共查询到20条相似文献,搜索用时 0 毫秒
1.
Stuart A. Kauffman 《Evolutionary ecology》1989,3(3):274-281
Summary The transition from the late Precambrian to Cambrian coincided with a massive increase in diversity of multicellular organisms and the rapid establishment of a large number of phyla. In contrast, the Permian extinction 200 million years ago was followed by as rapid an increase at the family level, but no new phyla or classes emerged. This asymmetry has suggested alternative theories based on greater ecological opportunity in the Cambrian, or special developmental canalization locking in development by the Permian. I suggest instead that the asymmetry reflects generic features of adaptive evolution on rugged fitness landscapes. 相似文献
2.
In complex environments, behavioural plasticity depends on the ability of an animal to integrate numerous sensory stimuli. The multidimensionality of factors interacting to shape plastic behaviour means it is difficult for both organisms and researchers to predict what constitutes an adaptive response to a given set of conditions. Although researchers may be able to map the fitness pay-offs of different behavioural strategies in changing environments, there is no guarantee that the study species will be able to perceive these pay-offs. We thus risk a disconnect between our own predictions about adaptive behaviour and what is behaviourally achievable given the umwelt of the animal being studied. This may lead to erroneous conclusions about maladaptive behaviour in circumstances when the behaviour exhibited is the most adaptive possible given sensory limitations. With advances in the computational resources available to behavioural ecologists, we can now measure vast numbers of interactions among behaviours and environments to create adaptive behavioural surfaces. These surfaces have massive heuristic, predictive and analytical potential in understanding adaptive animal behaviour, but researchers using them are destined to fail if they ignore the sensory ecology of the species they study. Here, we advocate the continued use of these approaches while directly linking them to perceptual space to ensure that the topology of the generated adaptive landscape matches the perceptual reality of the animal it intends to study. Doing so will allow predictive models of animal behaviour to reflect the reality faced by the agents on adaptive surfaces, vastly improving our ability to determine what constitutes an adaptive response for the animal in question. 相似文献
3.
The relationship between genotype and phenotype is often described as an adaptive fitness landscape. In this study, we used a combination of recombination, in vitro selection, and comparative sequence analysis to characterize the fitness landscape of a previously isolated kinase ribozyme. Point mutations present in improved variants of this ribozyme were recombined in vitro in more than 1014 different arrangements using synthetic shuffling, and active variants were isolated by in vitro selection. Mutual information analysis of 65 recombinant ribozymes isolated in the selection revealed a rugged fitness landscape in which approximately one-third of the 91 pairs of positions analyzed showed evidence of correlation. Pairs of correlated positions overlapped to form densely connected networks, and groups of maximally connected nucleotides occurred significantly more often in these networks than they did in randomized control networks with the same number of links. The activity of the most efficient recombinant ribozyme isolated from the synthetically shuffled pool was 30-fold greater than that of any of the ribozymes used to build it, which indicates that synthetic shuffling can be a rich source of ribozyme variants with improved properties. 相似文献
4.
Whether they are used to describe fitness, genome architecture or the spatial distribution of environmental variables, the concept of a landscape has figured prominently in our collective reasoning. The tradition of landscapes in evolutionary biology is one of fitness mapped onto axes defined by phenotypes or molecular sequence states. The characteristics of these landscapes depend on natural selection, which is structured across both genomic and environmental landscapes, and thus, the bridge among differing uses of the landscape concept (i.e. metaphorically or literally) is that of an adaptive phenotype and its distribution across geographical landscapes in relation to selective pressures. One of the ultimate goals of evolutionary biology should thus be to construct fitness landscapes in geographical space. Natural plant populations are ideal systems with which to explore the feasibility of attaining this goal, because much is known about the quantitative genetic architecture of complex traits for many different plant species. What is less known are the molecular components of this architecture. In this issue of Molecular Ecology, Parchman et al. (2012) pioneer one of the first truly genome-wide association studies in a tree that moves us closer to this form of mechanistic understanding for an adaptive phenotype in natural populations of lodgepole pine (Pinus contorta Dougl. ex Loud.). 相似文献
5.
Towards a general theory of adaptive walks on rugged landscapes 总被引:18,自引:1,他引:18
Adaptive evolution, to a large extent, is a complex combinatorial optimization process. In this article we take beginning steps towards developing a general theory of adaptive "walks" via fitter variants in such optimization processes. We introduce the basic idea of a space of entities, each a 1-mutant neighbor of many other entities in the space, and the idea of a fitness ascribed to each entity. Adaptive walks proceed from an initial entity, via fitter neighbors, to locally or globally optimal entities that are fitter than their neighbors. We develop a general theory for the number of local optima, lengths of adaptive walks, and the number of alternative local optima accessible from any given initial entity, for the baseline case of an uncorrelated fitness landscape. Most fitness landscapes are correlated, however. Therefore we develop parts of a universal theory of adaptation on correlated landscapes by adaptive processes that have sufficient numbers of mutations per individual to "jump beyond" the correlation lengths in the underlying landscape. In addition, we explore the statistical character of adaptive walks in two independent complex combinatorial optimization problems, that of evolving a specific cell type in model genetic networks, and that of finding good solutions to the traveling salesman problem. Surprisingly, both show similar statistical features, encouraging the hope that a general theory for adaptive walks on correlated and uncorrelated landscapes can be found. In the final section we explore two limits to the efficacy of selection. The first is new, and surprising: for a wide class of systems, as the complexity of the entities under selection increases, the local optima that are attainable fall progressively closer to the mean properties of the underlying space of entities. This may imply that complex biological systems, such as genetic regulatory systems, are "close" to the mean properties of the ensemble of genomic regulatory systems explored by evolution. The second limit shows that with increasing complexity and a fixed mutation rate, selection often becomes unable to pull an adapting population to those local optima to which connected adaptive walks via fitter variants exist. These beginning steps in theory development are applied to maturation of the immune response, and to the problem of radiation and stasis. Despite the limitations of the adaptive landscape metaphor, we believe that further development along the lines begun here will prove useful. 相似文献
6.
Leushkin EV Bazykin GA Kondrashov AS 《Proceedings. Biological sciences / The Royal Society》2012,279(1740):3075-3082
Maps that relate all possible genotypes or phenotypes to fitness--fitness landscapes--are central to the evolution of life, but remain poorly known. An insertion or a deletion (indel) of one or several amino acids constitutes a substantial leap of a protein within the space of amino acid sequences, and it is unlikely that after such a leap the new sequence corresponds precisely to a fitness peak. Thus, one can expect an indel in the protein-coding sequence that gets fixed in a population to be followed by some number of adaptive amino acid substitutions, which move the new sequence towards a nearby fitness peak. Here, we study substitutions that occur after a frame-preserving indel in evolving proteins of Drosophila. An insertion triggers 1.03 ± 0.75 amino acid substitutions within the protein region centred at the site of insertion, and a deletion triggers 4.77 ± 1.03 substitutions within such a region. The difference between these values is probably owing to a higher fraction of effectively neutral insertions. Almost all of the triggered amino acid substitutions can be attributed to positive selection, and most of them occur relatively soon after the triggering indel and take place upstream of its site. A high fraction of substitutions that follow an indel occur at previously conserved sites, suggesting that an indel substantially changes selection that shapes the protein region around it. Thus, an indel is often followed by an adaptive walk of length that is in agreement with the theory of molecular adaptation. 相似文献
7.
Based on the Eigen and Crow-Kimura models with a single peak fitness landscape, we propose that the fitness values of all molecules be Gaussian distributed random variables to incorporate the fluctuation effects of the fitness landscapes (noise of environments). And we investigate the quasispecies distribution and error threshold using ensemble average method within this theoretical framework. Numerical results show that a small fluctuation of the fitness landscape causes only a slight change in the concentration distribution and error threshold, which implies that the error threshold is stable against small perturbations. However, for a sizable fluctuation, quite different from the previous deterministic models, our statistical results reveal that the transition from quasi-species to error catastrophe is no longer so sharp, indicating the error threshold is located within a certain range and shifts toward a larger value. 相似文献
8.
Jobst Pfaender Renny K. Hadiaty Ulrich K. Schliewen Fabian Herder 《Proceedings. Biological sciences / The Royal Society》2016,283(1822)
Strong disruptive ecological selection can initiate speciation, even in the absence of physical isolation of diverging populations. Species evolving under disruptive ecological selection are expected to be ecologically distinct but, at least initially, genetically weakly differentiated. Strong selection and the associated fitness advantages of narrowly adapted individuals, coupled with assortative mating, are predicted to overcome the homogenizing effects of gene flow. Theoretical plausibility is, however, contrasted by limited evidence for the existence of rugged adaptive landscapes in nature. We found evidence for multiple, disruptive ecological selection regimes that have promoted divergence in the sympatric, incipient radiation of ‘sharpfin’ sailfin silverside fishes in ancient Lake Matano (Sulawesi, Indonesia). Various modes of ecological specialization have led to adaptive morphological differences between the species, and differently adapted morphs display significant but incomplete reproductive isolation. Individual fitness and variation in morphological key characters show that disruptive selection shapes a rugged adaptive landscape in this small but complex incipient lake fish radiation. 相似文献
9.
The assumption that trade-offs exist is fundamental in evolutionary theory. Levins (Am. Nat. 96 (1962) 361-372) introduced a widely adopted graphical method for analyzing evolution towards an optimal combination of two quantitative traits, which are traded off. His approach explicitly excluded the possibility of density- and frequency-dependent selection. Here we extend Levins method towards models, which include these selection regimes and where therefore fitness landscapes change with population state. We employ the same kind of curves Levins used: trade-off curves and fitness contours. However, fitness contours are not fixed but a function of the resident traits and we only consider those that divide the trait space into potentially successful mutants and mutants which are not able to invade ('invasion boundaries'). The developed approach allows to make a priori predictions about evolutionary endpoints and about their bifurcations. This is illustrated by applying the approach to several examples from the recent literature. 相似文献
10.
In many groups of organisms the location of settling is determined by competition, and fitter individuals tend to settle closer to their natal territory than less fit ones. In this work we study the implications of this phenomenon to the problem of adaptation and speciation on a rugged adaptive landscape. One consequence of fitness-associated dispersal (FAD) is that individuals with high fitness are more likely to experience inbreeding, especially with other fit individuals. Another consequence is that when dispersal is costly, the less fit individuals are more likely to pay the cost. When a rare and advantageous allelic combination appears, FAD may increase its chances to spread in the population. In a two-locus two-alleles model with negative epistasis, we find that FAD significantly shortens the waiting time for an adaptive peak shift in comparison with random dispersal. 相似文献
11.
We examine properties of adaptive walks on uncorrelated (i.e. random) fitness landscapes starting from moderately fit genotypes under strong selection weak mutation. As an extension of Orr's model for a single step in an adaptive walk under these conditions, we show that the fitness rank of the dominant genotype in a population after the fixation of a beneficial mutation is, on average, (i+6)/4, where i is the fitness rank of the starting genotype. This accounts for the change in rank due to acquiring a new set of single-mutation neighbors after fixing a new allele through natural selection. Under this scenario, adaptive walks can be modeled as a simple Markov chain on the space of possible fitness ranks with an absorbing state at i = 1, from which no beneficial mutations are accessible. We find that these walks are typically short and are often completed in a single step when starting from a moderately fit genotype. As in Orr's original model, these results are insensitive to both the distribution of fitness effects and most biological details of the system under consideration. 相似文献
12.
JOHANNE MAAD L. ANDERS NILSSON 《Biological journal of the Linnean Society. Linnean Society of London》2004,83(4):481-495
This work explores the mechanism of floral shifts that may result in speciation. The model organisms chosen were the moth-pollinated pollinator-limited orchid species Platanthera bifolia and P. chlorantha . P. bifolia exhibits tongue-attachment of pollinia on pollinators, a character state that has been found previously to be ancestral. The close relative P. chlorantha exhibits the derived state of eye-attachment of pollinia on pollinators. We reasoned that differences between the species in pollination efficiency could give insights into the mechanism of floral shifts and thus cladogenesis. Four populations per species were investigated. In three populations, where the species were growing intermixed and were sharing pollinators, there was significant difference in the pollen export and import efficiency per visit-night (night with pollen export and/or import) between the two species. P. bifolia exported pollinia more efficiently but imported pollen less efficiently than did P. chlorantha . Pollen import was 1.7–4 times faster in P. chlorantha (eye-attachment) than it was in P. bifolia (tongue-attachment). P. chlorantha had a lower risk of interference between pollen import and export. An increase in fitness through greater speed and efficiency of pollen import due to an enlargement of the stigmatic surface and a reduction in the risk of sexual interference may therefore be mechanisms of the floral shift from tongue- to eye-attachment of pollinia on pollinators. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 481–495. 相似文献
13.
A. A. Zhuchenko A. B. Korol I. A. Preigel S. I. Bronstein 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1985,69(5-6):617-624
Summary The recombination frequency (rf) is known to be dependent not only on genetic background, but on the environment as well. In our numerical experiments we examine the role of the dependence of recombination on environment in the evolution of the genetic system. Variable rf-strategies, ensuring mean fitnesses greater than the optimum constant rf*-level, exist in both cyclical and stochastic environments. The conclusion that environment dependent recombination is evolutionary advantageous can be shown to be valid when variation in the frequency of recombination modifiers rather than mean fitness (which implies the concept of group selection) is used as a criterion for strategy comparisons. In this case, an evolutionary advantageous type of variable rf-strategies is the one ensuring restricted genetic variability dispersion in an optimal environment and an increase in released variation with the deterioration of environmental conditions. Another important result is that, taking into account the dependence of recombination on environment, it is possible to account for the maintenance of a higher level of population recombination than that predicted by models with the constant rf-level. On the whole, the data obtained indicate that the direct influence of external factors upon the rf-value could have been a significant factor in the evolution of the genetic system. 相似文献
14.
When facing the challenge of developing an individual that best fits its environment, nature demonstrates an interesting combination of two fundamentally different adaptive mechanisms: genetic evolution and phenotypic plasticity. Following numerous computational models, it has become the accepted wisdom that lifetime acclimation (e.g. via learning) smooths the fitness landscape and consequently accelerates evolution. However, analytical studies, focusing on the effect of phenotypic plasticity on evolution in simple unimodal landscapes, have often found that learning hinders the evolutionary process rather than accelerating it. Here, we provide a general framework for studying the effect of plasticity on evolution in multipeaked landscapes and introduce a rigorous mathematical analysis of these dynamics. We show that the convergence rate of the evolutionary process in a given arbitrary one-dimensional fitness landscape is dominated by the largest descent (drawdown) in the landscape and provide numerical evidence to support an analogous dominance also in multidimensional landscapes. We consider several schemes of phenotypic plasticity and examine their effect on the landscape drawdown, identifying the conditions under which phenotypic plasticity is advantageous. The lack of such a drawdown in unimodal landscapes vs. its dominance in multipeaked landscapes accounts for the seemingly contradictory findings of previous studies. 相似文献
15.
Fitness interactions between loci in the genome, or epistasis, can result in mutations that are individually deleterious but jointly beneficial. Such epistasis gives rise to multiple peaks on the genotypic fitness landscape. The problem of evolutionary escape from such local peaks has been a central problem of evolutionary genetics for at least 75 years. Much attention has focused on models of small populations, in which the sequential fixation of valley genotypes carrying individually deleterious mutations operates most quickly owing to genetic drift. However, valley genotypes can also be subject to mutation while transiently segregating, giving rise to copies of the high fitness escape genotype carrying the jointly beneficial mutations. In the absence of genetic recombination, these mutations may then fix simultaneously. The time for this process declines sharply with increasing population size, and it eventually comes to dominate evolutionary behavior. Here we develop an analytic expression for N(crit), the critical population size that defines the boundary between these regimes, which shows that both are likely to operate in nature. Frequent recombination may disrupt high-fitness escape genotypes produced in populations larger than N(crit) before they reach fixation, defining a third regime whose rate again slows with increasing population size. We develop a novel expression for this critical recombination rate, which shows that in large populations the simultaneous fixation of mutations that are beneficial only jointly is unlikely to be disrupted by genetic recombination if their map distance is on the order of the size of single genes. Thus, counterintuitively, mass selection alone offers a biologically realistic resolution to the problem of evolutionary escape from local fitness peaks in natural populations. 相似文献
16.
Based on recent work, I will give a nontechnical brief review of a powerful quantitative concept in biology, adaptive landscape, ini- tially proposed by S. Wright over 70 years ago, reintroduced by one of the founders of molecular biology and by others in different bio- logical contexts, but apparently forgotten by modem biologists for many years. Nevertheless, this concept finds an increasingly important role in the development of systems biology and bionetwork dynamics modeling, from phage lambda genetic switch to endogenous net- work for cancer genesis and progression. It is an ideal quantification to describe the robustness and stability of bionetworks. Here, I will first introduce five landmark proposals in biology on this concept, to demonstrate an important common thread in theoretical biology. Then I will discuss a few recent results, focusing on the studies showing theoretical consistency of adaptive landscape. From the perspec- tive of a working scientist and of what is needed logically for a dynamical theory when confronting empirical data, the adaptive landscape is useful both metaphorically and quantitatively, and has captured an essential aspect of biological dynamical processes. Though at the theoretical level the adaptive landscape must exist and it can be used across hierarchical boundaries in biology, many associated issues are indeed vague in their initial formulations and their quantitative realizations are not easy, and are good research topics for quantitative biologists. I will discuss three types of open problems associated with the adaptive landscape in a broader perspective. 相似文献
17.
18.
大约10%~15%的大肠杆菌在染色体复制过程中会形成染色体二聚体。大肠杆菌染色体编码的重组酶XerC和XerD作用于染色体复制终点区的dif序列,以同源重组的方式将染色体二聚体解离为单体,使细菌得以正常复制分裂。编码霍乱毒素的噬菌体CTXΦ以位点特异的方式整合入霍乱弧菌染色体,但其基因组中不含有任何重组酶基因,其整合过程需要细菌染色体编码的XerC和XerD重组酶,且整合位点与大肠杆菌dif序列相似。XerCD重组酶基因和dif位点在细菌染色体广泛存在,表明其可能是染色体二聚体解离,噬菌体及其他外源基因成分整合入染色体过程中一种广泛存在的途径。文章对XerCD/dif位点特异性重组在细菌染色体二聚体解离、外源基因整合的研究进展进行综述。 相似文献
19.
The paper presents the analysis of the frequency, density, and distribution of recombination sites in the male meiosis of the domestic cat (Felis silvestris catus). The study was carried out using immunofluorescent staining of synaptonemal complex (SC) proteins, centromeric proteins and mismatch repair protein MLH1, a reliable marker of crossingover sites. We mapped 2633 sites of crossing over in 1098 individual autosomes. Based on these data, we estimated the total length of the genetic map of the domestic cat to be 2176 centimorgans. Positive correlation between the length of SC and the number of recombination sites common for mammalians was also found in the domestic cat. It was shown that this species was characterized by the highest density of recombination and the lowest interference in mammals. 相似文献
20.
Hybrid speciation has long fascinated evolutionary biologists and laymen alike, presumably because it challenges our classical view of evolution as a ‘one‐way street’ leading to strictly tree‐like patterns of ancestry and descent. Homoploid hybrid speciation (HHS) has been a particularly interesting puzzle, as it appears to occur extremely rapidly, perhaps within less than 50 generations ( McCarthy et al. 1995 ; Buerkle et al. 2000 ). Nevertheless, HHS may sometimes involve extended or repeated periods of recombination and gene exchange between populations subject to strong divergent natural selection ( Buerkle & Rieseberg 2008 ). Thus, HHS provides a highly interesting setting for understanding the drivers and tempo of adaptive divergence and speciation in the face of gene flow ( Arnold 2006 ; Rieseberg & Willis 2007 ; Nolte & Tautz 2009). In the present issue of Molecular Ecology, Wang et al. (2011) explore a particularly challenging issue connected to HHS: they attempt to trace the colonization and recombination history of an ancient (several MYA) hybrid species, from admixture and recombination in the ancestral hybrid zone to subsequent range shifts triggered by tectonic events (uplift of the Tibetan plateau) and climatic shifts (Pleistocene ice ages). This work is important because it addresses key issues related to the origin of the standing genetic variation available for adaptive responses (e.g. to climate change) and speciation in temperate species, which are topics of great current interest ( Rieseberg et al. 2003 ; Barrett & Schluter 2008 ; de Carvalho et al. 2010 ). 相似文献