首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report in this paper different modes of Na and K transport in human red cells, which can be inhibited by furosemide in the presence of ouabain. Experimental evidence is provided for inward and outward coupled transport of Na and K, Ki/Ko and Nai/Nao exchange, and uncoupled Na or K efflux. The outward cotransport of Na and K was defined as the furosemide-sensitive (FS) component of Na and K effluxes into choline medium and as the Cl-dependent or cis-stimulated component of the ouabain-resistant (OR) Na and K effluxes. Inward cotransport of Na and K was defined by the stimulation by external Na (Nao) of the K influx and the stimulation by external K (Ko) of the Na influx in the presence of ouabain. Both effects were FS and Cl dependent. Experimental evidence for an FS Ki/Ko exchange pathway of the Na/K cotransport was provided by (a) the stimulation by external K of FS K influx and efflux, and (b) the stimulation by internal Na or K of FS K influx in the absence of external Na. Evidence for an FS Nai/Nao exchange pathway was provided by the stimulation of FS Na influx by internal Na from a K-free medium (130 mM NaCl). This pathway was four to six times smaller than the Ki/Ko exchange. In cells containing only Na or K, incubated in media containing only Na or K, respectively, there was FS efflux of the cation without simultaneous inward transport (FS uncoupled Na and K efflux). The stoichiometric ratio of FS outward cotransport of Na and K into choline medium varied with the ratio of Nai-to-Ki concentrations, and when Nai/Ki was close to 1, the ratio of FS outward Na to K flux was also 1. In choline media, FS Na efflux was inhibited by external K (noncompetitively), whereas FS k efflux was stimulated. The stimulation of FS K efflux was due to the stimulation by Ko of the Ki/Ko exchange pathway. Thus, the stoichiometry of FS Na and K effluxes also varied in the presence of external K. A minimal model for a reaction scheme of FS Na and K transport accounts for cis stimulation, trans inhibition, and trans stimulation, and for variable stoichiometry of the FS cation fluxes.  相似文献   

2.
Orthophosphate (Pi) uptake was examined in human red blood cells at 37 degrees C in media containing physiological concentrations of Pi (1.0- 1.5 mM). Cells were shown to transport Pi by a 4,4'-dinitro stilbene- 2,2'-disulfonate (DNDS) -sensitive pathway (75%), a newly discovered sodium-phosphate (Na/Pi) cotransport pathway (20%), and a pathway linearly dependent on an extracellular phosphate concentration of up to 2.0 mM (5%). Kinetic evaluation of the Na/Pi cotransport pathway determined the K1/2 for activation by extracellular Pi ([Na]o = 140 mM) and extracellular Na [( Pi]o = 1.0 mM) to be 304 +/- 24 microM and 139 +/- 8 mM, respectively. The phosphate influx via the cotransport pathway exhibited a Vmax of 0.63 +/- 0.05 mmol Pi (kg Hb)-1(h)-1 at 140 mM Nao. Activation of Pi uptake by Nao gave Hill coefficients that came close to a value of 1.0. The Vmax of the Na/Pi cotransport varied threefold over the examined pH range (6.90-7.75); however, the Na/Pi stoichiometry of 1.73 +/- 0.15 was constant. The membrane transport inhibitors ouabain, bumetanide, and arsenate had no effect on the magnitude of the Na/Pi cotransport pathway. No difference was found between the rate of incorporation of extracellular Pi into cytosolic orthophosphate and the rate of incorporation into cytosolic nucleotide phosphates, but the rate of incorporation into other cytosolic organic phosphates was significantly slower. Depletion of intracellular total phosphorus inhibited the incorporation of extracellular Pi into the cytosolic nucleotide compartment; and this inhibition was not reversed by repletion of phosphorus to 75% of control levels. Extracellular 32Pi labeled the membrane-associated compounds that migrate on thin-layer chromatography (TLC) with the Rf values of ATP and ADP, but not those of 2,3-bisphosphoglycerate (2,3-DPG), AMP, or Pi. DNDS had no effect on the level of extracellular phosphate incorporation or on the TLC distribution of Pi in the membrane; however, substitution of extracellular sodium with N-methyl-D-glucamine inhibited phosphorylation of the membranes by 90% and markedly altered the chromatographic pattern of the membrane-associated phosphate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
We measured hematological and erythrocyte O2 transport parameters in whole blood and density-separated erythrocytes in 11 mountaineers before and during 5 days of exposure to high altitude (4,559 m). We determined the in vivo (arterial pHblood and PCO2) and standard (pHblood = 7.4, PCO2 = 40 Torr) O2 tension at 50% O2 saturation of hemoglobin and (P50,vv and P50,st) and Bohr coefficients (BC) for fixed acid (H+) and CO2 and examined the contribution of the altered average age of circulating erythrocytes due to the stimulation of erythropoiesis on whole blood 2,3-diphosphoglycerate (2,3-DPG) and P50,st. At altitude, whole blood P50,vv remained almost unchanged, whereas P50,st and 2,3-DPG increased significantly (+4 Torr; 3.5 mumol/g hemoglobin). BCCO2 was elevated significantly at altitude. Serum erythropoietin increased transiently fourfold, iron utilization increased, and serum iron decreased by 66%. Reticulocyte counts increased, but other hematological parameters were unchanged. In density-separated erythrocytes, P50,st and 2,3-DPG increased with decreasing cell density but were higher in fractions with comparable reticulocyte counts in cells prepared at altitude than in those from control studies. Our data show that, despite the increase in 2,3-DPG and the decrease in average erythrocyte age, the in vivo hemoglobin-O2 affinity remains unchanged. P50,st values reflect the elevation of 2,3-DPG, and approximately 50% of the increase in both parameters can be ascribed to the increase in the number of reticulocytes and young erythrocytes.  相似文献   

4.
Modulation of phosphoenzyme forms of the Na/K pump by Na+ and K+ was studied by measuring the rate of Pi-promoted ouabain binding to resealed ghosts made from human red cells. This system permits distinguishing the effects of the ions at intracellular and external binding sites. Internal K+, Ki, inhibited the rate of Pi-promoted ouabain binding, contrary to a prediction based on a current model of the pump. External K+, Ko, failed to inhibit ouabain binding in the absence of Ki. However, Ko enhanced the inhibition by Ki. Nai also inhibited ouabain binding; this inhibition was much less affected by Ko than was inhibition by Ki, suggesting that Ki and Nai affect ouabain binding at different internal sites. Nao inhibited ouabain binding in the absence of Ki or Ko, so Nao and Ko also act at different sites. With Nao present, Ki stimulated ouabain binding. Thus a condition was found in which the predicted stimulation of binding by Ki was observed. The results of this study are interpreted in terms of three phosphoenzyme forms of the pump: E1P, E*P, and E2P. E*P is the form binding ouabain with highest affinity. Ki promotes E*P----E2P, thereby inhibiting ouabain binding. Ko binds only to E2P, therefore Ki is required for inhibition by Ko, and there is little E2P present with no Ki. Nao inhibits binding by stabilizing E1P whereas Nai inhibits by stabilizing E1. The stimulation by Ki with Nao present means that Ki and Nao together favor formation of E*P. Furthermore, Ki and Nao may bind to the pump simultaneously. Ki may play a role in the normal pump cycle, binding at allosteric sites to promote E*P----E2P.  相似文献   

5.
The physiological adaptation to anemia and other hypoxic states includes an increase in the level of 2,3-bisphosphoglycerate (2,3-DPG) in the red cell. We suggest that the high level of 2,3-DPG may have adverse effects in vivo. It has been found that red cells incubated with glycolate lose 2,3-DPG at a rapid rate relative to controls. ATP is stable. Net 2,3-DPG synthesis is observed after the glycolate is removed from the cells suggesting that they are not harmed. The effect appears to be specific for glycolate since lactate, glyoxylate, glycerate, acetate, and citrate were without effect. This procedure could be used to assess the effects of decreasing the 2,3-DPG level to normal in the erythrocytes of sickle cell and other anemias.  相似文献   

6.
The relationship between Na/K/2Cl cotransport activation in duck erythrocytes and binding of the diuretic [3H]bumetanide to isolated membranes from stimulated cells has been assessed. Cotransport was activated by either cAMP-dependent (norepinephrine) or -independent (fluoride, hypertonicity) pathways. Membranes isolated from unstimulated cells possessed no specific bumetanide binding. In the presence of norepinephrine, cotransport and saturable binding rose in parallel, reaching a maximum after 5-7 min. In membranes from maximally stimulated cells the K1/2 and Bmax for bumetanide binding were 100 nM and 1.7 pmol/mg protein, respectively. The diuretic binding properties of these membranes were characteristic of interactions of ligands with the Na/K/2Cl cotransporter: specific binding required the presence of all three cotransported ions (Na, K, and Cl), and the rank order of potency for diuretic competition with bumetanide for binding sites was benzmetanide greater than bumetanide greater than furosemide. The appearance of specific bumetanide binding was also seen in membranes from erythrocytes activated by non-cAMP-dependent stimuli, with an excellent temporal correlation between cotransport activation and diuretic binding. On removal of all stimuli both cotransport and bumetanide binding declined in parallel. Duck erythrocytes treated with norepinephrine in a solution containing 15 mM K+ swell to a new stable cell volume after 60 min, during which time cotransport becomes inoperative. Bumetanide binding to both whole cells and isolated membranes paralleled the decline in cotransport activity. It is concluded that bumetanide binding to isolated membranes faithfully reflects the state of activation of the Na/K/2Cl cotransporter in intact cells under a variety of conditions.  相似文献   

7.
This paper reports experiments designed to find the concentrations of internal and external Na and K at which inward and outward furosemide-sensitive (FS) Na and K fluxes are equal, so that there is no net FS movement of Na and K. The red cell cation content was modified by using the ionophore nystatin, varying cell Na (Nai) from 0 to 34 mM (K substitution, high-K cells) and cell K (Ki) from 0 to 30 mM (Na substitution, high-Na cells). All incubation media contained NaCl (Nao = 130 or 120 nM), and KCl (Ko = 0-30 mM). In high-K cells, incubated in the absence of Ko, there was net extrusion of Na through the FS pathway. The net FS Na extrusion increased when Nai was increased. Low concentrations of Ko (0-6 mM) slightly stimulated, whereas higher concentrations of Ko inhibited, FS Na efflux. Increasing Ko stimulated the FS Na influx (K0.5 = 4 mM). Under conditions similar to those that occur in vivo (Nai = 10, Ki = 130, Nao = 130, Ko = 4 mM, Cli/Clo = 0.7), net extrusion of Na occurs through the FS pathway (180-250 mumol/liter cell X h). The concentration of Ko at which the FS Na influx and efflux and the FS K influx and efflux become equal increased when Nai increased in high-K cells and when Ki was increased in high-Na cells. The net FS Na and K fluxes both approached zero at similar internal and external Na and K concentrations. In high-K cells, under conditions when net Na and K fluxes were near zero, the ratio of FS Na to FS K unidirectional flux was found to be 2:3. In high-K cells, the empirical expression (Nai/Nao)2(Ki/Ko)3 remained at constant value (apparent equilibrium constant, Kappeq +/- SEM = 22 +/- 2) for each set of internal and external cation concentrations at which there was no net Na flux. These results indicate that in the physiological region of concentrations of internal and external Na, K, and Cl, the stoichiometry of the FS Na and K fluxes is 2 Na:3 K. In high-Na cells under conditions when net FS Na and K fluxes were near zero, the ratio of FS Na to FS K unidirectional fluxes was 3:2 (1).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Ran Q  Hao P  Xiao Y  Zhao J  Ye X  Li Z 《PloS one》2011,6(3):e18328
Red blood cell (RBC) storage lesions have been shown to be associated with some adverse reactions; numerous studies have focused on the lesions caused by storage, and few data on the RBC storage lesions caused by prestorage treatments of leucocyte filtration and irradiation. In this study, we examined the changes related with the RBC storage lesions, including 2,3-diphosphatidylglyceric acid (2,3-DPG), pH, free hemoglobin (Hb), supernatant free K+ and Na+ concentration, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH). Along with the increasing storage time, decreases in 2, 3-DPG levels, pH and Na+ concentration, increases in K+ and free Hb concentrations, and significant morphological changes in RBC in all groups were found. The changes in the groups of irradiation, leucocyte filtration and the combined irradiation and leucocyte filtration were more significant than those in the untreated group. Meanwhile, the MCV levels of the three treated groups were significantly lower than those in the untreated group, while the MCH variations were significantly higher. Our results suggest that irradiation and leucocyte filtration before storage may aggravate blood storage lesions.  相似文献   

9.
The 2,3-diphosphoglycerate (2,3-DPG) concentration, oxygen half saturation pressure at pH 7.4 (P50), pH in plasma and red cells, and mean corpuscular hemoglobin concentration (MCHC) of venous blood were determined during unrestricted daily activity (series I) throughout 24 hrs as well as during prolonged bed rest until noon (series II). In series I almost synchronous dirunal behavior of P50 2,3-DPG, and plasma pH as well as red cell pH became significantly apparent with highest values in the afternoon. The [2,3-DPG] yielded most pronounced alterations, which made up to 13.5% of the average day value. During prolonged recumbency the [2,3-DPG] showed a nonsignificant tendency to decline; the P50 remained unchanged throughout that period. The possible reason for the missing [2,3-DPG] increase is a reduced change of red cell pH in series II. An influence of a posture dependent aldosterone secretion either directly on the 2,3-DPG metabloism of indirectly via mediating the red cell pH and thus ruling the formation of this organic PHOSPHORIS COMPOUND IS DISCUSSED.  相似文献   

10.
The morphological and metabolic properties of red blood cells submitted to the procedure of loading by hypotonic hemolysis and isotonic resealing were compared with the controls. No appreciable differences could be detected concerning glycolytic ability, the amount of glucose metabolized in the hexose monophosphate pathway and the concentrations of glycolytic intermediates of ATP and of 2,3-DPG. Instead the concentration of reduced glutathione and the MCV were slightly reduced. These manipulated erythrocytes can be used as potential bioreactors or as carriers of exogenous substances.  相似文献   

11.
The red cell Na/K pump is known to continue to extrude Na when both Na and K are removed from the external medium. Because this ouabain-sensitive flux occurs in the absence of an exchangeable cation, it is referred to as uncoupled Na efflux. This flux is also known to be inhibited by 5 mM Nao but to a lesser extent than that inhibitable by ouabain. Uncoupled Na efflux via the Na/K pump therefore can be divided into a Nao-sensitive and Nao-insensitive component. We used DIDS-treated, SO4-equilibrated human red blood cells suspended in HEPES-buffered (pHo 7.4) MgSO4 or (Tris)2SO4, in which we measured 22Na efflux, 35SO4 efflux, and changes in the membrane potential with the fluorescent dye, diS-C3 (5). A principal finding is that uncoupled Na efflux occurs electroneurally, in contrast to the pump's normal electrogenic operation when exchanging Nai for Ko. This electroneutral uncoupled efflux of Na was found to be balanced by an efflux of cellular anions. (We were unable to detect any ouabain-sensitive uptake of protons, measured in an unbuffered medium at pH 7.4 with a Radiometer pH-STAT.) The Nao-sensitive efflux of Nai was found to be 1.95 +/- 0.10 times the Nao-sensitive efflux of (SO4)i, indicating that the stoichiometry of this cotransport is two Na+ per SO4=, accounting for 60-80% of the electroneutral Na efflux. The remainder portion, that is, the ouabain-sensitive Nao-insensitive component, has been identified as PO4-coupled Na transport and is the subject of a separate paper. That uncoupled Na efflux occurs as a cotransport with anions is supported by the result, obtained with resealed ghosts, that when internal and external SO4 was substituted by the impermeant anion, tartrate i,o, the efflux of Na was inhibited 60-80%. This inhibition could be relieved by the inclusion, before DIDS treatment, of 5 mM Cli,o. Addition of 10 mM Ko to tartrate i,o ghosts, with or without Cli,o, resulted in full activation of Na/K exchange and the pump's electrogenicity. Although it can be concluded that Na efflux in the uncoupled mode occurs by means of a cotransport with cellular anions, the molecular basis for this change in the internal charge structure of the pump and its change in ion selectivity is at present unknown.  相似文献   

12.
This paper is concerned with analyzing the sidedness of action of various determinants which alter the rate of ouabain binding to human red blood cell ghosts. Thus, ouabain binding promoted by orthophosphate (Pi) and its inhibition by Na are shown to be due to inside Pi and inside Na. External K inhibits Pi-promoted ouabain binding and Nao acts to decrease the effectiveness of Ko. Similarly, inside uridine triphosphate (UTPi) stimulates the rate of ouabain binding which can be antagonized by either Nai or Ko acting alone. The actions of Nai and Ko are different when ouabain binding is promoted by Pi and UTPi compared to inside adenosine triphosphate (ATPi). With ATPi, the ouabain binding rate is only affected when Nai and Ko are both present. Possible differences in the mechanism of action of K and Na on Pi-and UTP-promoted binding are discussed in the light of their sidedness of action.  相似文献   

13.
The rate of methemoglobin reduction by ascorbic acid was accelerated in the presence of ATP,2,3-diphosphoglycerate (2,3-DPG), and inositol hexaphosphate (IHP). The acceleration was as much as three times, four times, and ten times in the presence of ATP, 2.3-DPG, and IHP at pH 7.0, respectively. The changes of the concentrations of methemoglobin and ascorbic acid during the methemoglobin reduction were determined, and the reaction was found to proceed stoichiometrically in the presence of IHP. The reduction rate of methemoglobin by ascorbic acid was compared at different concentrations of organic phosphates (ATP,2,3-DPG, and IHP) at various pH values (6.3, 7.0, 7.7). From the changes in the reduction rate under different concentrations of organic phosphates, the dissociation constants of ATP, 2,3-DPG, and IHP to methemoglobin could be determined and were estimated to be 3.3 X 10(-4) M, 2 X 10(-3) M, and 8 X 10(-6) M at pH 7.0, respectively. On the basis of these results, the acceleration mechanism of methemoglobin reduction by ascorbic acid due to the presence of organic phosphates was described. The physiological role of 2,3-DPG in human red cells was discussed in relation to the reduction of methemoglobin by ascorbic acid.  相似文献   

14.
An assay was developed to characterize the kinetic parameters of the Na(+)-K+ pump of rat erythrocytes under conditions as physiological as possible. Changes in the red cell Na+ and Rb+ content were determined in Na+ media (containing 2.5 mM inorganic phosphate (PO4) as a function of cell Na+ (2-8 mmol/l) and extracellular Rb+ (0.2-5 mM). Evaluation of the data revealed that under these conditions the Na(+)-K+ pump mediates, in addition to forward running 3 Nai+: 2 Rbo+ exchange, 1 Ki+:Rbo+ exchange and pump reversal (3 Nao+:2 Ki+ exchange). The two latter modes of Na(+)-K+ pump operation are accelerated by PO4 and lowering of cell Na+. At physiological cation and PO4 concentrations, 1Ki+:Rbo+ exchange contributes by 30-60% to total ouabain-sensitive Rb+ uptake. Thereby, the stoichiometry of ouabain-sensitive Na+ net-extrusion to Rb+ uptake is reduced to values between 1.0 and 0.5. Only at cell Na+ contents above 20 mmol/l the Na+:Rb+ stoichiometry approaches the value of 3:2 = 1.5. At certain constellations of Nai+ and Rbo+ the Na(+)-K+ pump cannot perform any net-transport of Na+ and K+ (Rb+). These equilibrium points are not far from those expected from thermodynamic considerations. The results demonstrate that in normal rat erythrocytes the reversible reaction cycle of the Na(+)-K+ pump runs in several modes of operation. The "abnormal" modes complicate the interpretation of unidirectional fluxes mediated by the Na(+)-K+ pump.  相似文献   

15.
Regulation of cytosolic free Na (Nai) was measured in isolated rabbit gastric glands with the use of a recently developed fluorescent indicator for sodium, SBFI. Intracellular loading of the indicator was achieved by incubation with an acetoxymethyl ester of the dye. Digital imaging of fluorescence was used to monitor Nai in both acid-secreting parietal cells and enzyme-secreting chief cells within intact glands. In situ calibration of Nai with ionophores indicated that SBFI fluorescence (345/385 nm excitation ratio) could resolve 2 mM changes in Nai and was relatively insensitive to changes in K or pH. Measurements on intact glands showed that basal Nai was 8.5 +/- 2.2 mM in parietal cells and 9.2 +/- 3 mM in chief cells. Estimates of Na influx and efflux were made by measuring rates of Nai change after inactivation or reactivation of the Na/K ATPase in a rapid perfusion system. Na/K ATPase inhibition resulting from the removal of extracellular K (Ko) caused Nai to increase at 3.2 +/- 1.5 mM/min and 3.5 +/- 2.7 mM/min in parietal and chief cells, respectively. Na buffering was found to be negligible. Addition of 5 mM Ko and removal of extracellular Na (Nao) caused Nai to decrease rapidly toward 0 mM Na. By subtracting passive Na efflux under these conditions (the rate at which Nai decreased in Na-free solution containing ouabain), an activation curve (dNai/Nai) for the Na/K ATPase was calculated. The pump demonstrated the greatest sensitivity between 5 and 20 mM Nai. At 37 degrees C the pump rate was less than 3 mM/min at 5 mM Nai and 26 mM/min at 25 mM Nai, indicating that the pump has a great ability to respond to changes in Nai in this range. Carbachol, which stimulates secretion from both cell types, was found to stimulate Na influx in both cell types, but did not have detectable effects on Na efflux. dbcAMP+IBMX, potent stimulants of acid secretion, had no effect on Na metabolism.  相似文献   

16.
2,3-Diphosphoglycerate (2,3-DPG), an intracellular metabolite of glycolytic pathway is known to affect the oxygen binding capacity of haemoglobin and mechanical properties of the red blood cells. 2,3-DPG levels have been reported to be elevated during anaemic conditions including visceral leishmaniasis. 2,3-DPG activity in P. falciparum infected red blood cells, particularly in cells infected with different stages of the parasite and its relationship with structural integrity of the cells is not known. Chloroquine sensitive and resistant strains of P. falciparum were cultured in vitro and synchronized cultures of ring, trophozoite and schizont stage rich cells along with the uninfected control erythrocytes were assayed for 2,3-DPG activity and osmotic fragility. It was observed that in both the strains, in infected erythrocytes the 2,3-DPG activity gradually decreased and osmotic fragility gradually increased as the parasite matured from ring to schizont stage. The decrease in 2,3-DPG may probably be due to increased pyruvate kinase activity of parasite origin, which has been shown in erythrocytes infected with several species of Plasmodium. The absence of compensatory increase in 2,3-DPG in P. falciparum infected erythrocytes may aggravate hypoxia due to anaemia in malaria and probably may contribute to hypoxia in cerebral malaria. As 2,3-DPG was not found to be increased in erythrocytes parasitized with P. falciparum, the increased osmotic fragility observed in these cells is not due to increased 2,3-DPG as has been suggested in visceral leishmaniasis.  相似文献   

17.
1. Carbonic anhydrase activity and 2,3-diphosphoglycerate (2,3-DPG) concentration were determined in whole blood from humans (Homo sapiens), rabbits (Oryctolagus cuniculus), eastern grey kangaroos (Macropus giganteus), pademelons (Thylogale billardierii) and brush-tailed possums (Trichosurus vulpecula). 2. Marsupial blood carbonic anhydrase activity increased as species body size decreased. 3. T. billardierii haemoglobin was found to have a polymorphism which may be the same (beta 2 = histidine or glutamine) as that of M. giganteus. 4. The concentration of 2,3-DPG int e red cells of T. billardierii was approximately equal to that of the haemoglobin tetramer. Levels of 2,3-DPG in the other species were similar to those previously reported.  相似文献   

18.
Conditions for blood storage are chosen to assure adequate levels of adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (2,3-DPG). Because of the invasive nature of the techniques, biochemical assays are not routinely used to measure levels of these compounds in stored blood. However, 31P NMR spectroscopy measures phosphorylated intermediates in intact cells and could be used without disruption of the storage pack. We compared levels of ATP and 2,3-DPG measured by 31P spectroscopy and standard enzyme-linked biochemical assays in whole blood (WB) and packed red blood cells (PRBCs) at weekly intervals during a 35-day storage period. NMR demonstrated a marked decrease in 2,3-DPG and an increase in inorganic phosphate after the first week of storage. No significant differences in ATP concentrations were seen in WB during the storage period, but a significant decrease in ATP in PRBCs was documented. There was good agreement in levels of ATP and 2,3-DPG measured by NMR and biochemical techniques. 31P NMR spectroscopy is a noninvasive technique for measuring ATP and 2,3-DPG which has a potential use in quality assurance of stored blood.  相似文献   

19.
Mehta M  Sonawat HM  Sharma S 《FEBS letters》2005,579(27):6151-6158
The erythrocytic stages of the malaria parasite depend on anaerobic glycolysis for energy. Using [2-13C]glucose and nuclear magnetic resonance, the glucose utilization rate and 2,3-diphosphoglycerate (2,3-DPG) level produced in normal RBCs and Plasmodium falciparum infected red blood cell populations (IRBCs, with <4% parasite infected red cells), were measured. The glucose flux in IRBCs was several-folds greater, was proportional to parasitemia, and maximal at trophozoite stage. The 2,3-DPG levels were disproportionately lower in IRBCs, indicating a downregulation of 2,3-DPG flux in non-parasitized RBCs. This may be due to lowered pH leading to selective differential inhibition of the regulatory glycolytic enzyme phosphofructokinase. This downregulation of the glucose utilization rate in the majority (>96%) of uninfected RBCs in an IRBC population may have physiological implications in malaria patients.  相似文献   

20.
Effects of training on erythrocyte 2,3-diphosphoglycerate in normal men   总被引:1,自引:0,他引:1  
The erythrocyte 2,3-diphosphoglycerate concentration (2,3-DPG) and the activity of red cell hexokinase, pyruvate kinase, glucose-6 phosphate dehydrogenase and glutathione reductase were studied in 27 normal volunteers before and after 2 and 4 months of physical endurance training. The 4 months of training increased maximal oxygen uptake and physical working capacity (PWC130) by 16% (p less than 0.001) and 29% (p less than 0.001) respectively. Resting heart rate was decreased (p less than 0.001) by 11 beats.min-1. With 2 months of training the erythrocyte 2,3-DPG concentration increased by 9% (p less than 0.001); with 4 months training the increase was only 4% (p less than 0.05). The training-induced increase in red cell 2,3-DPG was not accompanied by enhanced activity of erythrocyte hexokinase, pyruvate kinase, glucose-6 phosphate dehydrogenase or glutathione reductase. It is concluded that the rise in red cell 2,3-DPG induced by physical endurance training is not due to activation of red cell glycolytic enzymes or the enzymes involved in the pentose-phosphate cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号