首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of apolipoprotein C-II (apoC-II) and a synthetic fragment of apoC-II corresponding to residues 56-79 on the lipoprotein lipase (LpL) catalyzed hydrolysis of trioleoylglycerol in a monolayer of egg phosphatidylcholine and of dipalmitoylphosphatidylcholine vesicles was examined. Synthetic peptide 56-79, which does not associate with lipid, did not activate LpL at surface pressures greater than 30 mN/m; apoC-II is active up to 34 mN/m. However, acylation of the NH2-terminus of peptide 56-79 with palmitoyl chloride gave nearly identical LpL activating properties as compared to apoC-II. We conclude that at high surface pressures the lipid-binding region of apoC-II (residues 44-55) plays an essential role in LpL activation.  相似文献   

2.
Triolein particles stabilized by a phosphatidylcholine monolayer were used to study the lipoprotein lipase (LpL) reaction. They were prepared in two different sizes and with triolein and phosphatidylcholine in the molar ratios of 0.9-1.2 : 1 (small particles) and 8-17 : 1 (large particles). The rate of hydrolysis by LpL of phosphatidylcholine on the surface of both lipid particles was only 1/20 as much as that of triolein, even if it was activated to the maximum by apolipoprotein C-II (apoC-II). Thus, the phospholipase activity of LpL was low enough to measure the initial rate of hydrolysis of triolein without causing a gross change of the surface of the lipid particle. When the hydrolysis of triolein by LpL was monitored, fatty acid was released at a constant rate until all of the triolein molecules were hydrolyzed. The enzyme required 220 +/- 17 and 66 +/- 9 nM apoC-II for its half-maximal activity (Km (apoC-II] with small and large particles as a substrate (1.15 mM triolein for small and 2.13 mM triolein for large particles), respectively, using various concentrations of LpL. The Km(apoC-II) values for these two substrates became similar when LpL activity was analyzed with respect to the density of apoC-II on the phosphatidylcholine monolayer at the surface of the particles (bound apoC-II/phosphatidylcholine). The concentration of substrate particles did not affect the Km(apoC-II) values. The presence of an adequate amount of apoC-II increased the maximal activity of LpL (Vmax(triolein)) from 0.48 +/- 0.21 to 6.81 +/- 0.45 and from 0.32 +/- 0.04 to 7.13 +/- 0.64 mmol/h/mg with a slight decrease in the apparent Michaelis constant (Km(triolein)) for small (from 90 to 54 microM triolein) and large (from 1.00 to 0.65 mM triolein) particles, respectively. Although the apparent Km for triolein in large particles was about ten times greater than that in small particles, the values became similar when they were corrected for the concentration of phosphatidylcholine (50-100 microM phosphatidylcholine), which corresponded to the surface area of the substrate particles. It was suggested that bound apoC-II molecules were transferred relatively slowly to other lipid particles while LpL molecules moved rapidly among the lipid particles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The effect of apolipoprotein C-II (apoC-II) on the bovine milk lipoprotein lipase (LpL)-catalyzed hydrolysis of a homologous series of saturated phosphatidylcholines was examined with respect to the fatty acyl chain length of the substrates. Dilauryl-, dimyristoyl-, dipalmitoyl-, and distearoylphosphatidylcholine solubilized by Triton X-100 and sonicated vesicles of dimyristoylphosphatidylcholine were used as substrates. The maximal rate of the LpL-catalyzed hydrolysis of each of these lipids was determined in the absence and presence of apoC-II. The activation factor (the ratio of enzyme activity with apoC-II to that without the activator protein) increased with increasing mol ratios of apoC-II to LpL and was maximal at a ratio of approximately 50. At all apoC-II/LpL mole ratios tested, the activation factor increased as a function of fatty acyl chain length. A quantitative relationship between fatty acyl chain length and the extent of maximal activation of LpL by apoC-II was observed: the logarithm of the activation factor is a linear function of the number of carbon atoms of a single fatty acyl chain of the substrates.  相似文献   

4.
L R McLean  R L Jackson 《Biochemistry》1985,24(15):4196-4201
The interaction of lipoprotein lipase (LpL) and its activator protein, apolipoprotein C-II (apoC-II), with a nonhydrolyzable phosphatidylcholine, 1,2-ditetradecyl-rac-glycero-3-phosphocholine (C14-ether-PC), was studied by fluorescence spectroscopy. A complex of 320 molecules of C14-ether-PC per LpL was isolated by density gradient ultracentrifugation in KBr. The intrinsic tryptophan fluorescence emission spectrum of LpL was shifted from 336 nm in the absence of lipid to 330 nm in the LpL-lipid complex; the shift was associated with a 40% increase in fluorescence intensity. Addition of C14-ether-PC vesicles to apoC-II caused a 2.5-fold increase in intrinsic tryptophan fluorescence and a shift in emission maximum from 340 to 317 nm. LpL and apoC-II/C14-ether-PC stoichiometries and binding constants were determined by measuring the increase in the intrinsic tryptophan fluorescence as a function of lipid and protein concentrations; for LpL the rate and magnitude of the fluorescence increases were relatively independent of temperature in the range 4-37 degrees C. A stoichiometry of 270 PC per LpL for the LpL-lipid complex compares favorably with the value obtained in the isolated complex. The dissociation constant (Kd) of the complex is 4.3 X 10(-8) M. For apoC-II, the stoichiometry of the complex is 18 PC per apoprotein, and the Kd is 3.0 X 10(-6) M. These data suggest that LpL binds more strongly than apoC-II to phosphatidylcholine interfaces.  相似文献   

5.
D M Quinn 《Biochemistry》1985,24(13):3144-3149
Solvent deuterium isotope effects on the rates of lipoprotein lipase (LpL) catalyzed hydrolysis of the water-soluble esters p-nitrophenyl acetate (PNPA) and p-nitrophenyl butyrate (PNPB) have been measured and fall in the range 1.5-2.2. The isotope effects are independent of substrate concentration, LpL stability, and reaction temperature and hence are effects on chemical catalysis and not due to a medium effect of D2O on LpL stability and/or conformation. pL (L = H or D) vs. rate profiles for the Vmax/Km of LpL-catalyzed hydrolysis of PNPB increase sigmoidally with increasing pL. Least-squares analysis of the profiles gives pKaH2O = 7.10 +/- 0.01, pKaD2O = 7.795 +/- 0.007, and a solvent isotope effect on limiting velocity at high pL of 1.97 +/- 0.03. Because the pL-rate profiles are for the Vmax/Km of hydrolysis of a water-soluble substrate, the measured pKa's are intrinsic acid-base ionization constants for a catalytically involved LpL active-site amino acid side chain. Benzeneboronic acid, a potent inhibitor of LpL-catalyzed hydrolysis of triacylglycerols [Vainio, P., Virtanen, J. A., & Kinnunen, P. K. J. (1982) Biochim. Biophys. Acta 711, 386-390], inhibits LpL-catalyzed hydrolysis of PNPB, with Ki = 6.9 microM at pH 7.36, 25 degrees C. This result and the solvent isotope effects for LpL-catalyzed hydrolysis of water-soluble esters are interpreted in terms of a proton transfer mechanism that is similar in many respects to that of the serine proteases.  相似文献   

6.
The physicochemical properties of recombinant wild type and three site-directed mutants of apolipoprotein C-III (apoC-III), designed by molecular modeling to alter specific amino acid residues implicated in lipid binding (L9T/T20L, F64A/W65A) or LPL inhibition (K21A), were compared. Relative lipid binding efficiencies to dimyristoylphosphatidylcholine (DMPC) were L9T/T20L > WT >K21A > F64A/W65A with an inverse correlation with size of the discoidal complexes formed. Physicochemical analysis (Trp fluorescence, circular dichroism, and GdnHCl denaturation) suggests that L9T/T20L forms tighter and more stable lipid complexes with phospholipids, while F64A/W65A associates less tightly. Lipid displacement properties were tested by gel-filtrating apoE:dipalmitoylphosphatidylcholine (DPPC) discoidal complexes mixed with the various apoC-III variants. All apoC-III proteins bound to the apoE:DPPC complexes; the amount of apoE displaced from the complex was dependent on the apoC-III lipid binding affinity. All apoC-III proteins inhibited LPL in the presence or absence of apoC-II, with F64A/W65A displaying the most inhibition, suggesting that apoC-III inhibition of LPL is independent of lipid binding and therefore of apoC-II displacement. Taken together. these data suggest that the hydrophobic residues F64 and W65 are crucial for the lipid binding properties of apoC-III and that redistribution of the N-terminal helix of apoC-III (L9T/T20L) enhances the stability of the lipid-bound protein, while LPL inhibition by apoC-III is likely to be due to protein:protein interactions.  相似文献   

7.
《Bioorganic chemistry》1987,15(2):141-151
Apolipoprotein C-II (apoC-II), a protein of 79 amino acid residues present in very low density lipoproteins, enhances the lipoprotein lipase (LpL)-catalyzed hydrolysis of triacylglycerols transported in plasma triglyceride-rich lipoproteins. To elucidate the structure-activity relationship of this activator protein, the complete amino acid sequence of apoC-II has been synthesized by the solid-phase method with Boc-amino acid derivatives and phenylacetamidomethyl resin. The crude peptide was purified to homogeneity in 10% yield by a combination of ion-exchange and preparative high-performance liquid chromatography (HPLC). The purified peptide had the expected amino-terminal sequence and amino acid composition. Synthetic and native apoC-II were indistinguishable by cochromatography on analytical HPLC, peptide mapping of tryptic digest, radioimmunoassay, and activation of LpL with both artificial and lipoprotein substrates.  相似文献   

8.
In this study we have determined the fate of phospholipids, cholesterol, and apolipoprotein C during lipolysis of rat plasma very low density lipoprotein (rat VLDL). The experiment was carried out in vitro with lipoprotein lipase purified from bovine milk, VLDL labeled with [(14)C]palmitate, [(3)H]cholesterol, [(32)P]phospholipids, and (125)I-labeled apolipoprotein C and in plasma-devoid systems. Triglyceride hydrolysis ranged between 0 and 98.6%. [(32)P]Phospholipids, unesterified [(3)H]cholesterol, and (125)I-labeled apolipoprotein C were removed from the VLDL (d < 1.019 g/ml) during lipolysis. About one-third of the [(32)P]phosphatidylcholine was hydrolyzed to lysolecithin, and was transferred to the fraction d > 1.21 g/ml. The other two-thirds of the phospholipids were removed unhydrolyzed, mainly to the fraction d 1.04-1.21 g/ml. With the progression of the lipolysis, unesterified [(3)H]cholesterol was removed from VLDL at increasing rates, predominantly to the fraction d 1.04-1.21 g/ml. (125)I-Labeled apolipoprotein C removed from the VLDL partitioned between the fraction of d 1.04-1.21 g/ml and d > 1.21 g/ml. Negative-staining electron microscopy of the fraction d 1.04-1.21 g/ml (containing phospholipids, unesterified cholesterol, and apolipoprotein C) revealed many discoidal lipoproteins. [(3)H]Cholesteryl esters remained associated with the VLDL even when 70-80% of the triglycerides were hydrolyzed. These observations suggest that during in vitro lipolysis of VLDL, surface constituents leave the lipoprotein concomitantly with the hydrolysis of core triglycerides. The process of removal of surface constituents is independent of the presence of an acceptor lipoprotein and may occur in the form of a surface-fragment particle. -Eisenberg, S., and T. Olivecrona. Very low density lipoprotein. Fate of phospholipids, cholesterol, and apolipoprotein C during lipolysis in vitro.  相似文献   

9.
The fluorescent phospholipid 1-acyl-2-[6-[(7-nitro-2,1,3benzoxadiazol-4-yl)amino]-caproyl]phosphatidylcholine (C6-NBD-PC) was used as a substrate for porcine pancreatic phospholipase A2 (PA2) and bovine milk lipoprotein lipase (LpL). Hydrolysis of C6-NBD-PC by either enzyme resulted in a greater than 50-fold fluorescence enhancement with no shift in the emission maximum at 540 nm; Ca++ was required for PA2 catalysis. Identification of the products of hydrolysis showed cleavage at the sn-1 and sn-2 positions for LpL and PA2, respectively. For PA2, but not for LpL, there was a marked enhancement of enzyme catalysis at lipid concentrations above the critical micellar concentration of the lipid. Furthermore, apolipoprotein C-II, the activator protein of LpL for long-chain fatty acyl substrates, did not enhance the rate of catalysis of the water-soluble fluorescent phospholipid for either enzyme.  相似文献   

10.
Lipoprotein lipase (LPL)-mediated hydrolysis of triglycerides (TG) contained in chylomicrons requires the presence of a cofactor, apolipoprotein (apo) C-II. The physiological mechanism by which chylomicrons gain apoC-II necessary for LPL activation in whole plasma is not known. Using a gum arabic stabilized TG emulsion, activation of LPL by lipoprotein apoC-II was studied. Hydrolysis of TG by LPL was greater in the presence of serum than with addition of either high density lipoproteins (HDL) or very low density lipoproteins (VLDL). LPL activation by either VLDL or HDL increased with addition of the lipoprotein-free fraction of plasma. A similar increase in LPL activity by addition of the lipoprotein-free fraction together with HDL or VLDL was observed when another TG emulsion (Intralipid) or TG-rich lipoproteins from an apoC-II deficient subject were used as a substrate. Human apoA-IV, apoA-I, apoE, and cholesteryl ester transfer protein were assessed for their ability to increase LPL activity in the presence of VLDL. At and below physiological concentrations, only apoA-IV increased LPL activity. One hundred percent of LPL activity measured in the presence of serum was achieved using VLDL plus apoA-IV. In the absence of an apoC-II source, apoA-IV had no effect on LPL activity. Removal of greater than 80% of the apoA-IV from the nonlipoprotein-containing fraction of plasma by incubation with Intralipid markedly reduced its ability to activate LPL in the presence of VLDL or HDL. Gel filtration chromatography demonstrated that incubation of the nonlipoprotein-containing fraction of plasma with HDL and the TG emulsion caused increased transfer of apoC-II to the emulsion and association of apoA-IV with HDL. Our studies demonstrate that apoA-IV increases LPL activation in the presence of lipoproteins. We hypothesize that apoA-IV is required for efficient release of apoC-II from either HDL or VLDL, which then allows for LPL-mediated hydrolysis of TG in nascent chylomicrons.  相似文献   

11.
The effect of plasma components on the particle size distribution and chemical composition of human plasma low-density lipoproteins (LDL) during interaction with discoidal complexes of human apolipoprotein A-I and phosphatidylcholine (PC) was investigated. Incubation (37 degrees C, 1 h and 6 h) of LDL with discoidal complexes in the presence of the plasma ultracentrifugal d greater than 1.20 g/ml fraction (activity of lecithin-cholesterol acyltransferase inhibited) produces an increase in LDL apparent particle diameter two-to six-fold greater than that observed in the absence of the plasma d greater than 1.20 g/ml fraction. In incubation mixtures of LDL and discoidal complexes, both in the presence and absence of the plasma d greater than 1.20 g/ml fraction, the extent of LDL apparent particle diameter increase is: (1) approximately three-fold greater at 6 h than at 1 h, and (2) markedly greater for LDL with initially small (22.4-24.0 nm) major components than for LDL with initially large (26.2-26.8 nm) major components. The facilitation factor in the plasma d greater than 1.20 g/ml fraction is not plasma phospholipid transfer protein. Purified human serum albumin produces an apparent particle diameter increase comparable to the plasma d greater than 1.20 g/ml fraction. The discoidal complex-induced increase in LDL apparent particle diameter value by albumin is associated with an increase in phospholipid uptake by LDL and a decreased loss of LDL unesterified cholesterol. In preliminary experiments, high-density lipoproteins (HDL) reverse the apparent particle diameter increase originally induced by discoidal complexes. The presence of HDL (HDL phospholipid/LDL phospholipid molar ratio of 10:1) in the incubation (6 h) mixture of LDL and discoidal complexes also attenuates LDL apparent particle diameter increase. In vivo, the plasma LDL/HDL ratio may be a controlling factor in determining the extent to which phospholipid uptake and the associated change in LDL particle size distribution occurs.  相似文献   

12.
Dihydroxyacetone-phosphate:acyl coenzyme A acyltransferase (EC 2.3.1.42) was solubilized and partially purified from guinea pig liver crude peroxisomal fraction. The peroxisomal membrane was isolated after osmotic shock treatment and the bound dihydroxyacetone-phosphate acyltransferase was solubilized by treatment with a mixture of KCl-sodium cholate. The solubilized enzyme was partially purified by ammonium sulfate fractionation followed by Sepharose 6B gel filtration. The enzyme was purified 1200-fold relative to the guinea pig liver homogenate and 80- to 100-fold from the crude peroxisomal fraction, with an overall yield of 25–30% from peroxisomes. The partially purified enzyme was stimulated two- to fourfold by Asolectin (a soybean phospholipid preparation), and also by individual classes of phospholipid such as phosphatidylcholine and phosphatidylglycerol. The kinetic properties of the enzyme showed that in the absence of Asolectin there was a discontinuity in the reciprocal plot indicating two different apparent Km values (0.1 and 0.5 mm) for dihydroxyacetone phosphate. The Vmax was 333 nmol/min/mg protein. In the presence of Asolectin the reciprocal plot was linear, with a Km = 0.1 mm and no change in Vmax. The enzyme catalyzed both an exchange of acyl groups between dihydroxyacetone phosphate and palmitoyl dihydroxyacetone phosphate in the presence of CoA and the formation of palmitoyl [3H]coenzyme A from palmitoyl dihydroxyacetone phosphate and [3H]coenzyme A, indicating that the reaction is reversible. The partially purified enzyme preparation had negligible glycerol-3-phosphate acyltransferase (EC 2.3.1.15) activity.  相似文献   

13.
Lipoprotein lipase (LpL) activity is enhanced by apolipoprotein C-II (apoC-II), a 79 amino acid residue peptide. The minimal apoC-II sequence required for activation of LpL resides between residues 56-79. To determine the possible role of an acyl-apoC-II intermediate involving Ser61 in enzyme catalysis, a synthetic peptide of apoC-II containing residues 56-79 was synthesized and compared to the corresponding peptide with serine at position 61 being substituted with glycine. With two different LpL assay systems, both peptides enhanced enzyme activity. Since glycine does not contain a hydroxyl group, these results rule out the possibility that an acyl-apoC-II intermediate with Ser61 is required for enzyme activation.  相似文献   

14.
In circulation the phospholipid transfer protein (PLTP) facilitates the transfer of phospholipid-rich surface components from postlipolytic chylomicrons and very low density lipoproteins (VLDL) to HDL and thereby regulates plasma HDL levels. To study the molecular mechanisms involved in PLTP-mediated lipid transfer, we studied the interfacial properties of PLTP using Langmuir phospholipid monolayers and asymmetrical flow field-flow fractionation (AsFlFFF) to follow the transfer of 14C-labeled phospholipids and [35S]PLTP between lipid vesicles and HDL particles. The AsFlFFF method was also used to determine the sizes of spherical and discoidal HDL particles and small unilamellar lipid vesicles. In Langmuir monolayer studies high-activity (HA) and low-activity (LA) forms of PLTP associated with fluid phosphatidylcholine monolayers spread at the air/buffer interphase. Both forms also mediated desorption of [14C]dipalmitoylphosphatidylcholine (DPPC) from the phospholipid monolayer into the buffer phase, even when it contained no physiological acceptor such as HDL. After the addition of HDL3 to the buffer, HA-PLTP caused enhanced lipid transfer to them. The particle diameter of HA-PLTP was approximately 6 nm and that of HDL3 approximately 8 nm as determined by AsFlFFF analysis. Using this method, it could be demonstrated that in the presence of HA-PLTP, but not LA-PLTP, [14C]DPPC was transferred from small unilamellar vesicles (SUV) to acceptor HDL3 molecules. Concomitantly, [35S]-HA-PLTP was transferred from the donor to acceptor, and this transfer was not observed for its low-activity counterpart. These observations suggest that HA-PLTP is capable of transferring lipids by a shuttle mechanism and that formation of a ternary complex between PLTP, acceptor, and donor particles is not necessary for phospholipid transfer.  相似文献   

15.
The uptake of cholesterol (CHL) by serum high density lipoprotein (HDL) delipidated apoproteins and phospholipid-apoprotein recombinants has been studied with two methods; by incubation with Celite-dispersed cholesterol or with cholesterol crystals. The apoproteins bind very small amounts of cholesterol with a maximum of about 6 micrograms/mg apoprotein. Recombinants with dimyristoyl phosphatidylcholine (DMPC) or egg phosphatidylcholine (EPC) as phospholipid component gave similar values for cholesterol uptake. The initial rate for uptake from Celite-cholesterol by recombinants was high (0.1 mol cholesterol/mol phospholipid/h) and somewhat higher than that for phospholipid vesicles. The maximal uptake was by gel filtration shown to depend on the size of the complexes with values about 0.95 mol cholesterol per phospholipid for vesicular complexes, 0.75 for discoidal complexes and between 0.5 and 0.2 for small 'protein-rich' complexes. During the incubation of recombinants with cholesterol there was considerable decomposition of discoidal complexes and formation of larger ones. The results show that phospholipid-apoprotein complexes are efficient acceptors for cholesterol but also that about 25% of the phospholipid in the discoidal complexes is excluded from interaction with cholesterol by interaction with apoprotein.  相似文献   

16.
Human plasma HDLs are classified on the basis of apolipoprotein composition into those that contain apolipoprotein A-I (apoA-I) without apoA-II [(A-I)HDL] and those containing apoA-I and apoA-II [(A-I/A-II)HDL]. ApoA-I enters the plasma as a component of discoidal particles, which are remodeled into spherical (A-I)HDL by LCAT. ApoA-II is secreted into the plasma either in the lipid-free form or as a component of discoidal high density lipoproteins containing apoA-II without apoA-I [(A-II)HDL]. As discoidal (A-II)HDL are poor substrates for LCAT, they are not converted into spherical (A-II)HDL. This study investigates the fate of apoA-II when it enters the plasma. Lipid-free apoA-II and apoA-II-containing discoidal reconstituted HDL [(A-II)rHDL] were injected intravenously into New Zealand White rabbits, a species that is deficient in apoA-II. In both cases, the apoA-II was rapidly and quantitatively incorporated into spherical (A-I)HDL to form spherical (A-I/A-II)HDL. These particles were comparable in size and composition to the (A-I/A-II)HDL in human plasma. Injection of lipid-free apoA-II and discoidal (A-II)rHDL was also accompanied by triglyceride enrichment of the endogenous (A-I)HDL and VLDL as well as the newly formed (A-I/A-II)HDL. We conclude that, irrespective of the form in which apoA-II enters the plasma, it is rapidly incorporated into spherical HDLs that also contain apoA-I to form (A-I/A-II)HDL.  相似文献   

17.
Hydrolysis of VLDL triacylglycerol (TG) by lipoprotein lipase (LpL) is a major step in energy metabolism and VLDL-to-LDL maturation. Most functional LpL is anchored to the vascular endothelium, yet a small amount circulates on TG-rich lipoproteins. As circulating LpL has low catalytic activity, its role in VLDL remodeling is unclear. We use pre-heparin plasma and heparin-sepharose affinity chromatography to isolate VLDL fractions from normolipidemic, hypertriglyceridemic, or type-2 diabetic subjects. LpL is detected only in the heparin-bound fraction. Transient binding to heparin activates this VLDL-associated LpL, which hydrolyses TG, leading to gradual VLDL remodeling into IDL/LDL and HDL-size particles. The products and the timeframe of this remodeling closely resemble VLDL-to-LDL maturation in vivo. Importantly, the VLDL fraction that does not bind heparin is not remodeled. This relatively inert LpL-free VLDL is rich in TG and apoC-III, poor in apoE and apoC-II, shows impaired functionality as a substrate for the exogenous LpL or CETP, and likely has prolonged residence time in blood, which is expected to promote atherogenesis. This non-bound VLDL fraction increases in hypertriglyceridemia and in type-2 diabetes but decreases upon diabetes treatment that restores the glycemic control. In stark contrast, heparin binding by LDL increases in type-2 diabetes triggering pro-atherogenic LDL modifications. Therefore, the effects of heparin binding are associated negatively with atherogenesis for VLDL but positively for LDL. Collectively, the results reveal that binding to glycosaminoglycans initiates VLDL remodeling by circulating LpL, and suggest heparin binding as a marker of VLDL functionality and a readout for treatment of metabolic disorders.  相似文献   

18.
Human apolipoprotein (apo) C-II is one of several lipid-binding proteins that self-assemble into fibrils and accumulate in disease-related amyloid deposits. A general characteristic of these amyloid deposits is the presence of lipids, known to modulate individual steps in amyloid fibril formation. ApoC-II fibril formation is activated by submicellar phospholipids but inhibited by micellar lipids. We examined the mechanism for the activation by submicellar lipids using the fluorescently labeled, short-chain phospholipid 1-dodecyl-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]-2-hydroxyglycero-3-phosphocholine (NBD-lyso-12-PC). Addition of submicellar NBD-lyso-12-PC increased the rate of fibril formation by apoC-II approximately 2-fold. Stopped flow kinetic analysis using fluorescence detection and low, non-fibril-forming concentrations of apoC-II indicated NBD-lyso-12-PC binds rapidly, on the millisecond time scale, followed by the slower formation of discrete apoC-II tetramers. Sedimentation velocity analysis showed NBD-lyso-12-PC binds to both apoC-II monomers and tetramers at approximately five sites per monomer with an average dissociation constant of approximately 10 μM. Mature apoC-II fibrils formed in the presence of NBD-lyso-12-PC were devoid of lipid, indicating a purely catalytic role for submicellar lipids in the activation of apoC-II fibril formation. These studies demonstrate the catalytic potential of small amphiphilic molecules in controlling protein folding and fibril assembly pathways.  相似文献   

19.
Conversion of model discoidal complexes of egg yolk phosphatidylcholine and apolipoprotein A-I, upon interaction with a source of lecithin:cholesterol acyltransferase (plasma d greater than or equal to 1.21 g/ml fraction or partially purified enzyme) and with different sources of substrate unesterified cholesterol (LDL, VLDL or cholesterol incorporated into complexes), was investigated by gradient gel electrophoresis, gel filtration, equilibrium density gradient ultracentrifugation, electron microscopy and chemical analysis. When the incubation mixture contained an inhibitor of lecithin:cholesterol acyltransferase, discoidal complexes with mean long dimension of approximately 10.5 +/- 1.9 nm were converted (within 1 h) predominantly to small round particles and were partially depleted of their phospholipid content. Upon electrophoresis the small particles showed peak maxima within the migration intervals of the human plasma ( HDL3b ) gge and ( HDL3c ) gge subpopulations with associated particle size ranges of 7.8-8.2 and 7.2-7.8 nm, respectively. Within 1 h, in the presence of activated enzyme, the complexes were again converted in major part to the small particles. However, further incubation resulted in an apparent single-step conversion to a larger major product with peak maximum occurring within the migration intervals of the ( HDL2a ) gge and the ( HDL3a ) gge subpopulations (particle size ranges 8.8-9.8 and 8.2-8.8 nm, respectively). Formation of an apolar core was indicated by detection of cholesteryl esters in the conversion product. The form in which the substrate unesterified cholesterol was introduced did not markedly influence the size properties of the final conversion product. With VLDL as source of substrate, considerable incorporation of triacylglycerol occurred in company with a lower level of cholesteryl esters, suggesting transfer of these lipids during formation of the apolar core. Incubation of complexes with a partially purified (3000-fold) preparation of lecithin:cholesterol acyltransferase yielded a product similar in properties to that when the d greater than or equal to 1.21 g/ml fraction was used. Our model discoidal complexes and their conversion products exhibit properties very similar to those of potential precursors to HDL as well as of mature HDL particles. Their further investigation shows promise of providing detailed insight into the possible origin and heterogeneity of human plasma HDL.  相似文献   

20.
A common feature of many of the most important and prominent amyloid-forming proteins is their ability to bind lipids and lipid complexes. Lipids are ubiquitous components of disease-associated amyloid plaques and deposits in humans, yet the specific roles of lipid in the process of amyloid fibril formation are poorly understood. This study investigated the effect of phospholipids on amyloid fibril formation by human apolipoprotein (apo) C-II using phosphatidylcholine derivatives comprising acyl chains of up to 14 carbon atoms. Submicellar concentrations of short-chain phospholipids increase the rate of apoC-II fibril formation in an acyl-chain-length- and concentration-dependent fashion, while high micellar concentrations of phospholipids completely inhibited amyloid formation. At lower concentrations of soluble phospholipid complexes, fibril formation by apoC-II was only partially inhibited, and under these conditions, aggregation followed a two-phase process. Electron microscopy showed that the fibrils resulting from the second phase of aggregation were straight, cablelike, and about 13 nm wide, in contrast to the homogeneous twisted-ribbon morphology of apoC-II fibrils formed under lipid-free conditions. Seeding experiments showed that this alternative fibril structure could be templated both in the presence and in the absence of lipid complex, suggesting that the two morphologies result from distinct assembly pathways. Circular dichroism spectroscopy studies indicated that the secondary structural conformation within the straight-type and ribbon-type fibrils were distinct, further suggesting divergent assembly pathways. These studies show that phospholipid complexes can change the structural architecture of mature fibrils and generate new fibril morphologies with the potential to alter the in vivo behaviour of amyloid. Such lipid interactions may play a role in defining the structural features of fibrils formed by diverse amyloidogenic proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号