首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many aphid species exhibit geographical variation in the mode of reproduction that ranges from cyclical parthenogenesis with a sexual phase to obligate parthenogenesis (asexual reproduction). Theoretical studies predict that organisms reproducing asexually should maintain higher allelic diversity per locus but lower genotypic diversity than organisms reproducing sexually. To corroborate this hypothesis, we evaluated genotypic and allelic diversities in the sexual and asexual populations of the pea aphid, Acyrthosiphon pisum (Harris). Microsatellite analysis revealed that populations in central Japan are asexual, whereas populations in northern Japan are obligatorily sexual. No mixed populations were detected in our study sites. Phylogenetic analysis using microsatellite data and mitochondrial cytochrome oxidase subunit I (COI) gene sequences revealed a long history of asexuality in central Japan and negated the possibility of the recent origin of the asexual populations from the sexual populations. Asexual populations exhibited much lower genotypic diversity but higher allelic richness per locus than did sexual populations. Asexual populations consisted of a few predominant clones that were considerably differentiated from one another. Sexual populations on alfalfa, an exotic plant in Japan, were most closely related to asexual populations associated with Vicia sativa L. The alfalfa-associated sexual populations harboured one COI haplotype that was included in the haplotype clade of the asexual populations. Available evidence suggests that the sexuality of the alfalfa-associated populations has recently been restored through the northward migration and colonization of alfalfa by V. sativa- associated lineages. Therefore, our results support the theoretical predictions and provide a new perspective on the origin of sexual populations.  相似文献   

2.
In asexual eukaryotes, the two allelic gene copies at a locus are expected to become highly divergent as a result of the independent accumulation of mutations in the absence of segregation. If sexual reproduction was abandoned millions of generations ago, intra-individual allelic divergences can be significantly larger than in species that reproduce sexually. Owing to the disputed existence of truly ancient asexual species, this so-called 'Meselson effect' has been put forward as a means of confirming the complete loss of sexual reproduction. Very few attempts have, however, been made at quantifying the effect of sexual reproduction on the degree of divergence between gene copies in an asexual population. Here, I describe how asexual reproduction can be regarded as a special case of population subdivision. Using a slightly modified version of the standard two-deme structured coalescent, I derive the expected coalescence time for a pair of gene copies in an asexual population and show that the Meselson effect is compatible with low rates of sexual reproduction.  相似文献   

3.
The relationship between probability of survival and the number of deleterious mutations in the genome is investigated using three different models of highly redundant systems that interact with a threatening environment. Model one is a system that counters a potentially lethal infection; it has multiple identical components that act in sequence and in parallel. Model two has many different overlapping components that provide three-fold coverage of a large number of vital functions. The third model is based on statistical decision theory: an ideal detector, following an optimum decision strategy, makes crucial decisions in an uncertain world. The probability of a fatal error is reduced by a redundant sampling system, but the chance of error rises as the system is impaired by deleterious mutations. In all three cases the survival profile shows a synergistic pattern in that the probability of survival falls slowly and then more rapidly. This is different than the multiplicative or independent survival profile that is often used in mathematical models. It is suggested that a synergistic profile is a property of redundant systems. Model one is then used to study the conservation of redundancy during sexual and asexual reproduction. A unicellular haploid organism reproducing asexually retains redundancy when the mutation rate is very low (0001 per cell division), but tends to lose high levels of redundancy if the mutation rate is increased (001 to 01 per cell division). If a similar unicellular haploid organism has a sexual phase then redundancy is retained for mutation rates between 0001 and 01 per cell division. The sexual organism outgrows the asexual organism when the above mutation rates apply. If they compete for finite resources the asexual organism will be extinguished. Variants of the sexual organism with increased redundancy will outgrow those with lower levels of redundancy and the sexual process facilitates the evolution of more complex forms. There is a limit to the extent that complexity can be increased by increasing the size of the genome and in asexual organisms this leads to progressive accumulation of mutations with loss of redundancy and eventual extinction. If complexity is increased by using genes in new combinations, the asexual form can reach a stable equilibrium, although it is associated with some loss of redundancy. The sexual form, by comparison, can survive, with retention of redundancy, even if the mutation rate is above one per generation. The conservation and evolution of redundancy, which is essential for complexity, depends on the sexual process of reproduction.  相似文献   

4.

Background  

The existence of "ancient asexuals", taxa that have persisted for long periods of evolutionary history without sexual recombination, is both controversial and important for our understanding of the evolution and maintenance of sexual reproduction. A lack of sex has consequences not only for the ecology of the asexual organism but also for its genome. Several genetic signatures are predicted from long-term asexual (apomictic) reproduction including (i) large "allelic" sequence divergence (ii) lack of phylogenetic clustering of "alleles" within morphological species and (iii) decay and loss of genes specific to meiosis and sexual reproduction. These genetic signatures can be hard to assess since it is difficult to demonstrate the allelic nature of very divergent sequences, divergence levels may be complicated by processes such as inter-specific hybridization, and genes may have secondary roles unrelated to sexual reproduction. Apomictic species of Meloidogyne root knot nematodes have been suggested previously to be ancient asexuals. Their relatives reproduce by meiotic parthenogenesis or facultative sexuality, which in combination with the abundance of nematode genomic sequence data, makes them a powerful system in which to study the consequences of reproductive mode on genomic divergence.  相似文献   

5.
The aphid Rhopalosiphum padi shows coexistence of sexual and asexual populations, providing an opportunity to study the evolution of breeding system variation in the context of theories on the origin and maintenance of sex. However, assessments of the distribution of sexual and asexual lineages of this aphid are complicated by the difficulties in rapidly characterizing their breeding system. To facilitate this task and to gain insight into the genetic relatedness between sexual and asexual genotypes, molecular markers linked to breeding system differences were recently developed. In this study, we have successfully converted a random amplified polymorphic DNA (RAPD) marker associated with life-cycle variation in R. padi into a codominant sequences-characterized amplified region (SCAR). Segregating and natural populations of known breeding systems were examined to evaluate the life cycle-SCAR marker association. Complete linkage was found in segregating populations while the association averaged 94% in field populations. Detailed analysis of allelic distribution and sequence divergence of the SCAR locus among sexual and asexual populations provides further evidence for a unique and apparently ancient loss of sexuality in this aphid. It also suggests that occasional gene flow occurs between populations differing in their breeding system, mediated by males produced by 'asexual' lineages. This system provides the possibility for the recurrent emergence of new asexual lineages, ensuring the longer persistence of asexuality, and would have important implications for the assessment of costs and benefits of sex in aphids.  相似文献   

6.
In species reproducing both sexually and asexually clones are often more common in recently established populations. Earlier studies have suggested that this pattern arises due to natural selection favouring generally or locally successful genotypes in new environments. Alternatively, as we show here, this pattern may result from neutral processes during species’ range expansions. We model a dioecious species expanding into a new area in which all individuals are capable of both sexual and asexual reproduction, and all individuals have equal survival rates and dispersal distances. Even under conditions that favour sexual recruitment in the long run, colonization starts with an asexual wave. After colonization is completed, a sexual wave erodes clonal dominance. If individuals reproduce more than one season, and with only local dispersal, a few large clones typically dominate for thousands of reproductive seasons. Adding occasional long‐distance dispersal, more dominant clones emerge, but they persist for a shorter period of time. The general mechanism involved is simple: edge effects at the expansion front favour asexual (uniparental) recruitment where potential mates are rare. Specifically, our model shows that neutral processes (with respect to genotype fitness) during the population expansion, such as random dispersal and demographic stochasticity, produce genotype patterns that differ from the patterns arising in a selection model. The comparison with empirical data from a post‐glacially established seaweed species (Fucus radicans) shows that in this case, a neutral mechanism is strongly supported.  相似文献   

7.
Asexual lineages are thought to be subject to rapid extinction because they cannot generate recombinant offspring. Accordingly, extant asexual lineages are expected to be of recent derivation from sexual individuals. We examined this prediction by using mitochondrial DNA sequence data to estimate asexual lineage age in populations of a freshwater snail (Potamopyrgus antipodarum) native to New Zealand and characterized by varying frequency of sexual and asexual individuals. We found considerable variation in the amount of genetic divergence of asexual lineages from sexual relatives, pointing to a wide range of asexual lineage ages. Most asexual lineages had close genetic ties (approximately 0.1% sequence divergence) to haplotypes found in sexual representatives, indicating a recent origin from sexual progenitors. There were, however, two asexual clades that were quite genetically distinct (> 1.2% sequence divergence) from sexual lineages and may have diverged from sexual progenitors more than 500,000 years ago. These two clades were found in lakes that had a significantly lower frequency of sexual individuals than lakes without the old clades, suggesting that the conditions that favor sex might select against ancient asexuality. Our results also emphasize the need for large sample sizes and spatially representative sampling when hypotheses for the age of asexual lineages are tested to adequately deal with potential biases in age estimates.  相似文献   

8.
Abstract A sexual reproduction is thought to doom organisms to extinction due to mutation accumulation and parasite exploitation. Theoretical models suggest that parthenogens may escape the negative effects of conspecific and biological enemiecs through escape in space. Through intensive sequencing of a mitochondrial DNA (mtDNA) and a nuclear intron locus in sexual and pathenogenetic freshwater snails (Campelom), I examine three questionss: (1) Are sexual mtDNA lineage more restricted geographically than parthenogenetic mtDNA lineages? (2) Are independent pathenogenetic lineages shorter lived than sexual lineages? (3) Do pathenogens have higher intraindividual nuclear sequence diversity and form well‐differentiated monophyletic groups as expected under the Meselson effect? Geographic ranges of parthenogenetic lineages are significantly larger than geographic ranges of sexual lineages. Based on coalescence times under different deographic assumptions, asexual lineages are short lived, but there is variation in clonal ages. Although alternative explanations exit, these results suggest that asexual lineages may persist in the short term through dispersal, and that various constraints may cause geographic restriction of sexual lineagess. Both allotriploid and diploid Campleloma parthenogens have significantly higher allelic divergence within individuals, but show limited nuclear sequence divergence from sexual ancestors. In contrast to previous allozyme evidence for nonhybrid origins of diploid Campeloma parthenogens, cryptic hybridization may account for elevated heterozygosity.  相似文献   

9.
C. W. Birky-Jr. 《Genetics》1996,144(1):427-437
Little attention has been paid to the consequences of long-term asexual reproduction for sequence evolution in diploid or polyploid eukaryotic organisms. Some elementary theory shows that the amount of neutral sequence divergence between two alleles of a protein-coding gene in an asexual individual will be greater than that in a sexual species by a factor of 2tu, where t is the number of generations since sexual reproduction was lost and u is the mutation rate per generation in the asexual lineage. Phylogenetic trees based on only one allele from each of two or more species will show incorrect divergence times and, more often than not, incorrect topologies. This allele sequence divergence can be stopped temporarily by mitotic gene conversion, mitotic crossing-over, or ploidy reduction. If these convergence events are rare, ancient asexual lineages can be recognized by their high allele sequence divergence. At intermediate frequencies of convergence events, it will be impossible to reconstruct the correct phylogeny of an asexual clade from the sequences of protein coding genes. Convergence may be limited by allele sequence divergence and heterozygous chromosomal rearrangements which reduce the homology needed for recombination and result in aneuploidy after crossing-over or ploidy cycles.  相似文献   

10.
Males from different populations of the same species often differ in their sexually selected traits. Variation in sexually selected traits can be attributed to sexual selection if phenotypic divergence matches the direction of sexual selection gradients among populations. However, phenotypic divergence of sexually selected traits may also be influenced by other factors, such as natural selection and genetic constraints. Here, we document differences in male sexual traits among six introduced Australian populations of guppies and untangle the forces driving divergence in these sexually selected traits. Using an experimental approach, we found that male size, area of orange coloration, number of sperm per ejaculate and linear sexual selection gradients for male traits differed among populations. Within populations, a large mismatch between the direction of selection and male traits suggests that constraints may be important in preventing male traits from evolving in the direction of selection. Among populations, however, variation in sexual selection explained more than half of the differences in trait variation, suggesting that, despite within‐population constraints, sexual selection has contributed to population divergence of male traits. Differences in sexual traits were also associated with predation risk and neutral genetic distance. Our study highlights the importance of sexual selection in trait divergence in introduced populations, despite the presence of constraining factors such as predation risk and evolutionary history.  相似文献   

11.
The reproductive mechanism, that is whether an organism outcrosses, selfs or asexually reproduces, has a substantial impact on the amount and pattern of genetic variation. In this study, we estimate genetic variation and genetic load for a predominately asexual population of Mimulus guttatus, and then compare our results to other studies of predominately sexually reproducing (outcrossing and selfing) populations of M. guttatus. The asexual population had low levels of heterozygosity (He = 0.03) and low (but significantly non‐zero) inbreeding load, especially when compared with other M. guttatus populations. This differs greatly from the sexual populations of Mimulus that display substantial inbreeding depression. We discuss a variety of reasons why we see such low load in this study and suggest future research projects to further explore the questions.  相似文献   

12.
Asexual reproduction could offer up to a two‐fold fitness advantage over sexual reproduction, yet higher organisms usually reproduce sexually. Even in facultatively parthenogenetic species, where both sexual and asexual reproduction is sometimes possible, asexual reproduction is rare. Thus, the debate over the evolution of sex has focused on ecological and mutation‐elimination advantages of sex. An alternative explanation for the predominance of sex is that it is difficult for an organism to accomplish asexual reproduction once sexual reproduction has evolved. Difficulty in returning to asexuality could reflect developmental or genetic constraints. Here, we investigate the role of genetic factors in limiting asexual reproduction in Nauphoeta cinerea, an African cockroach with facultative parthenogenesis that nearly always reproduces sexually. We show that when N. cinerea females do reproduce asexually, offspring are genetically identical to their mothers. However, asexual reproduction is limited to a nonrandom subset of the genotypes in the population. Only females that have a high level of heterozygosity are capable of parthenogenetic reproduction and there is a strong familial influence on the ability to reproduce parthenogenetically. Although the mechanism by which genetic variation facilitates asexual reproduction is unknown, we suggest that heterosis may facilitate the switch from producing haploid meiotic eggs to diploid, essentially mitotic, eggs.  相似文献   

13.
Partial asexual reproduction was introduced into a model of inbreeding depression due to nearly recessive lethal mutations in a partially selfing population. The frequencies of asexuality, selfing, and outcrossing were either constant or occurred in cycles of a single sexual generation followed by one or more asexual generations. We found that increasing the degree of asexuality generally increases the inbreeding depression maintained in an equilibrium population with a given selfing rate. This is due to the increase in the number of mutations relative to sexual generations during which selfing-induced purging of mutations may take place. For very high genomic mutation rates, sufficient to produce a threshold rate of self-fertilization for purging recessive lethal mutations, asexuality can have the opposite effect, decreasing equilibrium inbreeding depression, because of an increase in the efficiency of selection against mutations in heterozygotes with asexuality.  相似文献   

14.
While knowledge of the reproductive biology of tropical scleractinian corals is extensive, information from temperate zones is limited. The aim of this study is to describe the reproductive biology of Caryophyllia inornata, a temperate species, and to increase the understanding of the reproductive strategies of Mediterranean corals. Samples of C. inornata were collected during SCUBA surveys at Elba island. Sexually active individuals displayed either male or female germ cells, showing a gonochoric sexuality. C. inornata exhibited an unusual pattern of embryogenesis. Embryos appeared throughout the whole year in males and in sexually inactive individuals, and they did not show a seasonal pattern of development, as usually expected for sexual reproduction. This observation suggests the possibility of asexual origin. These embryogenetic sexually inactive individuals were larger in size than the embryogenetic sexually active ones, and they might be senile polyps that preserve the ability to produce embryos only by agamic reproduction. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Asexual worms of an exclusively fissiparous strain (the OH strain) of the planarian Dugesia ryukyuensis keep developing hermaphroditic reproductive organs and eventually undergo sexual reproduction instead of asexual reproduction, namely fission, if they are fed with sexually mature worms of an exclusively oviparous planarian, Bdellocephala brunnea, suggesting that the sexually mature worms has a sexualizing substance(s). The fully sexualized worms no longer need the feeding on sexual worms to maintain the sexuality. Here, we demonstrate that the sexualized worms produce enough of their own sexualizing substance similar to that contained in B. brunnea. In case of surgical ablation of the sexualized worms, the fragments with sexual organs regenerate to become sexual, while those without sexual organs, namely head fragments, regenerate to return to the asexual state. The asexual regenerants from the sexualized worms are also fully sexualized by being fed with B. brunnea. Additionally, it was reported that head region in sexually mature worms lacks the putative sexualizing substance necessary for complete sexualization (Sakurai, 1981). These results suggest that the fragments without sexual organ lack enough of an amount of the putative sexualizing substance and the sexuality is maintained by the sexualizing substance contained in the sexualized worms.  相似文献   

16.
Most plants combine sexual reproduction with asexual clonal reproduction in varying degrees, yet the genetic consequences of reproductive variation remain poorly understood. The aquatic plant Butomus umbellatus exhibits striking reproductive variation related to ploidy. Diploids produce abundant viable seed whereas triploids are sexually sterile. Diploids also produce hundreds of tiny clonal bulbils, whereas triploids exhibit only limited clonal multiplication through rhizome fragmentation. We investigated whether this marked difference in reproductive strategy influences the diversity of genotypes within populations and their movement between populations by performing two large-scale population surveys (n = 58 populations) and assaying genotypic variation using random amplified polymorphic DNA (RAPDs). Contrary to expectations, sexually fertile populations did not exhibit higher genotypic diversity than sterile populations. For each cytotype, we detected one very common and widespread genotype. This would only occur with a very low probability (< 10-7) under regular sexual recombination. Compatibility analysis also indicated that the pattern of genotypic variation largely conformed to that expected with predominant clonal reproduction. The potential for recombination in diploids is not realized, possibly because seeds are outcompeted by bulbils for safe sites during establishment. We also failed to find evidence for more extensive movement of fertile than sterile genotypes. Aside from the few widespread genotypes, most were restricted to single populations. Genotypes in fertile populations were very strongly differentiated from those in sterile populations, suggesting that new triploids have not arisen during the colonization of North America. The colonization of North America involves two distinct forms of B. umbellatus that, despite striking reproductive differences, exhibit largely clonal population genetic structures.  相似文献   

17.
Although most vertebrates reproduce sexually, a small number of fishes, amphibians and reptiles are known in which reproduction is asexual, i.e. without meiotic recombination. In fishes, these so-called unisexual lineages usually comprise only females and utilize co-occurring males of a related sexual species to reproduce via gynogenesis or hybridogenesis. Here, we examine patterns of microsatellite and mitochondrial DNA (mtDNA) variation in a widespread group of freshwater fishes (carp gudgeons; Hypseleotris spp.) to investigate a long-standing proposal that this group includes unisexual forms. We show that the mtDNA genome of most carp gudgeons in tributaries of the Goulburn River belongs to one of two deeply divided clades (~10% cyt b divergence) and that nuclear variation divides the same individuals into four distinct groups. Group 1 exhibits the genotypic proportions of a random mating population and has a 1:1 sex ratio. Two other groups are extremely sex-biased (98% male, 96% female), exhibit excess heterozygosity at most loci and share at least one allele per locus with group 1. We propose that these two groups represent 'unisexual' hybridogenetic lineages and that both utilize co-occurring group 1 as sexual host. Interestingly, the fourth distinct group appears to represent hybrid offspring of the two putative hybridogenetic lineages. The propagation of clonal haploid genomes by both males and females and the ability of these clones to unite and form sexually mature diploid hybrid offspring may represent a novel mechanism that contributes to the dynamics of coexistence between hybridogenetic lineages and their sexual hosts.  相似文献   

18.
1. The switch between asexual and sexual reproduction is an important fitness component in cyclically parthenogenetic populations as it is the key to persistence in unstable habitats and because it influences population genetic characteristics such as linkage disequilibrium and population genetic structure.
2. Genetic variation for sexual and asexual reproductive rate ( R C) was examined, under varying population density, in Daphnia pulex sampled from a rockpool system and two other distinct European localities.
3. Density affected the switch to sexual behaviour, as found in other studies and reduced R c. Production of males was not correlated with sexual reproduction, promoting outcrossing.
4. Genetic variation was found for the response to density, both within and between populations. There was substantial variation within the rockpools despite their demographic instability, indicating rapid recovery of life-history variation or maintenance during bottlenecks.  相似文献   

19.
In the midwestern United States the Daphnia pulex complex consists of a mosaic of sexual and asexual populations, providing a useful model system for studying the evolutionary forces underlying the maintenance of sex. One asexual and two sexual populations were surveyed for genetic variation for isozymes, mitochondrial DNA, and life-history characters. While the sexual populations exhibited substantial levels of genetic variance for fitness characters, no variation was detected in the asexual population at any level. However, a parallel survey among asexual clones derived from other ponds revealed large amounts of quantitative variation among clones, even among those with the same molecular profile. As a group, the asexuals are more variable for life histories than are the sexual populations. The molecular data indicate a relatively recent origin for the extant asexual D. pulex. The polyphyletic origin of these clones, combined with their microevolutionary potential, provides an explanation for their broad geographic distribution. The distribution of sex in the complex cannot be explained with the standard models that assume an invariant asexual population in reproductive isolation from the parental species. Although the frequency of asexuality may be driven by the spread of a sex-limited meiosis suppressor through sexual populations, the complete displacement of sexuality may be prevented by ecological distinctions between the two classes of individuals. On average, the asexuals are larger but produce smaller clutches than the sexuals.  相似文献   

20.
Where sexual and asexual forms coexist within a species, the asexuals are often found to be prevalent in marginal habitats. This asexual distribution pattern has received evolutionary attention linked to the paradox of sex. In many marine species, there is a distributional trend of asexual modes being more common in lower salinity waters regarded as the ecogeographic marginal, being explained by negative effects of low salinities on sexual reproductive success. However, the distribution pattern of estuarine species recently adapted to low salinity waters has remained unknown. The brackish macroalga Ulva prolifera being a major benthic component of estuarine ecosystems includes a sexual variant and obligate asexual variants by means of motile spores. We examined the sexual–asexual distribution pattern of this alga along a salinity gradient in river estuaries. Surprisingly, opposite to the distributional trend of marine organisms, the results clearly showed the persistent predominance of sexuals in the lower salinity reaches than the asexuals. In addition, a frequent alternating of dioecious gametophytes and sporophytes in the sexual population was observed, suggesting the sexual reproductive process would be robustly performed in the low salinity waters. Considering U. prolifera had evolved from the ancestral marine species to become a true estuarine species of which the core habitat is the low salinity reaches, in a broad sense its sexual–asexual distribution pattern would be involved in asexual marginal occupations of the species range previously reported in other organisms. Based on the frozen niche variation model, we can give a concise explanation for the evolutionary process of this pattern; multiple asexuals with frozen genotypic variation had arisen from sexual ancestors undergoing low salinity adaptation and share the estuarine habitat with the sexuals at present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号