首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary An attempt was carried out to produce trisomics of the wild tomato L. peruvianum, to define their essential features, and to detect relationships between trisomy and the expression of self-compatibility.Triploid-diploid crosses in L. peruvianum yielded nearly 40% aneuploids. Of these, 18% were single trisomics, and the rest had 2, 3 and 4 extra chromosomes. Almost all the trisomics occurred in crosses where the triploid was used as female parent. Vigour and fertility of trisomics were not much different from those of disomics, and morphologically they were very similar.The extra chromosome was identified in three self-compatible trisomic plants through somatic and pachytene chromosome morphology. One of these plants was trisomic for chromosome 1, while the other two were trisomic for chromosome 3. In these trisomics a positive correlation was found between chromosome length and trivalent formation, but no relationship between chromosome length and frequency of laggards was observed.A series of test-crosses revealed that the capacity of the trisomics to produce seed upon selfing always resulted from alterations of the incompatibility phenotype of the style and not from competitive interaction in the pollen. Progeny analyses showed that the self-compatibility features of the trisomics were not transmitted from one generation to the next. The implications of these findings are discussed.This work has been supported by a contract between the European Communities and the CNEN. This publication is contribution no. 1458 from the Biology Division of the European Communities and contribution no. 472 from the Divisione Applicazioni delle Radiazioni del CNEN.  相似文献   

2.
Vasek , F. C. (U. California, Riverside.) Trisomic transmission in Clarkia unguiculata. Amer. Jour. Bot. 48(9): 829–833. 1961.—Seven primary trisomic plants derived from a triploid-diploid cross were self-pollinated. The 7 progenies included diploids and trisomics, the latter varying in frequency from 16 to 30%. In addition, 2 of the progenies included tetrasomic plants. Crosses were made between diploids and either trisomics or tetrasomics. The extra chromosome of 1 progeny was readily transmitted through the pollen of trisomic and tetrasomic plants. When a trisomic of the same progeny was used as a seed parent, only diploids and tetrasomics were found among the offspring, indicating a duplication of the extra chromosome. The extra chromosomes of other progenies were not transmitted through either pollen or eggs in controlled diploid-trisomic crosses but trisomics of these progenies were recovered after self-pollination. It is suggested that differential pollen-tube growth precluded transmission to diploid-trisomic hybrids and that under conditions of reduced pollen competition the extra chromosome normally would be transmitted through pollen. The extra chromosomes generally occur as univalents at metaphase and are ordinarily included in telophase nuclei.  相似文献   

3.
The aneuploid with isochromosome or telochromosome is ideal material for exploring the position of centromere in lingkage map.For obtaining these aneuploids in rice,the primary trisomics from triplo-1 to triplo-12 and the aneuploids derived from a triploid of indica rice variety Zhongxiao 3037 were carefully investigated.From the offsprings of triplo-10,a primary trisomic of chromosome 10 of the variety,an isotetrasomic “triplo-10-1” was obtained.Cytological investigation revealed that a pair of extra isochromosomes of triplo-10-1 were come from the short arm of chromosome 10.In the offsprings of the isotetrasomic,a secondary trisomic “triplo-10-2”,in which the extra-chromosome was an isochromosome derived from the short arm of chromosome 10,was identified.With the isotetrasomic,secondary trisomic,primary trisomic and diploid of variety Zhongxiao 3037,different molecular markers were used for exploring the position of the centromere of chromosome 10.Based on the DNA dosage effect,it was verified that the molecular markers G1125,G333 and L169 were Located on the short arm,G1084 and other 16 available molecular markers were on the long arm of chromosome 10.So the centromere of chromosome 10 was located somewhere between G1125 and G1084 according to the RFLP linkage map given by Kurata et al[1].The distance from G1125 to G1084 was about 3.2cM.  相似文献   

4.
R J Singh  T Tsuchiya 《Génome》1993,36(2):350-355
The origin, identification, meiotic chromosome behavior, and breeding behavior of an unstable trisomic barley were studied. The extra chromosome originated by breakage and fusion of an acrocentric chromosome 3 in a plant from an F2 population of a cross between acrotrisomic 3L3S (2n = 14 + 1 acro3L3S) and a balanced lethal stock, xc. (xantha) ac (albino). The F2 population segregated only for the albino trait. The genotypic constitution of the trisomic plant was ac ac (for both normal chromosome 3) and Ac (for the unstable metacentric chromosome). The unstable extra metacentric chromosome was designated as metacentric 3B (abbreviated as meta3B). Meiotic chromosome behavior in plants with 2n = 14 + 1 meta3B differed from plant to plant and within spikes. Some plants showed only trisomic cells with a chromosome configuration of 1 III + 6 II and 7 II + 1 I at metaphase I, whereas other plants showed both trisomie and disomic cells (7 II) that resulted from the elimination of the extra meta3B. The frequency of ring trivalents was low (6.8%). An average transmission rate of unstable meta3B ranged from 4.3 to 12.9%. The elimination of meta3B, and hence loss of the dominant Ac allele, resulted in albino seedlings as well as white stripes on plants, leaves, and spikes. Chromosome numbers of albino seedlings in the progeny of 2n = 14 + 1 meta3B were all diploid (2n = 14), while green seedlings contained 2n = 14 + 1 meta3B. However, progenies of some spikes of one trisomic plant showed a low frequency of green diploids and metatrisomics (2n = 14 + 1 meta3B), which was attributed to crossing-over.  相似文献   

5.
The hybrids from different generations of autotetraploid rice (Oryza sativa L. ) and the original autotetraploid rice (indica and japonica) were used for anther culture, and the pollen-plantlets from them were induced. Due to the significant difference on phenotype among the trisomics and between trisomics and diploid, 15 lines of 4390 H1 induced plants were selected for chromosome study. Their PMC meiosis were observed. The results showed that the chromosomes from these plants consisted of 2n, 4n and aneuploids, and their ratios were 88.00%, 5.53% and 6.47% respectively. 272 trisomics from 284 aneuploids were identified, which acounted for 6.20% of all the pollen-plants. According to the special characters from the whole set of trisomics, they were classified as 9 types. The 9124- 7 trisomics were designated as triplo-8 by the pachytene analysis. Sowing the seeds of triplo8, the transmission rate of extra chromosome was calculated at the seedling stage of H2. The rate of trisomic was 34.11% of all plants, the agronomic characters were similar to the H1 parent plants.  相似文献   

6.
BACKGROUND AND AIMS: Gametophytic apomixis is regularly associated with polyploidy. It has been hypothesized that apomixis is not present in diploid plants because of a pleiotropic lethal effect associated with monoploid gametes. Rare apomictic triploid plants for Paspalum notatum and P. simplex, which usually have sexual diploid and apomictic tetraploid races, were acquired. These triploids normally produce male gametes through meiosis with a range of chromosome numbers from monoploid (n = 10) to diploid (n = 20). The patterns of apomixis transmission in Paspalum were investigated in relation to the ploidy levels of gametes. METHODS: Intraspecific crosses were made between sexual diploid, triploid and tetraploid plants as female parents and apomictic triploid plants as male parents. Apomictic progeny were identified by using molecular markers completely linked to apomixis and the analysis of mature embryo sacs. The chromosome number of the male gamete was inferred from chromosome counts of each progeny. KEY RESULTS: The chromosome numbers of the progeny indicated that the chromosome input of male gametes depended on the chromosome number of the female gamete. The apomictic trait was not transmitted through monoploid gametes, at least when the progeny was diploid. Diploid or near-diploid gametes transmitted apomixis at very low rates. CONCLUSIONS: Since male monoploid gametes usually failed to form polyploid progenies, for example triploids after 4x x 3x crosses, it was not possible to determine whether apomixis could segregate in polyploid progenies by means of monoploid gametes.  相似文献   

7.
A comparative study of the relative rates of intracellular total protein metabolism in diploid and aneuploid (with trisomy for chromosome 7) human embryo fibroblasts in the logarithmic and stationary growth phases was carried out. Using double labeling with [14C]proline (24 hrs) and [3H]proline (3 hrs), it was found that: the rates of intracellular protein metabolism during transition to the stationary phase of growth are increased in diploid cells and decreased in cells with trisomy for chromosome 7; the relative rate of protein metabolism in the logarithmic phase is higher in trisomic cells than in diploid ones. The intracellular degradation of procollagen in trisomic cells is increased approximately by 17% as compared to normal fibroblasts. Treatment of cell lysates with bacterial collagenase revealed the presence of procollagen incomplete degradation products in anomalous fibroblasts. The observed differences in the rates and mode of protein metabolism during transition of diploid and trisomic fibroblasts to the stationary phase of growth suggest that the odd autosome interferes with the normal coordinated activity of genes in chromosomes.  相似文献   

8.
J Imanywoha  K B Jensen  D Hole 《Génome》1994,37(3):469-476
Six of the seven possible primary trisomics in Agropyron cristatum were produced. Based on morphology, arm length ratios, and C-banding patterns, they were identified as primary trisomics for chromosomes A, B, C, D, E, and G. Agropyron cristatum is one of several species constituting the crested wheatgrass complex. All species in this complex contain one basic genome (P). A study was conducted to produce and identify a primary trisomic series that will be used to map genes to individual chromosomes. A population of 157 plants were generated by crossing autotriploids (PPP) with diploid (PP) A. cristatum: 58 were diploid (2n = 14), 76 were primary trisomies (2n = 15), 17 were double trisomic (2n = 16), 4 were triple trisomics (2n = 14 + 3), 1 was telocentric trisomic (2n = 14 + 1 telo), and 1 was tetratrisomic (2n = 14 + 4). Karyotype analysis of acetoorcein-stained chromosomes was carried out using the CHROMPAC III computer program; for analysis of C-banded karyotypes, the computer imaging analysis program PCAS (Plant Chromosome Analysis System) was used to identify the primary trisomics. Of the 47 primary trisomics analyzed, 21 plants had one extra satellited chromosome E, 18 with the satellited D chromosome, 3 each for chromosomes B and G, and 1 each for chromosomes C and A. Chromosome pairing was studied in trisomies B, D, E, and G. Trisomics for chromosomes B and G were similar in their mieotic behavior. Each had a trivalent frequency of about 60% and pollen stainability of less than 40%. Trisomics for chromosomes D and E had a trivalent frequency of about 30% and pollen stainability of over 70%.  相似文献   

9.
Summary Eleven primary trisomics of rice, variety Nipponbare, were subjected to anther culture. The 12th trisomic did not produce normal anthers. A total of 3,734 plants were obtained, which were examined morphologically at the seedling stage in the greenhouse. A number of plants appeared in the progenies of ten trisomics which had unique morphological features. The frequency of these variant types differed among different progenies. Cytological observations revealed that 43 variant plants in the progenies of nine trisomics had 13 chromosomes (n + 1), and 56 were tetrasomics (2n = 26). The tetrasomic plants in the progeny of a trisomic were morphologically identical. Similarly, n + 1 plants in the progeny of a trisomic were also identical. Plants with 23, 25, 36, 39, and 73 chromosomes were also obtained. Results show that valuable aneuploids such as n + 1 and 2n + 2 can be obtained in the anther-culture-derived progenies of trisomics.  相似文献   

10.
Chromosome studies in 500 induced abortions.   总被引:4,自引:0,他引:4  
A survey of the chromosome constitution in 500 induced abortions (5-12 menstrual weeks) was undertaken over a period of 1 1/2 years. There were 34 cases (6.8%) of gross chromosome anomalies: 2 cases of trisomy A; 5 of trisomy C (including XXX and XXY); 1 of mosaic trisomy C; 4 of trisomy D; 2 of trisomy E; 2 of trisomy G; 1 of double trisomy E and G; 1 of XYY; 4 of monosmy C (including XO); 2 of mosaic monosomy C; 1 of mosaicism of ring D chromosome; 1 of extra small metacentric chromosome; 3 of triploidy (including triploidy with double trisomy C and G); and 5 of tetraploidy and its mosaicism. An increased risk for the occurrence of trisomic anomalies was found with advancing age of the mothers. In contrast, the production of monosomies was not age-related. Trisomies were the most common type of anomalies and were found almost at random, regardless of the characteristics of chromosomes. Neither satellited nor small chromosomes were predominantly involved in the formation of chromosome anomalies.  相似文献   

11.
Summary The progeny from a cross between diploid H. vulgare and triploid H. bulbosum were mostly triploid (VBB) hybrids, the other progeny were haploid (V) barley (H. vulgare). From a cross between diploid and triploid H. bulbosum, four of the seven possible trisomic lines were isolated. The Giemsa banded karyotype of H. bulbosum was produced, and two of the lines were identified as trisomic for chromosomes 6 and 7. The cytology and transmission rates of the trisomics were examined.  相似文献   

12.
To promote cytogenetical studies on cucumber (Cucumis sativus L., 2n = 2x = 14), the reciprocal crosses were made between autotriploid and diploid for selecting the primary trisomics. Meanwhile, chromosome behavior during meiosis in autotriploid cucumber was investigated to look for cytological evidences for origin of primary trisomics. Many viable F1 seeds were obtained from reciprocal crosses between autotriploid and diploid. The number of chromosomes of 56 surviving progenies varied from 14 to 28, with plants having 2n = 15 occurring at the highest frequency (51.8%). Primary trisomics were firstly obtained in this study. Four types of primary trisomics were isolated and they could be distinguished from each other, as well as diploid. Variable chromosome configurations, e.g. univalent, bivalents and trivalents were observed in many pollen mother cells of the autotriploid at metaphase I. Binomial chromosome distribution was observed at anaphase I and frequency of 8/13 was 6.25%. The meiosis of autotriploid, especially the class of gametes with eight chromosomes, gave the cytological evidence of producing 2x + 1 type gamete and could be induced into primary trisomic plants from progeny of autotriploid–diploid crosses. These studies have established a ground work for selecting a series of primary trisomics, and further using them for associating linkage groups with specific chromosomes in cucumber.  相似文献   

13.
Summary Twelve distinct phenotypic groups of plants were isolated from nondisjunction progenies of 11 translocation heterozygote stocks. All the plants in these phenotypic groups originated in the light weight seed class. Five of the 12 phenotypic groups of plants have been verified as primary trisomics. They are all phenotypically distinguishable from each other and from disomics. One of the five primary trisomic groups, puckered leaf, was directly recovered as a primary trisomic from the original translocation heterozygote progenies. Three of the five trisomics — weak stem, dark green leaf, and convex leaf — originated first as tertiary trisomics. The related primary trisomics were isolated later from progenies of selfed tertiary trisomics. The fifth group, chlorotic leaf, originated at a low frequency among the progenies of three other trisomics: puckered leaf, convex leaf, and dark green leaf. The chlorotic leaf did not set seed under field conditions. The remaining four groups — puckered leaf, dark green leaf, convex leaf, and weak stem — are fertile, though sensitive to high temperature conditions. The transmission rate of the extra chromosome on selfing ranges from 28% to 41%. Physical identification of the extra chromosome has not been achieved for any of the five trisomic groups. Two trisomic groups, dark green leaf and convex leaf, have produced tetrasomics at low frequency. The phenotypes of these two tetrasomics are similar to the corresponding trisomics but more exaggerated.Fla. Agr. Expt. Stn. Journal Series No. 7137  相似文献   

14.
We performed chromosomal analysis on 540 mouse embryonic stem (ES) cell lines obtained during 2001 to 2004 from 20 institutions in Japan. Overall, 66.5% of the ES cell lines showed normal chromosomal numbers, but 15.9%, 9.1%, and 2.8% showed modal chromosomal numbers of 41, 42, and 39, respectively. When we karyotyped 88 ES cell lines selected arbitrarily from the 540 lines, 53 (60.2%) showed normal diploid karyotypes; the sex chromosome constitution of 52 lines was XY, with the remaining 1 being XX. Among 35 ES cell lines showing abnormal karyotypes, trisomy of chromosome 8 (41, XY, +8) was dominant (51.4%), 14.3% had trisomy 8 with loss of one sex chromosome (40, XO, +8), and 11.4% had trisomy 8 together with trisomy 11 (42, XY, +8, +11). Karyotypic abnormalities including trisomy 8 and trisomy 11 occurred in 88.6% and 17.1% of ES cell lines, respectively. The XO sex chromosome constitution was observed in 25.7% of all abnormal ES cell lines. Of the 88 selected ES cell lines, 60 lines were established from strain 129 animals, 17 from F1 progeny of C57BL/6J x CBA (called TT2 in this study), and 11 from C57BL/6J mice. Normal diploid karyotypes were observed in 58.3% of lines derived from 129, 58.8% of those from TT2, and 72.7% of C57BL/6J. The relatively high incidence of abnormalities in chromosomal number and karyotype in ES cell lines used in Japan suggests the importance of chromosomal analysis of ES cells for successful establishment of new animal models through germline transmission.  相似文献   

15.
Uniparental disomy for chromosome 16 in humans.   总被引:16,自引:6,他引:10  
The association between chromosomal mosaicism observed on chorionic villus sampling (CVS) and poor pregnancy outcome has been well documented. CVS mosaicism usually represents abnormal cell lines confined to the placenta and often involves chromosomal trisomy. Such confined placental mosaicism (CPM) may occur when there is complete dichotomy between a trisomic karyotype in the placenta and a normal diploid fetus or when both diploid and trisomic components are present within the placenta. Gestations involving pure or significant trisomy in placental lineages associated with a diploid fetal karyotype probably result from a trisomic zygote which has lost one copy of the trisomic chromosome in the embryonic progenitor cells during cleavage. Uniparental disomy would be expected to occur in one-third of such cases. Trisomy of chromosome 7, 9, 15, or 16 is most common among the gestations with these dichotomic CPMs. Nine pregnancies with trisomy 16 confined to the placenta were prenatally diagnosed. Pregnancy outcome, levels of trisomic cells in term placentas, and fetal uniparental disomy were studied. Intrauterine growth retardation (IUGR), low birthweight, or fetal death was observed in six of these pregnancies and correlated with high levels of trisomic cells in the term placentas. Four of the five cases of IUGR or fetal death showed fetal uniparental disomy for chromosome 16. One of the infants with maternal uniparental disomy 16 had a significant malformation (imperforate anus). All infants with normal intrauterine growth showed term placentas with low levels of trisomic cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
N S Kim  J Kuspira 《Génome》1993,36(3):565-579
Cytogenetic studies in Triticum monococcum (2n = 2x = 14, AA) were initiated by generating a series of primary as well as double and triple trisomics from autotriploids derived from crosses between induced autotetraploids and a diploid progenitor. Analysis of meiotic chromosome behaviour revealed that, with the exception of primary trisomics for chromosome 7A, the chromosome present in triple dose in all other trisomics formed either a bivalent plus a univalent or a trivalent (always V shaped) at diakinesis - metaphase I in approximately equal proportions. Trisomics for chromosome 7A formed a bivalent plus a univalent or a trivalent in approximately a 1:2 ratio. About 99% of the anaphase I segregations in all the trisomics were seven to one pole and eight to the other, suggesting that primary trisomics in T. monococcum form n and n + 1 meiotic products in equal proportions. The double trisomics and triple trisomics formed 5 II + 2 III and 4 II + 3 III during metaphase I, respectively. A majority of the secondary meiocytes from the double and triple trisomics possessed unbalanced chromosome numbers. All the trisomics differed phenotypically from their diploid progenitors. Single primary trisomics for chromosomes 3A and 7A produced distinct morphological features on the basis of which they could be distinguished. The phenotypes of the double and triple trisomics deviated to a greater extent from that of diploids than those of the single trisomics. Less than 50% of the progeny of all primary trisomics were trisomics themselves. Trisomic progeny were not produced in diploid female x trisomic male crosses, indicating that functional n + 1 male gametes were not generated. Diploid as well as trisomic progeny were produced in the reciprocal crosses and upon self-fertilization of the trisomics. The average frequency of trisomic progeny was 9.9%. The fertility of primary trisomics ranged from 3.8% in trisomics for chromosome 1A to 40.6% in trisomics for chromosome 2A and was significantly less than that of diploids (99.6%). The breeding behaviour and low fertility of these trisomics make their maintenance and use in cytogenetic analyses difficult.  相似文献   

17.
Clara S. Moore 《Mammalian genome》2006,17(10):1005-1012
The Ts65Dn mouse is a well-studied model for Down syndrome (DS). The presence of the translocation chromosome T1716 (referred to as T65Dn) produces a trisomic dosage imbalance for over 100 genes on the distal region of mouse Chromosome 16. This dosage imbalance, with more than half of the orthologs of human Chromosome 21 (Hsa21), causes several phenotypes in the trisomic mice that are reminiscent of DS. Careful examination of neonates in a newly established Ts65Dn colony indicated high rates of postnatal lethality. Although the transmission rate for the T65Dn chromosome has been previously reported as 20%–40%, genotyping of all progeny indicates transmission at birth is near the 50% expected with Mendelian transmission and survival. Remarkably, in litters with maternal care that allowed survival of some pups, postnatal lethality occurred primarily in pups that inherited the T65Dn marker chromosome. This selective loss within 48 h of birth reduced the transmission of the marker chromosome from 49% at birth to 34% at weaning. Gross morphologic examination revealed cardiovascular anomalies, i.e., right aortic arch accompanied by septal defects, in 8.3% of the trisomic newborn cadavers examined. This is an intriguing finding because the orthologs of the DiGeorge region of HSA22, which are posited to contribute to the aortic arch abnormalities seen in trisomy 16 mice, are not triplicated in Ts65Dn mice. These new observations suggest that the Ts65Dn mouse models DS not only in its previously described phenotypes but also with elevated postnatal lethality and congenital heart malformations that may contribute to mortality.  相似文献   

18.
A plant with 2n = 14 + 1 ring chromosomes was obtained in the progeny of a primary trisomie for chromosome 7 of a two-rowed cultivar, Shin Ebisu 16. The morphological characteristics of the trisomic plants with an extra ring chromosome were similar to the primary trisomic for chromosome 7 (Semierect), which suggests that it originated from this chromosome. The ring chromosomes were not completely stable in mitotic cells because of abnormal behavior. Chromosome complements varied in different plants and in different roots within a plant. Root tip cells and spikes with 2n = 14 and 14 + 2 ring chromosomes were observed on plants with 14 + 1 ring chromosomes. Breakage-fusion-bridge cycle was inferred. The ring chromosome was associated with two normal homologues forming a trivalent in 17.6% sporocytes at metaphase I. The transmission of the extra ring chromosome was 23.1% in the progeny of the plant with 14 + 1 ring chromosomes. Trivalent formation may have been much higher at early prophase stages which were difficult to analyze in barley; only 4 of 120 sporocytes analyzed showed an isolated ring at pachytene. The ring chromosome moved to one pole without separation in 24.7% of the sporocytes at AI, and divided in 27.1% sporocytes giving rise to 8-8 separation. Only 10% of the sporocytes showed bridge formation at AI.  相似文献   

19.
Summary Six Brassica napus — B. nigra disomic addition lines were characterized by isozyme, fatty acid, and RFLP markers. The markers were arranged in six synteny groups, representing six of the eight chromosomes present in the B. nigra genome. Synteny group 1 displayed high levels of linoleic and linolenic acids in the seeds of the B. nigra parent. Synteny group 3 accumulated higher levels of eicosenoic and erucic acid than B. nigra. Three of the lines transmitted the alien chromosome to 100% of the progeny. The rest had variable transmission rates but all were above 50%. Most of the lines produced disomic addition plants in their progeny, suggesting pollen transmission of the alien chromosome. In addition to the marked lines, six others remained unmarked. These could be grouped into two classes according to their alien chromosome transmission. It is likely that they represent the two other B. nigra chromosomes that remained uncharacterized by the markers. No diploid individuals carrying B. nigra genome-specific markers were detected in the progenies studied.  相似文献   

20.
Khush GS  Singh RJ  Sur SC  Librojo AL 《Genetics》1984,107(1):141-163
Twelve primary trisomics of Oryza sativa L. were isolated from the progenies of spontaneous triploids and were transferred by backcrossing to the genetic background of IR36, a widely grown high yielding rice variety. Eleven trisomics can be identified morphologically from one another and from diploids. However, triplo 11 is difficult to distinguish from diploid sibs.—The extra chromosome of each trisomic was identified cytologically at pachytene stage of meiosis, and the chromosomes were numbered according to their length at this stage. The major distinguishing features of each pachytene chromosome were redescribed.—The female transmission rates varied from 15.5% for triplo 1, the longest chromosome, to 43.9% for triplo 12, the shortest chromosome. Seven of the 12 primary trisomics transmitted the extra chromosome through the male. The low level of chromosomal imbalance tolerated by rice and other evidence are interpreted to indicate that this species is a basic diploid.—Genetic segregation for 22 marker genes in the trisomic progenies was studied. Of a possible 264 combinations, involving 22 genes and 12 trisomics, 120 were examined. Marker genes for each of the 12 chromosomes were identified. The results helped establish associations between linkage groups and cytologically identifiable chromosomes of rice for the first time. Relationships between various systems of numbering chromosomes, trisomics, linkage groups and marker genes are described, and a revised linkage map of rice is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号