首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The biological activities of lipopolysaccharide-like substance (LLS) extracted from Leptospira interrogans serovar canicola strain Moulton by the hot phenol-water method were studied in mice. The addition of 12.5 micrograms/ml or more of LLS fraction increased the incorporation of [3H]thymidine into in vitro cultured spleen cells of C57BL/6 mice, while the activity of the LLS fraction was about 20 times weaker than that of Salmonella typhimurium lipopolysaccharide (LPS). Pretreatment of murine spleen cells with rabbit anti-mouse thymocyte antiserum did not diminish the mitogenic activity of leptospiral LLS, and the LLS could not increase the incorporation of [3H]thymidine into thymocytes, suggesting that LLS acts on a B-lymphocyte population of lymphocytes. When sheep erythrocytes and LLS fraction were injected intraperitoneally into BALB/c mice, LLS exhibited an enhancing effect on antibody response in vivo. However, lethal toxicity of the LLS fraction was about 500 times lower than that of LPS in C57BL/6 mice loaded with galactosamine. No antitumor activity of leptospiral LLS (250-1,000 micrograms/mouse) against the ascites form of Ehrlich carcinoma in ddY mice was observed. The biological activities of the LLS fraction from the organism were weaker than those of gram-negative bacterial LPS, suggesting that Leptospira possesses no typical LPS.  相似文献   

2.
K Kobayashi  H Suginaka  I Yano 《Microbios》1987,51(206):37-42
The fatty acid composition of representative Candida species was examined by gas-liquid chromatography (GLC) using a polar column. The major fatty acids were C14:0, C16:0, C18:0 saturated, C16:1 and C18:1 monoenoic series, with or without C18 polyunsaturated acids (C18:2 and C18:3). In Torulopsis glabrata and Saccharomyces cerevisiae the C18:2 and C18:3 acids were not found, but the C10:0 and C12:0 acids were detected in S. cerevisiae. These results indicated that the Candida genus could be distinguished from Torulopsis and Saccharomyces genera by GLC analysis of fatty acids. Quantitative differences in the fatty acid composition between cells grown at high temperature (37 degrees C) and low temperature (25 degrees C) were found generally in Candida species, and the amounts of C18 polyunsaturated acids (C18:2 and C18:3) increased in the cells grown at 25 degrees C. Each Candida species showed a characteristic profile in fatty acid composition. Determination of the cellular fatty acid composition in Candida species is likely to be useful for the grouping or chemotaxonomy of newer isolates of Candida species.  相似文献   

3.
The fatty acid composition of lipid A was studied using gas-liquid chromatography (GLC) and GLC-mass spectrometry in Pseudomonas fluorescens strains of biovars A, B, C, i, F and G, the type strain ATCC 13525 (biovar A) inclusive. The following fatty acids were identified as predominant in the composition of lipid A in the strains representing biovars A, B, C, i, F and G: 3-hydroxydecanoic (3-OH C10:0), 2-hydroxydodecanoic (2-OH C12:0), 3-hydroxydodecanoic (3-OH C12:0), dodecanoic (C12:0), hexadecanoic (C16:0), octadecanoic (C18:0), hexadecenoic (C16:1) and octadecenoic (C18:1) acids. Lipid A of a biovar G strain differed noticeably from other strains in its fatty acid composition. Its main components were as follows: 3-hydroxytetradecanoic (3-OH C14:0), 3-hydroxypentadecanoic (3-OH C15:0) and dodecanoic (C12:0) fatty acids. The coefficients of similarity were determined for lipid A specimens isolated from the studied strains of P. fluorescens by calculating their fatty acid composition with a computer.  相似文献   

4.
Lipopolysaccharides (LPS) were isolated from the crude bacterial mass of the Pseudomonas syringae pv. maculicola IMV 381 collection culture and its virulent and avirulent subcultures isolated earlier from the heterogeneous collection culture due to its natural variability during long-term storage. The composition, immunochemical properties, and certain parameters of the biological activity of the LPS preparations obtained were studied. The structural parts of the LPS macromolecule--lipid A, the core oligosaccharide, and O-specific polysaccharide (OPS)--were isolated and characterized. The following fatty acids were identified in the lipid A composition of all cultures: 3-OH-C10:0, C12:0, 2-OH-C12:0, 3-OH-C12:0, C16:1, C16:0, C18:1, and C18:0. Glucosamine (GlcN), ethanolamine (EtN), phosphoethanolamine (EtN-P), and phosphorus (P) were revealed in the hydrophilic portion of the macromolecule. In the core portion of the LPS macromolecule, glucose (Glc), rhamnose (Rha), GlcN, galactosamine (GalN), 2-keto-3-deoxyoctulosonic acid (KDO), alanine (Ala), and P were found. The peculiarities of the structure of LPS isolated from the stable collection culture (LPS(stab)) and its virulent (LPS(vir)) and avirulent (LPS(air)) subcultures were studied. LPS(vir) and LPS(avir) were identical in the monosaccharide composition and contained as the main components L-rhamnose (L-Rha) and 3-acetamido-3,6-dideoxy-D-galactose (D-Fuc3NAc), like LPS(stab) studied earlier. The NMR spectra of LPS(vir) were identical to the spectra of LPS(stab), whose O-chain repeating unit structure was studied by us earlier, whereas LPS(avir) differed from LPS(vir) in the NMR spectrum and was identified by us as the SR form. LPS(avir) was serologically identical to LP(stab) and LPS(vir). Hence, the degree of polymerism of the LPS O-chain of P. syringae pv. maculicola IMV 381 is the main virulence factor in the infected model plants. Serological relationships were studied between P. syringae pv. maculicola IMV 381 and the strains of other pathovars with structurally similar LPS.  相似文献   

5.
Fractional composition of free and bound lipids was studied in Aureobasidium (Pullularia) pullulans 8 by preparative TLC on Silufol. Bound lipids contained a fraction (27.76 +/- 0.5%) of dark brown colour, similar to melanin. The composition of fatty acids was studied by GLC. The following fatty acids were identified and determined quantitatively: C12:0, C14:0, C15:0, C16:0, C18:0, C18:1+C15:2. The following fatty acids predominated in free and bound lipids: C16:0, C18:1+C18:2. The ratio between unsaturated and saturated fatty acids in all fractions of free and bound lipids was more than unity. The following parameters were determined for lipids; ester number (173.89 and 178.53); iodine number (44.1 and 33.10), and saponification number (181.17 and 206.03) (the values are given for free and bound lipids, respectively).  相似文献   

6.
Lipopolysaccharides (LPS) from two enteropathogenic strains of E. coli O142 and O158 were isolated by hot phenol-water extraction procedure. Polyacrylamide gel electrophoretic pattern of the LPS showed the typical ladder like pattern of smooth type of LPS. The LPS of E. coli O158 was found to contain L-rhamnose, D-glucose and N-acetyl-D-galactosamine as major constituents together with D-galactose, N-acetyl-D-glucosamine, L-glycero-D-manno-heptose and 2-keto-3-deoxy-D-manno-octulosonic acid (KDO) whereas LPS from E. coli O142 contained L-rhamnose, N-acetyl-D-glucosamine and N-acetyl-D-galactosamine as major constituents together with D-glucose, D-galactose, N-acetyl-D-glucosamine, L-glycero-D-mannoheptose and 2-keto-3-deoxy-D-manno-octulosonic acid (KDO). LPS was degraded by mild acid hydrolysis to yield a degraded polysaccharide fraction and an insoluble lipid-A fraction. The main fatty acids of the lipid-A fraction of the LPS were C12:O, C14:O, and 3-OH C14:O for O158 strain whereas E. coli O142 lipid-A consisted of C12:O, C14:O, 3-OH C14:O, and C16:O. The degraded polysaccharide fraction on gel permeation chromatography gave a high moleculer weight O-chain fraction and a core oligosaccharide and a fraction containing degraded sugars. The chemical composition of LPS and its fragmented products are reported in this communication.  相似文献   

7.
Vibrio anguillarum, one of the causative agents of fish vibriosis, is serologically and biochemically divided into three groups (A, B and C). The chemical composition and molecular architecture of lipopolysaccharide (LPS) isolated from V. anguillarum PT 514, which belongs to serogroup B, were investigated. The LPS contained glucose (Glc), fructose (Fru), L-glycero-D-mannoheptose (L-D Hep), glucosamine (GlcN) and 4-amino-4,6-dideoxyglucose as sugar constituents in molar ratios of 8.9:0.7:3.0:1.1:1.6. Sephadex G-50 gel-chromatography of a degraded polysaccharide fraction separated from the LPS by 5% acetic acid hydrolysis suggested that the O-specific polysaccharide region consists of, in average, as much as 29 moles of Glc per 3 moles of L-D Hep, while the core polysaccharide contains at least Glc, L-D Hep and GlcN in molar ratios of 3.2 : 3.0 : 0.2. Fru and 4-amino-4,6-dideoxyglucose components were released from LPS on weak-acid hydrolysis, indicating that PT 514 LPS is distinguishable from those of Vibrio anguillarum belonging to the other serogroups. 2-Keto-3-deoxyoctonate (KDO), a common sugar constituent of gram-negative bacterial LPS, was not detected by Weissbach's color reaction under the conventional hydrolysis condition, but O-phosphoryl KDO was found in the strong-acid hydrolysate (4 M HCl, 100 C, 45 min). This substance was identical, at least in high-voltage paper electrophoresis, to 5-O-phosphoryl KDO.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The lipid composition of Sendai virus, propagated in chicken eggs, was analyzed by high performance liquid chromatography (HPLC), thin-layer chromatography (TLC), and gas-liquid chromatography (GLC). Phosphatidylcholine was found to be the dominant phospholipid (37.3%) with phosphatidylethanolamine (26.8%) and phosphatidylserine (12.0%) also present in significant amounts. Analysis of the fatty acid methyl esters revealed that the dominant fatty acids in total phospholipid were: C16:0 (17.6%), C18:0 (15.4%), C18:1 (n-9) (22.0%), and C24:0 (6.0%). Cardiolipin, phosphatidylserine, and sphingomyelin contained higher levels of saturated fatty acids relative to phosphatidylinositol, phosphatidylethanolamine, and phosphatidylcholine.  相似文献   

9.
The photobiont of the lichen, Dictyonema glabratum (Scytonema sp.), was isolated and cultivated in a soil-extract medium and submitted to chemical analysis. Successive extractions with CHCl3-MeOH, aqueous MeOH, and H2O gave rise to solutions of lipids (25%), low-molecular-weight carbohydrates (22%), and polysaccharides (4%), respectively. TLC of the lipid extract showed the presence of glycolipids, which were further purified and examined by NMR spectroscopy and GC-MS. Monogalactosyldiacylglycerol (1%), digalactosyldiacylglycerol (0.8%), trigalactosyldiacylglycerol (0.4%), and sulfoquinovosyldiacylglycerol (0.5%) were identified. The most abundant fatty acid ester in each fraction was palmitic (C16:0), but a great variation of the ester composition from one to another was found. Others present were those of C12:0, C14:0, C15:0, C16:1, C17:0, C18:0, C18:1, C18:2, C18:3, C22:0, C22:2, and C24:0. The lipid extract was also subjected to acid methanolysis, which gave rise to dodecane, 2-Me-heptadecane, 2,6-Me2-octadecane, and 8-Me-octadecane, methyl esters of C14:0, C15:0, C16:0, C16:1, C17:0, C18:0, C18:1, C18:2, C20:0, and C24:0 fatty acids, and the dimethyl ester of decanedioic acid. The polysaccharide had mainly Glc, Gal, and Man, with small amounts of 3-O-methylrhamnose and 2-O-methylxylose, both found in plants, and unexpectedly, some of the units were beta-galactofuranose, typical of fungal, but not cyanobacterial polysaccharides. The low-molecular-weight carbohydrates showed mannose as the main free reducing sugar, which differs from Nostoc sp. and Trebouxia sp. photobionts.  相似文献   

10.
Choline phosphoglycerides (CPG) represent the major fraction of heart phospholipids. Since depletion of membrane phospholipids and accumulation of lyso-compounds, particularly lysophosphatidylcholines, have been implicated in arrhythmogenesis, it was of great interest to study the composition of this major phospholipid fraction of the heart at a molecular level in an established animal model. The data presented here describe the first report on the detailed chemical examination of CPG and resolution, characterization and quantitative analysis of the molecular species of this phospholipid fraction from porcine heart by high performance liquid chromatography (HPLC). This fraction constitutes 37.5 ± 0.7% (n = 21) of the total phospholipids and upon successive mild acid and alkaline hydrolyses revealed the presence of essentially three subclasses: diacyl-, alkenylacyl-, and alkylacyl glycerophosphorylcholines, in a relative abundance of 57.7 ± 2.2% (n = 8), 37.3 ± 1.3% (n = 8) and 4.6 ± 0.2% (n = 8), respectively. The fourth subclass, dialkyl CPG was found only in minute amounts (0.43 ± 0.05%, n = 8) and the presence of dialkenyl and alkenylalkyl analogues could not be detected. Alternatively, by converting the CPG fraction to benzoate derivatives after phospholipase C digestion, it was possible to isolate and quantitate subclass composition by TLC/spectroscopy or both subclass compositions and molecular species analysis by HPLC directly by a UV detector online with the column. By these techniques, subclass composition was found to be very similar to that obtained by the chemical hydrolysis technique. By HPLC, up to 25 species can be identified and quantitated in each subclass, their identity being confirmed by gas-liquid chromatography, after their isolation from the column. The analyses showed that up to 74% of the diacyl moiety consisted of 16:0–18:2 (34%), 16:0–18:1 (27%), and 18:0–18:2 (13%) species, while the major species of the alkenylacyl moiety were 16:0–18:2 (44%) 16:0–18:1 (13%), 16:0–20:4 (12%) and 18:1–18:2 (9%) making up more than 75% of the total mass of this subclass. The major molecular species of the alkylacyl moiety was 16:0–18:2, constituting up to 47% of this fraction, while others constituted about 10% (16:0–18:1), 9% (18:1–18:2), 8% (16:0–20:4) and 6% (18:0–18:2), making up 80% of the total mass.The ether chain composition of alkylacyl CPG whether determined after isolation of this fraction by the chemical hydrolysis technique or by HPLC was indistinguishable. Similarly, the aliphatic moieties of diradylglycerols, and their subclasses, whether analysed directly or reconstituted from the molecular species data, were very similar in composition, confirming the accuracy of the data and the reproducibility of the technique devised. This also suggests that this method is suitable to distinguish minor changes in the molecular species of CPG in the heart during the early phase of ischemia and in arrhythmias, and should facilitate further studies on the metabolism of the individual species in health and disease.  相似文献   

11.
Lipopolysaccharides (LPS) isolated from Bordetella pertussis, B. parapertussis and B. bronchiseptica were analysed for their chemical composition, molecular heterogeneity and immunological properties. All the LPS preparations contained heptose, 3-deoxy-D-manno-2-octulosonic acid, glucosamine, uronic acid, phosphate and fatty acids. The fatty acids C14:0, C16:0 and beta OHC14:0 were common to all the LPS preparations. LPS from B. pertussis strains additionally contained isoC16:0, those from B. parapertussis contained isoC14:0 and isoC16:0, and those from B. bronchiseptica contained C16:1. By SDS-PAGE, LPS from B. pertussis had two bands of low molecular mass, and the LPS from B. parapertussis and B. bronchiseptica showed low molecular mass bands together with a ladder arrangement of high molecular mass bands. Immunodiffusion, quantitative agglutination and ELISA demonstrated that the LPS from B. pertussis strains reacted with antisera prepared against whole cells of B. pertussis and B. bronchiseptica; LPS from B. parapertussis reacted with antisera to B. parapertussis and B. bronchiseptica, and LPS from B. bronchiseptica reacted with anti-whole cell serum raised against any of the three species. From these results, it is concluded that LPS from B. bronchiseptica has structures in common with LPS from B. pertussis and B. parapertussis, while the LPS from B. pertussis and B. parapertussis are serologically entirely different from each other.  相似文献   

12.
Algal preparations from Acetabularia crenulata were analyzed for their fatty acid composition to establish the suitability of this alga as a model to study fatty acid oxidation and oxylipin biosynthesis. The work was based on two goals. The first goal of this study was to determine the contribution of fatty acids from contaminating bacteria and how this influenced the total fatty acid composition of cell homogenates of A. crenulata collected in the wild as compared to specimens cultured in sterile conditions. The major fatty acids detected for both specimens were palmitic (C16:0), palmitoleic (C16:1n-7), oleic (C18:1n-9), linoleic (C18:2n-6), linolenic (C18:3n-3), and octadecatetraenoic acid (C18:4n-3). Significant amounts of odd-chain fatty acids common to bacteria were not detected in either sample. Furthermore, branched-chain fatty acids, typical bacterial biomarkers, were not detected in either sample. Data suggest that bacteria do not greatly contribute to the total fatty acid pool of A. crenulata. The second goal was to compare the fatty acid composition of cell homogenates with that of isolated chloroplasts. Comparatively speaking palmitoleic and octadecatetraenoic acid were found at significantly lower concentrations in the chloroplast whereas oleic and linolenic acid were found at significantly higher amounts in this organelle. Furthermore, the amount of hexadecatrienoic acid (C16:3), a fatty acid commonly esterified to monogalactosyldiacylglycerol (MGDG; lipid present at high concentrations inside the chloroplasts of algae), was present at very low concentrations in these plastids (0.7%). Typically green algal follow the "prokaryotic pathway" for MGDG biosynthesis where C18:3 is esterified at the sn-1 position of the glycerol backbone and C18:3 or C16:3 at the sn-2 position, making C16:3 a major fatty acid inside chloroplasts. Interestingly, our results suggest that chloroplasts of A. crenulata appear to follow the "eukaryotic pathway" for MGDG biosynthesis where C18:3 is both at the sn-1 and sn-2 position of MGDG. Taking into account the exceptions noted, the fatty acid composition for A. crenulata is similar to that reported for most chlorophytes.  相似文献   

13.
Abstract A lipopolysaccharide (LPS) fraction was isolated from Prochlorothrix hollandica by hot phenol/water extraction. Negatively stained preparations of an aqueous LPS dispersion showed the triple-layered appearance of the LPS aggregates. Glucose (main sugar), rhamnose, fucose, galactose, mannose, xylose, and 3- O -methyl-xylose were found as the constituents of the polysaccharide moiety. Glucosamine and the 3-hydroxy fatty acids, 3-OH-16:0, 3-OH-14:0, and the rarely detected iso-3-OH-15:0, constitute the lipid A of the LPS. l -glycero- d -manno-heptose and 3-deoxy- d -manno-2-octulosonic acid (dOclA), typical components of inner core oligosaccharides from enterobacterial LPS, were lacking in the isolated LPS fraction from Prochlorothrix hollandica .  相似文献   

14.
Cellular polysaccharide fractions of various representative members of genera of the family Spirochaetaceae were obtained by the ammonium hydroxide extraction method. The sugar composition of the polysaccharide preparations was complex and many kinds of sugars such as rhamnose, fucose, ribose, xylose, mannose, galactose, and glucose were detected in all of the spirochetes tested. Of particular interest was the presence of 4-O-methylmannose as a constituent polysaccharide in members of the genus Leptospira. This sugar was not detected in the polysaccharides of Spirochaeta, Borrelia, and Treponema. The chemical compositions of cell wall fractions were also examined. 4-O-Methylmannose was detected in the cell wall polysaccharides of the genus Leptospira but not in cell walls prepared from the Spirochaeta, Borrelia, and Treponema. The diaminopimelic acid present in cell wall peptidoglycans of the genus Leptospira was meso-diaminopimelic acid (A2pm). The molar ratios of alanine, glutamic acid, A2pm, glycine, muramic acid, and glucosamine in leptospiral cell walls were found to be approximately 2:1:1:1:1:1. In contrast to the Leptospira, the peptidoglycans of genera Spirochaeta, Borrelia, and Treponema contained ornithine (Orn) but not A2pm. Since 4-O-methylmannose and A2pm were found in the cell wall fractions of genus Leptospira but not in Spirochaeta, Borrelia, or Treponema, it was suggested that the chemical compositions of the cell wall might become an important criterion for the chemotaxonomy of Spirochaetales.  相似文献   

15.
A comparative study of the lipopolysaccharides (LPS) isolated from Sinorhizobium meliloti SKHM 1-188 and two its LPS-mutants (Th29 and Ts22) with sharply decreased nodulation competitiveness was conducted. Polyacrylamide gel electrophoresis with sodium dodecyl sulfate revealed two forms of LPS in all the three strains: a higher molecular-weight LPS1, containing O-polysaccharide (O-PS), and a and lower molecular-weight LPS2 without O-PS. However, the LPS1 content in mutants was significantly smaller than in the parent strain. The LPS of the strains studied contained glucose, galactose, mannose, xylose, three nonidentified sugars--X1 (TGlc 0.53), X2 (TGlc 0.47), and X3 (TGlc 0.43), glucosamine, and ethanolamine, while the LPS of S. meliloti SKHM1-188 additionally contained galactosamine, glucuronic and galacturonic acids, and 2-keto-3-deoxyoctulosonic acid (KDO), as well as fatty acids, such as 3-OH C14:0, 3-OH C15:0, 3-OH C16:0, 3-OH C18:0, nonidentified hydroxy X (T3-OH C14:0 1.33), C18:0, and unsaturated C18:1 fatty acids. The LPS of both mutants were similar in the component composition but differed from the LPS of the parent strain by a lower X2, X3, and 3-OH C 14:0 content and a higher KDO, C18:0, and hydroxy X content. The LPS of all the strains were subjected to mild hydrolysis with 1% acetic acid and fractionated on a column with Sephadex G-25. The higher molecular weight fractions (2500-4000 Da) contained a set of sugars typical of intact LPS and, supposedly, corresponded to the LPS polysaccharide portion (PS1). In the lower molecular weight fractions (600-770 Da, PS2), glucose and uronic acids were the major components; galactose, mannose, and X1 were present in smaller amounts. The PS1/PS2 ratio for the two mutants was significantly lower than for strain SKHM1-188. The data obtained show that the amount of O-PS-containing molecules (LPS1) in the heterogeneous lipopolysaccharide complex of the mutants was smaller than in the SKHM1-188 LPS; this increases the hydrophobicity of the cell surface of the mutant bacteria. This supposedly contributes to their nonspecific adhesion on the roots of the host plant, thus decreasing their nodulation competitiveness.  相似文献   

16.
The fatty acid composition of lipids was compared among yeast cultures belonging to the genera Rhodotorula, Lipomyces, and Cryptococcus. These lipids contain C10--C26 fatty acids, mainly with the even number of carbon atoms. Palmitic acid (C16 : 0) and oleic acid (C18 : 0) predominate. In the majority of the strains, the sum of unsaturated acids exceeds the sum of saturated acids. The content of unsaturated acids in the lipids of the epiphytic yeast Rhodotorula is higher than in the soil yeast Lipomyces. Besides C12--C18 acids, C22--C26 acids were identified by GLC at preset temperatures. Lignoceric acid (C24 : 0) was found for the first time in the cultures of Rhodotorula, Lipomyces, and Cryptococcus, and cerotinic acid (C16 : 0) was also detected in the Rhodotorula yeast. Fatty acids with a long chain are registered in the strains of Rhodotorula more often than in the strains of Lipomyces and Cryptococcus.  相似文献   

17.
Lipopolysaccharide (LPS) was isolated from the phytopathogenic bacterium Pseudomonas syringae pv. atrofaciens IMV 948 by mild extraction of the microbial cells with saline, and the properties, composition, and structure of the LPS were studied. The LPS showed low toxicity in D- galactosamine-sensitized mice and low biological activity in plants. Structural components of LPS--lipid A, core oligosaccharide, and O-specific polysaccharide (OPS)--were obtained by mild acid degradation and characterized. The lipid A contained fatty acids 3-HO-C10:0, C12:0, 2-HO-C12:0, 3-HO-C12:0, C16:0, C16:1, C18:0, and C18:1, as well as components of the hydrophilic moiety: GlcN, ethanolamine, phosphate, and phosphoethanolamine. The LPS core contained components typical of pseudomonads: glucose, rhamnose (Rha), L-glycero-D-manno-heptose, GlcN, GalN, 2-keto-3-deoxy-D-manno-octonic acid, alanine, and phosphate. The OPS consisted of L-Rha and D-GlcNAc in the ratio 4 : 1 and was structurally heterogeneous. The main pentasaccharide repeating unit of the OPS has the following structure: [structure see text]. Immunochemical studies showed that P. syringae pv. atrofaciens IMV 948 is serologically separate from other P. syringae strains, including those that have structurally similar OPS.  相似文献   

18.
The aim of this study was to determine and to compare fatty acids occurring in lipopolysaccharides (LPS) isolated from B. thetaiotaomicron and B. fragilis strains of different origin. Lipopolysaccharides of three B. thetaiotaomicron strains and four B. fragilis strains were isolated by phenol-water extraction according to the procedure of Westphal and Jann (1965). Water-phase LPS fractions were then treated with nucleases and purified by ultracentrifugation as described by Gmeiner (1975). Fatty acid methyl esters, obtained by methanolysis of LPS, were analysed in gas-liquid chromatography combined with mass spectrometry (GLC-MS). Trimethylsilylated hydroxyl groups of fatty acid methyl esters were identified with GLC-MS using a method of selective ion monitoring (SIM). Lipopolysaccharides of B. thetaiotaomicron and B. fragilis strains contained long-chain (15-18 carbon atoms) fatty acids. The broad spectrum of simple long-chain and branched-chain fatty acids as well as 3-hydroxy fatty acids were detected. The main fatty acid of analyzed bacterial species was 3-hydroxy-hexadecanoic acid (3OH C16:0). Several 3-hydroxy fatty acids were detected in LPS of examined strains. Fatty acids occurring in LPS of B. thetaiotaomicron and B. fragilis strains appeared to be qualitatively similar. Quantitative differences in fatty acids composition of lipopolysaccharides isolated from strains of different origin were observed.  相似文献   

19.
The beta-oxidation and esterification of medium-chain fatty acids were studied in hepatocytes from fasted, fed and fructose-refed rats. The beta-oxidation of lauric acid (12:0) was less inhibited by fructose refeeding and by (+)-decanoyl-carnitine than the oxidation of oleic acid was, suggesting a peroxisomal beta-oxidation of lauric acid. Little lauric acid was esterified in triacylglycerol fraction, except at high substrate concentrations or in the fructose-refed state. With [1-14C]myristic acid (14:0), [1-14C]lauric acid (12:0), [1-14C]octanoic acid (8:0) and [2-14C]adrenic acid (22:4(n - 6] as substrate for hepatocytes from carbohydrate-refed rats, a large fraction of the 14C-labelled esterified fatty acids consisted of newly synthesized palmitic acid (16:0), stearic acid (18:0) and oleic acid (18:1) while intact [1-14C]oleic acid substrate was esterified directly. With [9,10-3H]myristic acid as the substrate, small amounts of shortened 3H-labelled beta-oxidation intermediates were found. With [U-14C]palmitic acid, no shortened fatty acids were detected. It was concluded that when the mitochondrial fatty acid oxidation is down-regulated such as in the carbohydrate-refed state, medium-chain fatty acids can partly be retailored to long-chain fatty acids by peroxisomal beta-oxidation followed by synthesis of C16 and C16 fatty acids which can then stored as triacylglycerol.  相似文献   

20.
We have studied the lipid composition of PC12 pheochromocytoma cells cultured in the presence and absence of nerve growth factor (NGF). Neutral and acidic lipid fractions were isolated by column chromatography on DEAE-Sephadex and analyzed by high-performance thin-layer chromatography (HPTLC). The total lipid concentration was approximately 220 micrograms/mg of protein, and the concentration of neutral glycolipids was 1.6-1.8 microgram/mg of protein for both NGF-treated and untreated cells. The neutral glycolipid fraction contained a major component, which accounted for approximately 80% of the total and which was characterized as globoside on the basis of HPTLC mobility, carbohydrate analysis, fast atom bombardment mass spectrometry, and mild acid hydrolysis. The major fatty acids of globoside were C16:0 (10%), C18:0 (16%), C22:0 (23%), C24:1 (17%), and C24:0 (24%). C18 sphingenine accounted for almost all of the long-chain bases. The other neutral glycolipids were tentatively identified as glucosylceramide (15%), lactosylceramide (4%), and globotriosylceramide (4.5%). The concentration of ganglioside sialic acid was approximately 0.34 and 0.18 microgram/mg of protein for cells grown in the presence and absence of NGF, respectively. Although there was an increase in ganglioside concentration in NGF-treated cells, NGF did not produce any differential effects on the relative proportions of the individual gangliosides. Several of the gangliosides appear to contain fucose, and one of these was tentatively identified as fucosyl-GM1. Brain-type gangliosides of the ganglio series were also detected by an HPTLC-immunostaining method. However, the fatty acid and long chain base compositions of PC12 cell gangliosides (and their TLC mobility) differ from those of brain gangliosides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号