants, and animals have been analyzed in a test of the superdomain hypothesis. Each of the proteins contains a protein tyrosine phosphatase (PTP) domain followed by a C2 domain. Four novel conserved sequence motifs have been identified, one in the PTP domain and three in the C2 domain. All contribute to the PTP-C2 domain interface in PTEN, a tumor suppressor, and all are more conserved than the PTP signature motif, HCX3(K/R)XR, in the 25 sequences. We show that PTP-C2 was formed prior to the fungi, plant, and animal kingdom divergence. A superdomain as defined here does not fit the usual protein structure classification system. The demonstrated existence of one superdomain suggests the existence of others.  相似文献   

14.
Automated prediction of bacterial protein subcellular localization is an important tool for genome annotation and drug discovery. PSORT has been one of the most widely used computational methods for such bacterial protein analysis; however, it has not been updated since it was introduced in 1991. In addition, neither PSORT nor any of the other computational methods available make predictions for all five of the localization sites characteristic of Gram-negative bacteria. Here we present PSORT-B, an updated version of PSORT for Gram-negative bacteria, which is available as a web-based application at http://www.psort.org. PSORT-B examines a given protein sequence for amino acid composition, similarity to proteins of known localization, presence of a signal peptide, transmembrane alpha-helices and motifs corresponding to specific localizations. A probabilistic method integrates these analyses, returning a list of five possible localization sites with associated probability scores. PSORT-B, designed to favor high precision (specificity) over high recall (sensitivity), attained an overall precision of 97% and recall of 75% in 5-fold cross-validation tests, using a dataset we developed of 1443 proteins of experimentally known localization. This dataset, the largest of its kind, is freely available, along with the PSORT-B source code (under GNU General Public License).  相似文献   

15.
Many methods have been described to predict the subcellular location of proteins from sequence information. However, most of these methods either rely on global sequence properties or use a set of known protein targeting motifs to predict protein localization. Here, we develop and test a novel method that identifies potential targeting motifs using a discriminative approach based on hidden Markov models (discriminative HMMs). These models search for motifs that are present in a compartment but absent in other, nearby, compartments by utilizing an hierarchical structure that mimics the protein sorting mechanism. We show that both discriminative motif finding and the hierarchical structure improve localization prediction on a benchmark data set of yeast proteins. The motifs identified can be mapped to known targeting motifs and they are more conserved than the average protein sequence. Using our motif-based predictions, we can identify potential annotation errors in public databases for the location of some of the proteins. A software implementation and the data set described in this paper are available from http://murphylab.web.cmu.edu/software/2009_TCBB_motif/.  相似文献   

16.
膜蛋白的拓扑学   总被引:2,自引:0,他引:2  
膜蛋白的拓扑学是研究膜蛋白三维结构的出发点.利用融合蛋白和化学修饰等实验技术已确定了很多膜蛋白的拓扑学.对膜蛋白的转运与插膜的研究确定可能存在两类插膜元件.对已知拓扑学的膜蛋白的统计分析以及蛋白质工程的研究表明存在膜蛋白拓扑学的内正规则.目前已形成预测膜蛋白的拓扑学的比较可靠的策略,这在反向生物学上具有重要意义.但要进行三维结构的预测还有许多路要走.  相似文献   

17.
In the postgenomic age, with the avalanche of protein sequences generated and relatively slow progress in determining their structures by experiments, it is important to develop automated methods to predict the structure of a protein from its sequence. The membrane proteins are a special group in the protein family that accounts for approximately 30% of all proteins; however, solved membrane protein structures only represent less than 1% of known protein structures to date. Although a great success has been achieved for developing computational intelligence techniques to predict secondary structures in both globular and membrane proteins, there is still much challenging work in this regard. In this review article, we firstly summarize the recent progress of automation methodology development in predicting protein secondary structures, especially in membrane proteins; we will then give some future directions in this research field.  相似文献   

18.
Subcellular location of protein is constructive information in determining its function, screening for drug candidates, vaccine design, annotation of gene products and in selecting relevant proteins for further studies. Computational prediction of subcellular localization deals with predicting the location of a protein from its amino acid sequence. For a computational localization prediction method to be more accurate, it should exploit all possible relevant biological features that contribute to the subcellular localization. In this work, we extracted the biological features from the full length protein sequence to incorporate more biological information. A new biological feature, distribution of atomic composition is effectively used with, multiple physiochemical properties, amino acid composition, three part amino acid composition, and sequence similarity for predicting the subcellular location of the protein. Support Vector Machines are designed for four modules and prediction is made by a weighted voting system. Our system makes prediction with an accuracy of 100, 82.47, 88.81 for self-consistency test, jackknife test and independent data test respectively. Our results provide evidence that the prediction based on the biological features derived from the full length amino acid sequence gives better accuracy than those derived from N-terminal alone. Considering the features as a distribution within the entire sequence will bring out underlying property distribution to a greater detail to enhance the prediction accuracy.  相似文献   

19.
We present a comprehensive evaluation of a new structure mining method called PB-ALIGN. It is based on the encoding of protein structure as 1D sequence of a combination of 16 short structural motifs or protein blocks (PBs). PBs are short motifs capable of representing most of the local structural features of a protein backbone. Using derived PB substitution matrix and simple dynamic programming algorithm, PB sequences are aligned the same way amino acid sequences to yield structure alignment. PBs are short motifs capable of representing most of the local structural features of a protein backbone. Alignment of these local features as sequence of symbols enables fast detection of structural similarities between two proteins. Ability of the method to characterize and align regions beyond regular secondary structures, for example, N and C caps of helix and loops connecting regular structures, puts it a step ahead of existing methods, which strongly rely on secondary structure elements. PB-ALIGN achieved efficiency of 85% in extracting true fold from a large database of 7259 SCOP domains and was successful in 82% cases to identify true super-family members. On comparison to 13 existing structure comparison/mining methods, PB-ALIGN emerged as the best on general ability test dataset and was at par with methods like YAKUSA and CE on nontrivial test dataset. Furthermore, the proposed method performed well when compared to flexible structure alignment method like FATCAT and outperforms in processing speed (less than 45 s per database scan). This work also establishes a reliable cut-off value for the demarcation of similar folds. It finally shows that global alignment scores of unrelated structures using PBs follow an extreme value distribution. PB-ALIGN is freely available on web server called Protein Block Expert (PBE) at http://bioinformatics.univ-reunion.fr/PBE/.  相似文献   

20.
Tang SN  Sun JM  Xiong WW  Cong PS  Li TH 《Biochimie》2012,94(3):847-853
Mycobacterium, the most common disease-causing genus, infects billions of people and is notoriously difficult to treat. Understanding the subcellular localization of mycobacterial proteins can provide essential clues for protein function and drug discovery. In this article, we present a novel approach that focuses on local sequence information to identify localization motifs that are generated by a merging algorithm and are selected based on a binomially distributed model. These localization motifs are employed as features for identifying the subcellular localization of mycobacterial proteins. Our approach provides more accurate results than previous methods and was tested on an independent dataset recently obtained from an experimental study to provide a first and reasonably accurate prediction of subcellular localization. Our approach can also be used for large-scale prediction of new protein entries in the UniportKB database and of protein sequences obtained experimentally. In addition, our approach identified many local motifs involved with the subcellular localization that also interact with the environment. Thus, our method may have widespread applications both in the study of the functions of mycobacterial proteins and in the search for a potential vaccine target for designing drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号