首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Examining species diversity and mechanisms of speciation using coalescent models provides a framework for how regional diversity is accrued, even in well‐studied areas such as the Nearctic. It is likely, that gene flow among closely‐related species with adjacent distributions may be common. However, the absence of gene flow is a primary assumption of many phylogeographical methods that produce species trees and delimit species using Bayesian or likelihood functions in a coalescent framework. In the present study, we examine delimitation when gene flow between species is present using empirical datasets from two species of North American pitvipers of the genus Agkistrodon. We also use niche modelling to determine whether these young lineages occur in distinct environmental niches. To manage the problem of gene flow between species, we first identify admixed individuals, demonstrate that gene flow has occurred, and then identify the impact of alternative population assignments of admixed individuals on delimitation posterior probabilities. In addition, we examine the influence of mitochondrial genes relative to other loci combined in coalescent analyses that delimit species. Here, we find that the copperheads (Agkistrodon contortrix) and the cottonmouths (Agkistrodon piscivorus) are each composed of two distinct species, with each occupying different niches. Importantly, we find that species can be delimited when the amount of gene flow between lineages is low, although the methods are acutely sensitive to population assignment of individuals. © 2014 The Linnean Society of London  相似文献   

2.
Species: the concept, category and taxon   总被引:2,自引:0,他引:2  
The term species by itself is vague because it refers to the species concept, the species category and the species taxon, all of which are distinct although related to one another. The species concept is not primarily a part of systematics, but has always been an integral part of basic biological theory, It is based on evolutionary theory and applies only to sexually reproducing organisms. The species concept and the phyletic lineage concept are quite distinct although they are related to one another. The important aspect of the species concept is lack of gene flow between different species, and hence the defining criterion of the species is genetic isolation. The species concept is often considered as non‐dimensional, both in time and space. Species possess three different major properties, namely genetic isolation, reproductive isolation and ecological isolation; these properties evolve at different times and under the effect of different causes during the speciation process. Speciation requires an external isolating barrier during the initial allopatric phase in which genetic isolation evolves and must reach 100% efficiency. The subsequent sympatric phase of speciation occurs after the disappearance of the external isolating barrier when members of the two newly evolved species can interact with one another and exert mutual selective demands on one another. Much of the reproductive and ecological isolation evolves during this secondary sympatric phase. The species category is a rank in the taxonomic hierarchy and serves as the basis on which the diversity of organisms is described; it is not the same as the species concept. The species category applied to all organisms, sexually and asexually reproducing. The species taxon is the practical application of the species category in systematics with the recognition of species taxa requiring many arbitrary decisions. No single set of rules exist by which the species category can be applied to all organisms. Recognition of species taxa in asexually reproducing organisms is based on amount of variation and gaps in the variation of phenotypic features associated with ecological attributes of these organisms as compared with similar attributes in sympatric species taxa of sexually reproducing organisms. Species taxa are multidimensional in that they exist over space–time and often have fuzzy borders. Because recognition of species taxa, including those in sexually reproducing organisms, depends on many arbitrary decisions especially when dealing with broad geographical and temporal ranges, species taxa cannot be used as the foundation for developing and testing theoretical concepts in evolutionary theory which can only be done with the non‐dimensional species concept.  相似文献   

3.
SHORT NOTES     
Bock, W. 2000. Heuristics in systematics. Ostrich 71 (1 &; 2): 41–44.

Avian systematics is not only part of the science of ornithology, but serves heuristically as a foundation for many other analyses in ornithology. Systematics can be divided roughly into two major areas, namely species-level analyses and supraspecific classification. Of greatest significance is the distinction between provisional classifications and standard sequences, the latter are based on widely accepted classifications and have major useful functions such as the arrangement of taxa in handbooks, check-lists, and museum collections. The species concept is part of evolutionary theory, not systematics, and applies to contemporaneous groups of individual organisms. Clear distinctions separate the species concept, the species category, the species taxon, and the phyletic lineage—all usually designated as the “species”. The frequent practice of recognising all distinctive allopatric forms as separate species taxa results in two discrete classes of species taxa which largely destroys their usefulness for other biological analyses, including conservation efforts.  相似文献   

4.
The biological species (biospecies) concept applies only to sexually reproducing species, which means that until sexual reproduction evolved, there were no biospecies. On the universal tree of life, biospecies concepts therefore apply only to a relatively small number of clades, notably plants andanimals. I argue that it is useful to treat the various ways of being a species (species modes) as traits of clades. By extension from biospecies to the other concepts intended to capture the natural realities of what keeps taxa distinct, we can treat other modes as traits also, and so come to understand that theplurality of species concepts reflects the biological realities of monophyletic groups.We should expect that specialists in different organisms will tend to favour those concepts that best represent the intrinsic mechanisms that keep taxa distinct in their clades. I will address the question whether modes ofreproduction such as asexual and sexual reproduction are natural classes, given that they are paraphyletic in most clades.  相似文献   

5.
The biological species concept defines species on the criterion of interbreeding. This may not be applicable to many parasites that are capable of self-fertilization and asexual reproduction. In this review, Alan Lymbery explores alternative concepts that may be applied to recognize species in such groups, using the cestode genus Echinococcus as an example. Two conclusions can be drawn. First, that the applicability of the biological species concept should not be dismissed without some knowledge o f the frequency of interbreeding in natural populations. Second, that where interbreeding is absent or rare, species should be delimited on the basis o f both monophyletic origin and genetic distinctness.  相似文献   

6.
It is argued, with selected examples from freshwaterfish systematics, that species should be viewed as anexpression of self-perpetuated clustered variation innature, conforming to the phylogenetic speciesconcept. The importance of species lies in thefunctional and structural significance of theirdiagnostic characters. Species can be nested by theircharacters into a tree diagram (phylogeny) orhierarchical alignment structure (classification) ofcharacter distribution, which may be taken to reflectevolution, the unifying theory of organismaldiversification. The phylogenetic species concept,which emphasizes recognition of a pattern ofvariation, describes better than any other proposedconcept the units called species by systematists.Other concepts are based on processes and normally donot permit recognition of particular taxa. Specieshave unique histories, and speciation may proceed bydifferent mechanisms. Whereas it may be postulatedthat speciation entails an irreversible change in thegenetic structure of taxa, recognized by phenotypicexpression and apparently also maintained to a largeextent by selection for a particular phenotype,species recognition must remain independent ofassumptions about species history and spatialdistribution. Species are monophyletic taxa and thespecies category does not differ significantly inphylogenetic regard from other systematic categories.Species as such are not necessarily evolutionaryunits. It is recommended to apply species names withreference to the diagnostic characters of the speciesand to abandon the type specimen described by theInternational Code of Zoological Nomenclature as anomenclatural reference unit.  相似文献   

7.
PHYLOGENETIC SYSTEMATICS AND THE SPECIES PROBLEM   总被引:5,自引:0,他引:5  
Abstract— A tension has arisen over the primacy of interbreeding versus monophyly in defining the species category. Manifestations of this tension include unnecessary restriction of the concept of monophyly as well as inappropriate attribution of "species" properties, to "higher taxa", and vice versa. Distinctions between systems (wholes) deriving their existence from different underlying. processes have been obscured by failure to acknowledge different interpretations of the concept of individuality. We identify interbreeding (resulting in populations) and evolutionary descent (resulting in monophyletic groups) as two processes of interest to phylogenetic systematists, and explore the relations between the systems resulting from these processes. In the case of sexual reproduction, populations of interbreeding organisms (regardless of whether they are monophyletic) exist as cohesive wholes and play a special role in phylogenetic systematics, being the least inclusive entities appropriate for use as terminal units in phylogenetic analysis of organismal relationships. Both sexual and asexual organisms form monophyletic groups. Accepting the reality and significance of both interbreeding and monophyly emphasizes that a conscious decision must be made regarding which phenomenon should be used to define the species category. Examination of species concepts that focus either on interbreeding or on common descent leads us to conclude that several alternatives are acceptable from the standpoint of phylogenetic systematics but that no one species concept can meet the needs of all comparative biologists.  相似文献   

8.
9.
DNA barcoding employs short, standardized gene regions (5' segment of mitochondrial cytochrome oxidase subunit I for animals) as an internal tag to enable species identification. Prior studies have indicated that it performs this task well, because interspecific variation at cytochrome oxidase subunit I is typically much greater than intraspecific variation. However, most previous studies have focused on local faunas only, and critics have suggested two reasons why barcoding should be less effective in species identification when the geographical coverage is expanded. They suggested that many recently diverged taxa will be excluded from local analyses because they are allopatric. Second, intraspecific variation may be seriously underestimated by local studies, because geographical variation in the barcode region is not considered. In this paper, we analyse how adding a geographical dimension affects barcode resolution, examining 353 butterfly species from Central Asia. Despite predictions, we found that geographically separated and recently diverged allopatric species did not show, on average, less sequence differentiation than recently diverged sympatric taxa. Although expanded geographical coverage did substantially increase intraspecific variation reducing the barcoding gap between species, this did not decrease species identification using neighbour-joining clustering. The inclusion of additional populations increased the number of paraphyletic entities, but did not impede species-level identification, because paraphyletic species were separated from their monophyletic relatives by substantial sequence divergence. Thus, this study demonstrates that DNA barcoding remains an effective identification tool even when taxa are sampled from a large geographical area.  相似文献   

10.
11.
Although approximately 150 years have passed since the publication of On the origin of species by means of natural selection, the definition of what species are and the ways in which species originate remain contentious issues in evolutionary biology. The biological species concept, which defines species as groups of interbreeding natural populations that are reproductively isolated from other such groups, continues to draw support. However, there is a growing realization that many animal and plant species can hybridize with their close relatives and exchange genes without losing their identity. On occasion, such hybridization can lead to the origin of new species. A key to understanding what species are and the ways in which they originate rests to a large extent on a detailed knowledge of the nature and genetics of factors that limit gene flow between species and the conditions under which such isolation originates. The collection of papers in this issue addresses these topics and deals as well with some specific issues of hybrid speciation and the causes of species radiations. The papers included arise from a 1-day symposium on speciation held during the Sixth Biennial Meeting of the Systematics Association at Edinburgh in August 2007. In this introduction, we provide some background to these papers and highlight some key points made. The papers make clear that highly significant advances to our understanding of animal and plant speciation are currently being made across the range of this topic.  相似文献   

12.
New insights in the speciation process and the nature of "species" that accumulated in the past decade demand adjustments of the species concept. The standing of some of the most broadly accepted or most innovative species concepts in the light of the growing evidence that reproductive barriers are semipermeable to gene flow, that species can differentiate despite ongoing interbreeding, that a single species can originate polyphyletically by parallel evolution, and that uniparental organisms are organised in units that resemble species of biparental organisms is discussed. As a synthesis of ideas in existing concepts and the new insights, a generalization of the genic concept is proposed that defines species as groups of individuals that are reciprocally characterized by features that would have negative fitness effects in other groups and that cannot be regularly exchanged between groups upon contact. The benefits of this differential fitness species concept are that it classifies groups that keep differentiated and keep on differentiating despite interbreeding as species, that it is not restricted to specific mutations or mechanisms causing speciation, and that it can be applied to the whole spectrum of organisms from uni- to biparentals.  相似文献   

13.
Whether or not ancestral species can be recognised depends on the species concept adopted. A “metaspecies”; is a species that completely lacks autapomorphies, and which might (or might not) be ancestral to other species. Such taxa have been identified among both living and fossil organisms. Under the most commonly‐used species concepts (biological, evolutionary, phenetic, phylogenetic, ecological, recognition and cohesion), “metaspecies”; can be assumed to be ancestral. Even if the known members of a metaspecies are not ancestral to anything, parsimony dictates that the (as yet unknown) ancestral lineage is identical to the metaspecies and, under these species concepts, assignable to the same species. Only the cladistic and monophyletic species concepts would deny “metaspecies”; ancestral status, but these species concepts are problematical and have never been used by practising systematists.  相似文献   

14.
? Premise of the study: Hybridization is pervasive in many plant taxa, with consequences for species taxonomy, local adaptation, and management. Oaks (Quercus spp.) are thought to hybridize readily yet retain distinct traits, drawing into question the biological species concept for such taxa, but the true extent of gene flow is controversial. Genetic data are beginning to shed new light on this issue, but red oaks (section Lobatae), an important component of North American forests, have largely been neglected. Moreover, gene flow estimates may be sensitive to the choice of life stage, marker type, or genetic structure statistic. ? Methods: We coupled genetic structure data with parentage analyses for two mixed-species stands in North Carolina. Genetic structure analyses of adults (including F(ST), R(ST), G'(ST), and structure) reflect long-term patterns of gene flow, while the percentage of seedlings with parents of two different species reflect current levels of gene flow. ? Key results: Genetic structure analyses revealed low differentiation in microsatellite allele frequencies between co-occurring species, suggesting past gene flow. However, methods differed in their sensitivity to differentiation, indicating a need for caution when drawing conclusions from a single method. Parentage analyses identifed >20% of seedlings as potential hybrids. The species examined exhibit distinct morphologies, suggesting selection against intermediate phenotypes. ? Conclusions: Our results suggest that hybridization between co-occurring red oaks occurs, but that selection may limit introgression, especially at functional loci. However, by providing a source of genetic variation, hybridization could influence the response of oaks and other hybridizing taxa to environmental change.  相似文献   

15.
Accurate species delimitation of sampled biological material is critical for a range of studies. Although the DNA barcodes developed in recent years are useful for identifying numerous well differentiated species that have not experienced frequent gene flow, they fail to delimit recently diverged species, especially those with extensive introgressions. Here we use five Rhododendron species growing together on the same mountain as a model system to compare the species delimitation effectiveness of the DNA barcodes (internal transcribed spacer, matK, psbA‐trnH, and rbcL) previously proposed versus 15 pairs of microsatellite markers. Using these markers, we genotyped 129 individuals, which were members of five species according to morphological identification. We identified five simple sequence repeat genetic clusters (independently evolving lineages) corresponding to the morphological identification. However, we found that numerous individuals contained cryptic hybrid introgressions from the other species. The four DNA barcodes could not delimit three out of four closely related species that showed clear morphological differentiation and cryptic introgressions. Even after excluding all cryptic hybrids, two closely related species could not be successfully identified. The low discrimination ability of the DNA barcodes for closely related Rhododendron species could result from two, not mutually exclusive factors: introgressive hybridization and incomplete lineage sorting. Our results highlight the importance of simple sequence repeat markers in delimiting closely related species and identifying cryptic introgressions in the absence of morphological changes.  相似文献   

16.
Discontent about changes in species classifications has grown in recent years. Many of these changes are seen as arbitrary, stemming from unjustified conceptual and methodological grounds, or leading to species that are less distinct than those recognised in the past. We argue that current trends in species classification are the result of a paradigm shift toward which systematics and population genetics have converged and that regards species as the phylogenetic lineages that form the branches of the Tree of Life. Species delimitation now consists of determining which populations belong to which individual phylogenetic lineage. This requires inferences on the process of lineage splitting and divergence, a process to which we have only partial access through incidental evidence and assumptions that are themselves subject to refutation. This approach is not free of problems, as horizontal gene transfer, introgression, hybridisation, incorrect assumptions, sampling and methodological biases can mislead inferences of phylogenetic lineages. Increasing precision is demanded through the identification of both sister relationships and processes blurring or mimicking phylogeny, which has triggered, on the one hand, the development of methods that explicitly address such processes and, on the other hand, an increase in geographical and character data sampling necessary to infer/test such processes. Although our resolving power has increased, our knowledge of sister relationships – what we designate as species resolution – remains poor for many taxa and areas, which biases species limits and perceptions about how divergent species are or ought to be. We attribute to this conceptual shift the demise of trinominal nomenclature we are witnessing with the rise of subspecies to species or their rejection altogether; subspecies are raised to species if they are found to correspond to phylogenetic lineages, while they are rejected as fabricated taxa if they reflect arbitrary partitions of continuous or non-hereditary variation. Conservation strategies, if based on taxa, should emphasise species and reduce the use of subspecies to avoid preserving arbitrary partitions of continuous variation; local variation is best preserved by focusing on biological processes generating ecosystem resilience and diversity rather than by formally naming diagnosable units of any kind. Since many binomials still designate complexes of species rather than individual species, many species have been discovered but not named, geographical sampling is sparse, gene lineages have been mistaken for species, plenty of species limits remain untested, and many groups and areas lack adequate species resolution, we cannot avoid frequent changes to classifications as we address these problems. Changes will not only affect neglected taxa or areas, but also popular ones and regions where taxonomic research remained dormant for decades and old classifications were taken for granted.  相似文献   

17.
Agaricus section Duploannulatae comprises the group of species allied with A. bisporus and A. bitorquis. Disagreement exists in the literature regarding the composition of this group. We used DNA sequence data from the ITS segments of the nuclear ribosomal DNA region, in a sample of European and North American isolates, to identify characters shared by this group, to further delimit species-level taxa within the section, and to develop a phylogenetic hypothesis. Shared polymorphisms that suggest a natural limit for section Duploannulatae were found. ITS1 data were assessed using parsimony, distance and maximum likelihood methods of phylogeny. The section Duploannulatae comprised six robust clades. Five clades corresponded to well characterized species from the temperate Northern Hemisphere (A. bisporus, A. subfloccosus, A. bitorquis, A. vaporarius, A. cupressicola). The sixth clade encompassed an A. devoniensis complex. Species concepts, nomenclature, and relationships are discussed and compared with prior reports.  相似文献   

18.
Subspecies lie at the interface between systematics and population genetics, and represent a unit of biological organization in zoology that is widely used in the disciplines of taxonomy and conservation biology. In this review, we explore the utility of subspecies in relation to their application in systematics and biodiversity conservation, and briefly summarize species concepts and criteria for their diagnosis, particularly from an invertebrate perspective. The subspecies concept was originally conceived as a formal means of documenting geographical variation within species based on morphological characters; however, the utility of subspecies is hampered by inconsistencies by which they are defined conceptually, a lack of objective criteria or properties that serve to delimit their boundaries, and their frequent failure to reflect distinct evolutionary units according to population genetic structure. Moreover, the concept has been applied to populations largely comprising different components of genetic diversity reflecting contrasting evolutionary processes. We recommend that, under the general lineage (unified) species concept, the definition of subspecies be restricted to extant animal groups that comprise evolving populations representing partially isolated lineages of a species that are allopatric, phenotypically distinct, and have at least one fixed diagnosable character state, and that these character differences are (or are assumed to be) correlated with evolutionary independence according to population genetic structure. Phenotypic character types include colour pattern, morphology, and behaviour or ecology. Under these criteria, allopatric subspecies are a type of evolutionarily significant unit within species in that they show both neutral divergence through the effects of genetic drift and adaptive divergence under natural selection, and provide an historical context for identifying biodiversity units for conservation. Conservation of the adaptedness and adaptability of gene pools, however, may require additional approaches. Recent studies of Australian butterflies exemplify these points. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

19.
Isolated granitic rock outcrops or 'inselbergs' may provide a window into the molecular ecology and genetics of continental radiations under simplified conditions, in analogy to the use of oceanic islands in studies of species radiations. Patterns of variability and gene flow in inselberg species have never been thoroughly evaluated in comparison to related taxa with more continuous distribution ranges, or to other species in the same kingdom in general. We use nuclear microsatellites to study population differentiation and gene flow in two diploid, perennial plants adapted to high-altitude neotropical inselbergs, Alcantarea imperialis and Alcantarea geniculata (Bromeliaceae). Population differentiation is pronounced in both taxa, especially in A. imperialis. Gene flow in this species is considerably lower than expected from the literature on plants in general and Bromeliaceae in particular, and too low to prevent differentiation due to drift (N(e)m < 1), unless selection coefficients/effect sizes of favourable alleles are great enough to maintain species cohesion. Low gene flow in A. imperialis indicates that the ability of pollinating bats to promote gene exchange between inselbergs is smaller than previously assumed. Population subdivision in one inselberg population of A. imperialis appears to be associated with the presence of two colour morphs that differ in the coloration of rosettes and bracts. Our results indicate a high potential for inselbergs as venues for studies of the molecular ecology and genetics of continental radiations, such as the one that gave rise to the extraordinary diversity of adaptive strategies and phenotypes seen in Bromeliaceae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号