首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conflicts over sex allocation and male production in insect societies have long served as an important test bed for Hamilton''s theory of inclusive fitness, but have for the most part been considered separately. Here, we develop new coevolutionary models to examine the interaction between these two conflicts and demonstrate that sex ratio and colony productivity costs of worker reproduction can lead to vastly different outcomes even in species that show no variation in their relatedness structure. Empirical data on worker-produced males in eight species of Melipona bees support the predictions from a model that takes into account the demographic details of colony growth and reproduction. Overall, these models contribute significantly to explaining behavioural variation that previous theories could not account for.  相似文献   

2.
Conflict over male parentage in social insects   总被引:2,自引:0,他引:2       下载免费PDF全文
Mutual policing is an important mechanism that maintains social harmony in group-living organisms by suppressing the selfish behavior of individuals. In social insects, workers police one another (worker-policing) by preventing individual workers from laying eggs that would otherwise develop into males. Within the framework of Hamilton's rule there are two explanations for worker-policing behavior. First, if worker reproduction is cost-free, worker-policing should occur only where workers are more closely related to queen- than to worker-produced male eggs (relatedness hypothesis). Second, if there are substantial costs to unchecked worker reproduction, worker-policing may occur to counteract these costs and increase colony efficiency (efficiency hypothesis). The first explanation predicts that patterns of the parentage of males (male parentage) are associated with relatedness, whereas the latter does not. We have investigated how male parentage varies with colony kin structure and colony size in 50 species of ants, bees, and wasps in a phylogenetically controlled comparative analysis. Our survey revealed that queens produced the majority of males in most of the species and that workers produced more than half of the males in less than 10% of species. Moreover, we show that male parentage does not vary with relatedness as predicted by the relatedness hypothesis. This indicates that intra- and interspecific variation in male parentage cannot be accounted for by the relatedness hypothesis alone and that increased colony efficiency is an important factor responsible for the evolution of worker-policing. Our study reveals greater harmony and more complex regulation of reproduction in social insect colonies than that expected from simple theoretical expectations based on relatedness only.  相似文献   

3.
Ant workers selfishly bias sex ratios by manipulating female development.   总被引:6,自引:0,他引:6  
Kin selection theory predicts that social insects should perform selfish manipulations as a function of colony genetic structure. We describe a novel mechanism by which this occurs. First, we use microsatellite analyses to show that, in a population of the ant Leptothorax acervorum, workers' relatedness asymmetry (ratio of relatedness to females and relatedness to males) is significantly higher in monogynous (single-queen) colonies than in polygynous (multiple-queen) colonies. Workers rear mainly queens in monogynous colonies and males in polygynous colonies. Therefore, split sex ratios in this population are correlated with workers' relatedness asymmetry. Together with significant female bias in the population numerical and investment sex ratios, this finding strongly supports kin-selection theory. Second, by determining the primary sex ratio using microsatellite markers to sex eggs, we show that the ratio of male to female eggs is the same in both monogynous and polygynous colonies and equals the overall ratio of haploids (males) to diploids (queens and workers) among adults. In contrast to workers of species with selective destruction of male brood, L. acervorum workers therefore rear eggs randomly with respect to sex and must achieve their favoured sex ratios by selectively biasing the final caste (queen or worker) of developing females.  相似文献   

4.
Nonacs P 《Biology letters》2006,2(4):577-579
In many eusocial Hymenoptera, workers prevent each other from producing male offspring by destroying worker-laid eggs. Kin selection theory predicts that such 'worker policing' behaviour can evolve by increasing the average relatedness between workers and their male brood. Alternatively, if worker-laid eggs are of low relative viability, their replacement would increase the developmental reliability of the brood. Less colony investment in terms of time and resources would be lost on poor males. This gain is independent of the relatedness of the males. Unfortunately, both nepotistic and group efficiency benefits can simultaneously accrue with the replacement of worker-laid eggs. Therefore, worker behaviour towards eggs cannot completely resolve whether both processes have been equally evolutionarily important. Adequate resolution requires the presentation of worker-produced brood of various ages. The stage at which brood are replaced can discriminate whether worker policing occurs owing to a preference for closer genetic kin, a preference for the more reliable brood or both.  相似文献   

5.
Workers of the Florida harvester ant (Pogonomyrmex badius), the only North American Pogonomyrmex with a polymorphic worker caste, produce males when colonies are orphaned. In this study,we assessed the reproductive potential of workers of each caste group, minors and majors, in the presence and absence of the queen, and tested whether males produced in natural queen-right colonies are derived from workers. Worker size was positively correlated with ovariole number such that major workers had approximately double the number of ovarioles as minor workers. The number of vitellogenic oocytes, a measure of reproductive potential, was greater in major compared to minor workers and increased in both worker castes when queens were removed. Major workers have greater reproductive potential than minors although they represent a minority within the colony (~5% of workers are majors). Worker produced eggs were visible in colonies 28 – 35 days after queen removal. This time lag, from queen removal to egg production, is similar to other ants and bees. Though workers are capable of producing viable eggs, we found no evidence that they do so in queen-right colonies, suggesting that worker reproduction is controlled via some social mechanism (self restraint, policing, or inhibition). This result supports predictions of kin selection theory – that due to multiple mating by the queen workers are more related to queen-produced males than most worker-produced males and should thus favor reproduction by the queen and inhibit reproduction by other workers. Received 25 January 2007; revised 1 May 2007; accepted 21 May 2007.  相似文献   

6.
We studied the kin conflict over male parentage in the ant Formica fusca. The conflict arises because each worker and queen is most related to her own sons and is thus predicted to lay eggs. Microsatellite analysis of eggs revealed that workers laid eggs in more than half the queenright experimental nests. Nevertheless, almost exclusively diploid offspring were reared in the presence of a queen. This also occurred when worker-laid haploid male eggs were experimentally introduced in to the nests. Because our experimental setup allowed us to exclude the possibility of queen policing, we conclude that worker laid eggs are removed by other workers, either as a response to their parentage or gender. Our results suggest that worker reproduction in F. fusca is ultimately an interplay of conflicts over male parentage and sex allocation and that both worker and self policing have roles as proximate mechanisms of resolution.  相似文献   

7.
REPRODUCTIVE SKEW AND SPLIT SEX RATIOS IN SOCIAL HYMENOPTERA   总被引:1,自引:0,他引:1  
Abstract I present a model demonstrating that, in social Hymenoptera, split sex allocation can influence the evolution of reproductive partitioning (skew). In a facultatively polygynous population (with one to several queens per colony), workers vary in their relative relatedness to females (relatedness asymmetry). Split sex‐ratio theory predicts that workers in monogynous (single‐queen) colonies should concentrate on female production, as their relatedness asymmetry is relatively high, whereas workers in the polygynous colonies should concentrate on male production, as their relatedness asymmetry is relatively low. By contrast, queens in all colonies value males more highly per capita than they value females, because the worker‐controlled population sex ratio is too female‐biased from the queens' standpoint. Consider a polygynous colony in a facultatively polygynous population of perennial, social Hymenoptera with split sex ratios. A mutant queen achieving reproductive monopoly would gain from increasing her share of offspring but, because the workers would assess her colony as monogynous, would lose from the workers rearing a greater proportion of less‐valuable females from the colony's brood. This sets an upper limit on skew. Therefore, in social Hymenoptera, skew evolution is potentially affected by queen‐worker conflict over sex allocation.  相似文献   

8.
Inclusive fitness theory predicts that sex investment ratios in eusocial Hymenoptera are a function of the relatedness asymmetry (relative relatedness to females and males) of the individuals controlling sex allocation. In monogynous ants (with one queen per colony), assuming worker control, the theory therefore predicts female‐biased sex investment ratios, as found in natural populations. Recently, E.O. Wilson and M.A. Nowak criticized this explanation and presented an alternative hypothesis. The Wilson–Nowak sex ratio hypothesis proposes that, in monogynous ants, there is selection for a 1 : 1 numerical sex ratio to avoid males remaining unmated, which, given queens exceed males in size, results in a female‐biased sex investment ratio. The hypothesis also asserts that, contrary to inclusive fitness theory, queens not workers control sex allocation and queen–worker conflict over sex allocation is absent. Here, I argue that the Wilson–Nowak sex ratio hypothesis is flawed because it contradicts Fisher's sex ratio theory, which shows that selection on sex ratio does not maximize the number of mated offspring and that the sex ratio proposed by the hypothesis is not an equilibrium for the queen. In addition, the hypothesis is not supported by empirical evidence, as it fails to explain ‘split’ (bimodal) sex ratios or data showing queen and worker control and ongoing queen–worker conflict. By contrast, these phenomena match predictions of inclusive fitness theory. Hence, the Wilson–Nowak sex ratio hypothesis fails both as an alternative hypothesis for sex investment ratios in eusocial Hymenoptera and as a critique of inclusive fitness theory.  相似文献   

9.
Queen-worker conflicts in social insect societies have received much attention in the past decade. In many species workers modify the colony sex ratio to their own advantage or produce their own male offspring. In some other species, however, queens seem to be able to prevent workers from making selfish reproductive decisions. So far, little effort has been made to find out how queens may keep control over sex ratio and male parentage. In this study we use a Lasius niger population under apparent queen control to show that sexual deception cannot explain queen dominance in this population. The sexual deception hypothesis postulates that queens should prevent workers from discriminating against males by disguising male brood as females. Contrary to the predictions of this hypothesis, we found that workers are able to distinguish male and female larvae early in their development: in early spring workers generally placed only either female or male larvae in the uppermost chambers of the nest, although both types of larvae must have been present. At this time males were only at 11% of their final dry weight, a developmental stage at which (according to two models) workers would still have benefited from replacing queen-produced males by females or worker-produced males. This study thus demonstrates that sexual deception cannot account for the apparent queen control over colony sex ratio and male parentage in L. niger.  相似文献   

10.
Suni SS  Gignoux C  Gordon DM 《Molecular ecology》2007,16(24):5149-5155
We investigated the extent to which workers reproduce in a dependent-lineage population of the monogynous harvester ant Pogonomyrmex barbatus. Dependent-lineage populations contain two interbreeding, yet genetically distinct mitochondrial lineages, each associated with specific alleles at nuclear loci. Workers develop from matings between lineages, and queens develop from matings within lineages, so queens must mate with males of both lineages to produce daughter queens and workers. Males develop from unfertilized eggs and are haploid. Worker production of males could lead to male-mediated gene flow between the lineages if worker-produced males were reproductively capable. This could result in the loss of the dependent-lineage system, because its persistence depends on the maintenance of allelic differences between the lineages. To investigate the extent of worker reproduction in P. barbatus, we genotyped 19-20 males and workers from seven colonies, at seven microsatellite loci, and 1239 additional males at two microsatellite loci. Our methods were powerful enough to detect worker reproduction if workers produced more than 0.39% of males in the population. We detected no worker-produced males; all males appeared to be produced by queens. Thus, worker reproduction is sufficiently infrequent to have little impact on the dependent-lineage system. These results are consistent with predictions based on inclusive fitness theory because the effective queen mating frequency calculated from worker genotypes was 4.26, which is sufficiently high for workers to police those that attempt to reproduce.  相似文献   

11.
Hamilton's kin selection theory predicts conflicts of interestamong relatives, even within highly cooperative social insectsocieties. Because workers are the most numerous caste, collectiveworker interests may be an important force in determining theoutcome of conflicts. In this study, we used genotypes fromtwo DNA microsatellite loci to show that two kinds of collectiveworker interests are satisfied in Brachygastra mellifica, amember of the multiqueen epiponine wasps. First, from the highrelatedness of queens (0.66) and the fact that queens are singlymated (shown by genotyping their stored sperm), we calculatedthat new queens are reared in colonies with a harmonic meanof 1.2 old queens, whereas males are reared in colonies withmuch higher queen numbers. This split sex ratio result is predictedunder worker control. It matches other studies of epiponines,but B. mellifica has much larger mature colonies (averaging7951 adults) with many more queens (averaging 398), showingthe pattern holds for large-colony species. Second, we reportthe first genetic data on parentage of males in epiponines andshow that these are also consistent with collective worker interests.Workers are on average significantly more related to queensthan to other workers (r = .37 versus .23) and should thereforesuppress each other and allow the queens to lay haploid (male)eggs. Though many workers have developed ovaries and could layeggs, the genetic analyses showed that most or all males comefrom queens.  相似文献   

12.
Split sex ratios, when some colonies produce only male and others only female reproductives, is a common feature of social insects, especially ants. The most widely accepted explanation for split sex ratios was proposed by Boomsma and Grafen, and is driven by conflicts of interest among colonies that vary in relatedness. The predictions of the Boomsma–Grafen model have been confirmed in many cases, but contradicted in several others. We adapt a model for the evolution of dioecy in plants to make predictions about the evolution of split sex ratios in social insects. Reproductive specialization results from the instability of the evolutionarily stable strategy (ESS) sex ratio, and is independent of variation in relatedness. We test predictions of the model with data from a long-term study of harvester ants, and show that it correctly predicts the intermediate sex ratios we observe in our study species. The dioecy model provides a comprehensive framework for sex allocation that is based on the pay-offs to the colony via production of males and females, and is independent of the genetic variation among colonies. However, in populations where the conditions for the Boomsma–Grafen model hold, kin selection will still lead to an association between sex ratio and relatedness.  相似文献   

13.
Organisms must make important decisions on how to allocate resources to reproduction. We investigated allocation decisions in the social wasp Vespula maculifrons to understand how social insects make reproductive choices. We first determined how annual colonies apportioned resources to growth and reproduction by analysing developing brood. In contrast to expectations, colonies invested in both growth (workers) and reproduction (males) simultaneously. In addition, colonies showed evidence of producing males in pulses and reversing their reproductive choices by decreasing investment in males late in the season. This reversal is consistent with theory suggesting that colonies decrease production in males if fitness of late emerging males is low. To further investigate reproductive decisions within colonies, we determined if the male mates of multiply-mated queens varied in their reproductive success over time. Sperm use by queens did vary over time suggesting that male success may depend on sperm clumping within the female reproductive tract. Finally, we tested if colony sex ratio conformed to expectations under kin selection theory that nestmate relatedness would positively correlate with investment in new queens if workers controlled sex allocation. Surprisingly, the proportion of queens produced by colonies was negatively correlated with nestmate relatedness, suggesting that allocation may be shaped by advantages arising from increased genetic diversity resulting from multiple mating by queens. Overall, our study suggests that the reproductive decisions of colonies are flexible and may depend both on environmental cues arising from energetic needs of the colony and genetic cues arising from mating behaviours of queens.  相似文献   

14.
In many bees, wasps, and ants, workers police each other in order to prevent individual workers from selfishly producing their own male offspring. Although several factors can selectively favor worker policing, genetic relatedness is considered to be of special importance. In particular, kin selection theory predicts that worker policing should be more common in species where workers are more related to the queen's sons than to other workers' sons. Here we provide strong novel support for this theory based on a comparative analysis of policing and male parentage in 109 species of ants, bees, and wasps. First, an analysis of behavioral data confirms that worker policing occurs more frequently in species where workers are more related to the queen's sons than to other workers' sons. Second, an analysis of male parentage shows that a significantly higher percentage of the males are workers' sons in species where the workers are more related to other workers' sons. Both conclusions also hold if data are analyzed using phylogenetically independent contrasts. Although our analysis provides strong overall support for the theory that relatedness affects kin conflict over male parentage, there is also significant residual variation. Several factors that may explain this variation are discussed.  相似文献   

15.
According to kin selection theory, the colony kin structure of eusocial insects motivates workers' altruistic behaviors and therefore their sterility or restricted reproduction [1]. Indeed, theory and cross-species comparison confirm that workers engage in their own reproduction depending on relatedness among colony members [2, 3]. We show that in a honeybee colony, the workers switch from their typical altruistic role to a more selfish one if at their larval stage there are environmental cues of an upcoming decline in intracolony relatedness. This happens inevitably when a colony multiplies by swarming and replaces the mother queen with her daughter, because the mother queen's workers are faced with rearing the sister queen's offspring related to them half as much as between sisters. Workers developing from the mother queen's eggs immediately after swarming, in a temporarily queenless colony, had more ovarioles in their ovaries and less-developed hypopharyngeal glands producing brood food than control workers reared in queenright conditions. These "rebel" workers were more engaged in laying their own male-determined eggs than in rearing offspring, whether or not the sister queen was present in the colony. The finding of this previously unknown rebel strategy confirms that kin selection shapes both cooperation and conflict in honeybee societies.  相似文献   

16.
Reproductive skew - the extent to which reproduction is unevenly shared between individuals in a social group - varies greatly between and within animal species. In this study, we investigated how queens share parentage in polygynous (multiple queen) colonies of the Mediterranean ant Pheidole pallidula. We used highly polymorphic microsatellites markers to determine parentage of gynes (new queens), males and workers in P. pallidula field colonies. The comparison of the genotypes of young and adult workers revealed a very low queen turnover (less than 2%). The first main finding of the study of reproductive skew in these colonies was that there was a significant departure from equal contribution of queens to gyne, male and worker production. Reproductive skew was greater for male production than for queen and worker production. There was no relationship between the magnitude of the reproductive skew and the number of reproductive queens per colony, their relatedness and the overall colony productivity, some of the factors predicted to influence the extent of reproductive skew. Finally, our study revealed for the first time a trade-off in the relative contribution of nestmate queens to gyne and worker production. The queens contributing more to gyne production contributed significantly less to worker production.  相似文献   

17.
Both monogyne (single queen per colony) and polygyne (multiple queens per colony) populations of the fire ant Solenopsis invicta are good subjects for tests of kin selection theory because their genetic and reproductive attributes are well-characterized, permitting quantitative predictions about the degree to which sex investment ratios should be female-biased if workers and not queens control reproductive allocation. In the study populations, an investment ratio of 3 females: 1 male is predicted (a proportional investment in females of 0.75) in the monogyne form, whereas a proportional investment in females between 0.637 and 0.740 is expected in the polygyne form. To test these predictions, colonies from a single population of each social form were collected and censused during three different seasons. Consistent with their alternative modes of colony founding, monogyne colonies invested more in reproduction (sexual production) and less in growth/maintenance (worker production) than did the polygyne colonies. Overall, the sex investment ratios were female-biased in both forms, although there was considerable seasonal variation. After adjusting for sex-specific energetic costs, the proportional investment in females was 0.607 in the monogyne population, a value in between those expected under complete control by either the queen or the workers. However, when combined with data from four other previously studied monogyne populations in the U.S.A., the mean investment ratio did not differ significantly from the value predicted if workers have exclusive control. In the polygyne population, the proportional investment in females of 0.616 was consistent with the level of female bias expected under partial to complete worker control, although the potential influence of two confounding factors — possible contact with monogyne colonies and the preponderance of sterile diploid males — weakens this conclusion somewhat. Taken as a whole, the sex investment ratios of monogyne and polygyne populations of S. invicta are consistent with at least partial worker control. Of several ultimate and proximate explanations that have been proposed to explain inter-colonial variation in the sex investment ratio, only the effect of the primary sex ratio (female-determined eggs: male-determined eggs) laid by the queen appears to account for the observed variation among monogyne colonies. In the polygyne population, there is limited support for the hypothesis that greater resource abundance favors investment in females.  相似文献   

18.
We present an inclusive fitness model on worker-controlled sex investments in eusocial Hymenoptera which expands the existing theory for random mating populations as formulated by Trivers and Hare (1976) and Benford (1978). We assume that relatedness asymmetry is variable among colonies — owing to multiple mating, worker reproduction and polygyny — and that workers are able to assess the relatedness asymmetry in their own colony. A simple marginal value argument shows that “assessing” workers maximize their inclusive fitness by specializing on the production of the sex to which they are relatively more related than the average worker in the population is related to that sex. The model confirms our earlier verbal argument on this matter (Boomsma and Grafen, 1990) and gives further quantitative predictions of the optimal sex ratio of relatedness-asymmetry classes for both infinite and finite, random mating populations. It is shown that in large populations all but one of the relatedness-asymmetry classes should specialize on the production of one sex only. The remaining, balancing class is selected to compensate any bias induced by the other class(es) such that the population sex ratio reflects the relatedness asymmetry of that balancing class. In the absence of worker-reproduction, the sex ratio compensation by the balancing-class is generally close to 100%, unless the population is very small. In the Discussion we address explicitly the likelihood of our relatedness-assessment hypothesis and other assumptions made in the model. The relationship of our model with previous theory on sex allocation in eusocial Hymenoptera is worked out in the Appendix.  相似文献   

19.
The best known of the conflicts occurring in eusocial Hymenoptera is queen-worker conflict over sex ratio. So far, sex ratio theory has mostly focused on optimal investment in the production of male versus female sexuals, neglecting the investment in workers. Increased investment in workers decreases immediate sexual productivity but increases expected future colony productivity. Thus, an important issue is to determine the queen's and workers' optimal investment in each of the three castes (workers, female sexuals, and male sexuals), taking into account a possible trade-off between production of female sexuals and workers (both castes developing from diploid female eggs). Here, we construct a simple and general kin selection model that allows us to calculate the evolutionarily stable investments in the three castes, while varying the identity of the party controlling resource allocation (relative investment in workers, female sexuals, and male sexuals). Our model shows that queens and workers favor the investment in workers that maximizes lifetime colony productivity of sexual males and females, whatever the colony kin structure. However, worker production is predicted to be at this optimum only if one of the two parties has complete control over resource allocation, a situation that is evolutionarily unstable because it strongly selects the other party to manipulate sex allocation in its favor. Queens are selected to force workers to raise all the males by limiting the number of eggs they lay, whereas workers should respond to egg limitation by raising a greater proportion of the female eggs into sexual females rather than workers as a means to attain a more female-biased sex allocation. This tug-of-war between queens and workers leads to a stable equilibrium where sex allocation is between the queen and worker optima and the investment in workers is below both parties' optimum. Our model further shows that, under most conditions, female larvae are in strong conflict with queens and workers over their developmental fate because they value their own reproduction more than that of siblings. With the help of our model, we also investigate how variation in queen number and number of matings per queen affect the level of conflict between queens, workers, and larvae and ultimately the allocation of resource in the three castes. Finally, we make predictions that allow us to test which party is in control of sex allocation and caste determination.  相似文献   

20.
The local resource competition (LRC) hypothesis predicts thatwherever philopatric offspring compete for resources with theirmothers, offspring sex ratios should be biased in favor of thedispersing sex. In ants, LRC is typically found in polygynous(multiple queen) species where foundation of new nests occursby budding, which results in a strong population structure anda male-biased population-wide sex ratio. However, under polygyny,the effect of LRC on sex allocation is often blurred by theeffect of lowered relatedness asymmetries among colony members.Moreover, environmental factors, such as the availability ofresources, have also been shown to deeply influence sex ratioin ants. We investigated sex allocation in the monogynous (singlequeen) ant Cataglyphis cursor, a species where colonies reproduceby budding and both male and female sexuals are produced throughparthenogenesis, so that between-colony variations in relatednessasymmetries should be reduced. Our results show that sex allocationin C. cursor is highly male biased both at the colony and populationlevels. Genetic analyses indicate a significant isolation-by-distancein the study population, consistent with limited dispersal offemales. As expected from asexual reproduction, only weak variationsin relatedness asymmetry of workers toward sexual offspringoccur across colonies, and they are not associated with colonysex ratio. Inconsistent with the predictions of the resourceavailability hypothesis, the male bias significantly increaseswith colony size, and investment in males, but not in females,is positively correlated with total investment in sexuals. Overall,our results are consistent with the predictions of the LRC hypothesisto account for sex ratio variation in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号