首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Bradyrhizobium japonicum utilizes cytochrome cbb 3 oxidase encoded by the fixNOQP operon to support microaerobic respiration under free-living and symbiotic conditions. It has been previously shown that, under denitrifying conditions, inactivation of the cycA gene encoding cytochrome c 550, the electron donor to the Cu-containing nitrite reductase, reduces cbb 3 expression. In order to establish the role of c 550 in electron transport to the cbb 3 oxidase, in this work, we have analyzed cbb 3 expression and activity in the cycA mutant grown under microaerobic or denitrifying conditions. Under denitrifying conditions, mutation of cycA had a negative effect on cytochrome c oxidase activity, heme c (FixP and FixO) and heme b cytochromes as well as expression of a fixP '–' lacZ fusion. Similarly, cbb 3 oxidase was expressed very weakly in a napC mutant lacking the c -type cytochrome, which transfers electrons to the NapAB structural subunit of the periplasmic nitrate reductase. These results suggest that a change in the electron flow through the denitrification pathway may affect the cellular redox state, leading to alterations in cbb 3 expression. In fact, levels of fixP '–' lacZ expression were largely dependent on the oxidized or reduced nature of the carbon source in the medium. Maximal expression observed in cells grown under denitrifying conditions with an oxidized carbon source required the regulatory protein RegR.  相似文献   

5.
It has been a long-standing hypothesis that the endosymbiotic rhizobia (bacteroids) cope with a concentration of 10 to 20 nM free O2 in legume root nodules by the use of a specialized respiratory electron transport chain terminating with an oxidase that ought to have a high affinity for O2. Previously, we suggested that the microaerobically and anaerobically induced fixNOQP operon of Bradyrhizobium japonicum might code for such a special oxidase. Here we report the biochemical characteristics of this terminal oxidase after a 27-fold enrichment from membranes of anaerobically grown B. japonicum wild-type cells. The purified oxidase has TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) oxidase activity as well as cytochrome c oxidase activity. N-terminal amino acid sequencing of its major constituent subunits confirmed that presence of the fixN,fixO, and fixP gene products. FixN is a highly hydrophobic, heme B-binding protein. FixO and FixP are membrane-anchored c-type cytochromes (apparent Mrs of 29,000 and 31,000, respectively), as shown by their peroxidase activities in sodium dodecyl sulfate-polyacrylamide gels. All oxidase properties are diagnostic for it to be a member of the cbb3-type subfamily of heme-copper oxidases. The FixP protein was immunologically detectable in membranes isolated from root nodule bacteroids, and 85% of the total cytochrome c oxidase activity in bacteroid membranes was contributed by the cbb3-type oxidase. The Km values for O2 of the purified enzyme and of membranes from different B. japonicum wild-type and mutant strains were determined by a spectrophotometric method with oxygenated soybean leghemoglobin as the sole O2 delivery system. The derived Km value for O2 of the cbb3-type oxidase in membranes was 7 nM, which is six- to eightfold lower than that determined for the aerobic aa3-type cytochrome c oxidase. We conclude that the cbb3-type oxidase supports microaerobic respiration in endosymbiotic bacteroids.  相似文献   

6.
Rhizobium etli CFN42 is unable to use nitrate for respiration and lacks nitrate reductase activity as well as the nap or nar genes encoding respiratory nitrate reductase. However, genes encoding proteins closely related to denitrification enzymes, the norCBQD gene cluster and a novel nirKnirVnnrRnnrU operon are located on pCFN42f. In this study, we carried out a genetic and functional characterization of the reductases encoded by the R. etli nirK and norCB genes. By gene fusion expression analysis in free-living conditions, we determined that R. etli regulates its response to nitric oxide through NnrR via the microaerobic expression mediated by FixKf. Interestingly, expression of the norC and nirK genes displays a different level of dependence for NnrR. A null mutation in nnrR causes a drastic drop in the expression of norC, while nirK still exhibits significant expression. A thorough analysis of the nirK regulatory region revealed that this gene is under both positive and negative regulation. Functional analysis carried out in this work demonstrated that reduction of nitrite and nitric oxide in R. etli requires the reductase activities encoded by the norCBQD and nirK genes. Levels of nitrosylleghemoglobin complexes in bean plants exposed to nitrate are increased in a norC mutant but decreased in a nirK mutant. The nitrate-induced decline in nitrogenase-specific activity observed in both the wild type and the norC mutant was not detected in the nirK mutant. This data indicate that bacterial nitrite reductase is an important contributor to the formation of NO in bean nodules in response to nitrate.  相似文献   

7.
8.
A Rhizobium etli Tn5mob-induced mutant (CFN035) exhibits an enhanced capacity to oxidize N,N,N′,N′, tetramethyl-p -phenylenediamine (TMPD), a presumptive indicator of elevated cytochrome c terminal oxidase activity. Sequencing of the mutated gene in CFN035 revealed that it codes for the amidophosphoribosyl transferase enzyme (PurF) that catalyzes the first step in the purine biosynthetic pathway. Two c-type cytochromes with molecular weights of 32 and 27?kDa were produced in strain CFN035, which also produced a novel CO-reactive cytochrome (absorbance trough at 553?nm), in contrast to strain CE3 which produced a single 32?kDa c-type protein and did not produce the 553?nm CO-reactive cytochrome. A wild-type R. etli strain that expresses the Bradyrhizobium japonicum fixNOQP genes, which code for the symbiotic cytochrome terminal oxidase cbb 3, produced similar absorbance spectra (a trough at 553?nm in CO-difference spectra) and two c -type proteins similar in size to those of strain CFN035, suggesting that CFN035 also produces the cbb 3 terminal oxidase. The expression of a R. etli fixN-lacZ gene fusion was measured in several R. etli mutants affected in different steps of the purine biosynthetic pathway. Our analysis showed that purF, purD, purQ, purL, purY, purK and purE mutants expressed three-fold higher levels of the fixNOQP operon than the wild-type strain. The derepressed expression of fixN was not observed in a purH mutant. The purH gene product catalyzes the conversion of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) to 5-formaminoimidazole-4-carboxamide ribonucleotide (FAICAR) and inosine. Supplementation with AICA riboside lowered the levels of fixN expression in the purF mutants. These data are consistent with the possibility that AICAR, or a closely related metabolite, is a negative effector of the production of the symbiotic terminal oxidase cbb 3 in R. etli.  相似文献   

9.
A Rhizobium etli Tn5mob-induced mutant (CFN035) exhibits an enhanced capacity to oxidize N,N,N′,N′, tetramethyl-p -phenylenediamine (TMPD), a presumptive indicator of elevated cytochrome c terminal oxidase activity. Sequencing of the mutated gene in CFN035 revealed that it codes for the amidophosphoribosyl transferase enzyme (PurF) that catalyzes the first step in the purine biosynthetic pathway. Two c-type cytochromes with molecular weights of 32 and 27 kDa were produced in strain CFN035, which also produced a novel CO-reactive cytochrome (absorbance trough at 553 nm), in contrast to strain CE3 which produced a single 32 kDa c-type protein and did not produce the 553 nm CO-reactive cytochrome. A wild-type R. etli strain that expresses the Bradyrhizobium japonicum fixNOQP genes, which code for the symbiotic cytochrome terminal oxidase cbb 3, produced similar absorbance spectra (a trough at 553 nm in CO-difference spectra) and two c -type proteins similar in size to those of strain CFN035, suggesting that CFN035 also produces the cbb 3 terminal oxidase. The expression of a R. etli fixN-lacZ gene fusion was measured in several R. etli mutants affected in different steps of the purine biosynthetic pathway. Our analysis showed that purF, purD, purQ, purL, purY, purK and purE mutants expressed three-fold higher levels of the fixNOQP operon than the wild-type strain. The derepressed expression of fixN was not observed in a purH mutant. The purH gene product catalyzes the conversion of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) to 5-formaminoimidazole-4-carboxamide ribonucleotide (FAICAR) and inosine. Supplementation with AICA riboside lowered the levels of fixN expression in the purF mutants. These data are consistent with the possibility that AICAR, or a closely related metabolite, is a negative effector of the production of the symbiotic terminal oxidase cbb 3 in R. etli. Received: 21 November 1996 / Accepted: 22 January 1997  相似文献   

10.
Sequence analysis of the rpoN (2)- fixA intergenic region in the genome of Rhizobium etli CNPAF512 has uncovered three genes involved in nitrogen fixation, namely nifU, nifS and nifW. These genes are preceded by an ORF that is highly conserved among nitrogen-fixing bacteria. It encodes a putative gene product of 105 amino acids, belonging to the HesB-like protein family. A phylogenetic analysis of members of the HesB-like protein family showed that the R. etli HesB-like protein clusters with polypeptides encoded by ORFs situated upstream of the nifUS nitrogen fixation regions in the genomes of other diazotrophs. The R. etli ORF that encodes the HesB-like protein was designated iscN. iscN is co-transcribed with nifU and nifS, and is preferentially expressed under free-living microaerobic conditions and in bacteroids. Expression is regulated by the alternative sigma factor RpoN and the enchancer-binding protein NifA. A R. etli iscN mutant displays a reduction in nitrogen fixation capacity of 90% compared to the wild-type strain. This Nif(-) phenotype could be complemented by the introduction of intact copies of R. etli iscN.  相似文献   

11.
Genetic regulation of nitrogen fixation in rhizobia.   总被引:33,自引:5,他引:28       下载免费PDF全文
  相似文献   

12.
The biomass yield of freshwater filamentous sulfur bacteria of the genus Beggiatoa, when grown lithoheterotrophically or mixotrophically, has been shown to increase 2 to 2.5 times under microaerobic conditions (0.12 mg/l oxygen) as compared to aerobic conditions (9 mg/l oxygen). The activity of the glyoxylate cycle key enzymes have been found to increase two to three times under microaerobic conditions (at an O2 concentration of 2 mg/l), and the activities of the sulfur metabolism enzymes increased three to five times (at an O2 concentration of 0.1-0.5 mg/l). It has also been found that, under microaerobic conditions, thiosulfate was almost completely oxidized to sulfate by the bacteria, without accumulation of intermediate metabolites. At the same time, a 2- to 15-fold decrease in the activities of the tricarboxylic acid cycle enzymes involved in the reduction of NAD and FAD was observed. Reorganization of the respiratory chain after changes in aeration and type of nutrition was also observed. It has been found that, in cells grown heterotrophically, the terminal part of the respiratory chain contained an aa3-type oxidase, whereas, during mixotrophic, lithoheterotrophic, and autotrophic growth, aa3-type oxidase synthesis was inhibited, and the synthesis of a cbb3-type oxidase, which is induced under microaerobic conditions, was activated. The gene of the catalytic subunit CcoN of the cbb3-type oxidase was sequenced and proved to be highly homologous to the corresponding genes of other proteobacteria.  相似文献   

13.
Rhizobium etli, as well as some other rhizobia, presents nitrogenase reductase (nifH) gene reiterations. Several R. etli strains studied in this laboratory showed a unique organization and contained two complete nifHDK operons (copies a and b) and a truncated nifHD operon (copy c). Expression analysis of lacZ fusion demonstrated that copies a and b in strain CFN42 are transcribed at lower levels than copy c, although this copy has no discernible role during nitrogen fixation. To increase nitrogenase production, we constructed a chimeric nifHDK operon regulated by the strong nifHc promoter sequence and expressed it in symbiosis with the common bean plant (Phaseolus vulgaris), either cloned on a stably inherited plasmid or incorporated into the symbiotic plasmid (pSym). Compared with the wild-type strain, strains with the nitrogenase overexpression construction assayed in greenhouse experiments had, increased nitrogenase activity (58% on average), increased plant weight (32% on average), increased nitrogen content in plants (15% at 32 days postinoculation), and most importantly, higher seed yield (36% on average), higher nitrogen content (25%), and higher nitrogen yield (72% on average) in seeds. Additionally, expression of the chimeric nifHDK operon in a poly-beta-hydroxybutyrate-negative R. etli strain produced an additive effect in enhancing symbiosis. To our knowledge, this is the first report of increased seed yield and nutritional content in the common bean obtained by using only the genetic material already present in Rhizobium.  相似文献   

14.
The Rhizobium etli CNPAF512 fnrN gene was identified in the fixABCX rpoN(2) region. The corresponding protein contains the hallmark residues characteristic of proteins belonging to the class IB group of Fnr-related proteins. The expression of R. etli fnrN is highly induced under free-living microaerobic conditions and during symbiosis. This microaerobic and symbiotic induction of fnrN is not controlled by the sigma factor RpoN and the symbiotic regulator nifA or fixLJ, but it is due to positive autoregulation. Inoculation of Phaseolus vulgaris with an R. etli fnrN mutant strain resulted in a severe reduction in the bacteroid nitrogen fixation capacity compared to the wild-type capacity, confirming the importance of FnrN during symbiosis. The expression of the R. etli fixN, fixG, and arcA genes is strictly controlled by fnrN under free-living microaerobic conditions and in bacteroids during symbiosis with the host. However, there is an additional level of regulation of fixN and fixG under symbiotic conditions. A phylogenetic analysis of the available rhizobial FnrN and FixK proteins grouped the proteins in three different clusters.  相似文献   

15.
16.
Tyrosinase (EC 1.14.18.1) is a monophenol oxidase responsible for the synthesis of the black pigment known as melanin. The tyrosinase gene (melA) is plasmid-encoded in many rhizobial species. In Rhizobium etli CFN42, the genetic location of melA in the symbiotic plasmid (p42d) and its RpoN-NifA regulation suggest an involvement in symbiosis. In this work, we analyzed the symbiotic phenotype of a streptomycin-resistant derivative of CFN42 (CE3), a melA mutant (SP2) and a complemented strain (SP66), demonstrating that melA inactivation reduced nodule formation rate and diminished total nodule number by 27% when compared to the CE3 strain. The nitrogen fixation capacity of the mutant strain was not affected. Also, in vitro assays were performed where the resistance of CE3, SP2 and SP66 strains to H(2)O(2) was evaluated; the melA mutant strain was consistently less resistant to peroxide. In another series of experiments, Escherichia coli W3110 strain expressing R. etli melA displayed enhanced resistance to p-hydroxybenzoic, vanillinic and syringic acids, which are phenolic compounds frequently found in the soil. Our results are the first to demonstrate a specific role for tyrosinase in R. etli: this enzyme is required during early symbiosis, apparently providing resistance against reactive oxygen species and phenolic compounds generated as part of the plant protective responses.  相似文献   

17.
The deduced amino acid sequences of four open reading frames identified upstream of the fixGHI region in Azorhizobium caulinodans are very similar to the putative terminal oxidase complex coded by the fixNOQP operons from Rhizobium meliloti and Bradyrhizobium japonicum. The expression of the A. caulinodans fixNOQP genes, which was maximal under microaerobiosis, was positively regulated by FixK and independent of NifA. In contrast to the Fix- phenotype of B. japonicum and R. meliloti fixN mutants, an A. caulinodans fixNO-deleted mutant strain retained 50% of the nitrogenase activity of the wild type in the symbiotic state. In addition, the nitrogenase activity was scarcely reduced under free-living conditions. Analysis of membrane fractions of A. caulinodans wild-type and mutant strains suggests that the fixNOQP region encodes two proteins with covalently bound hemes, tentatively assigned to fixO and fixP. Spectral analysis showed a large decrease in the c-type cytochrome content of the fixN mutant compared with the wild type. These results provide evidence for the involvement of FixNOQP proteins in a respiratory process. The partial impairment in nitrogen fixation of the fixN mutant in planta may be due to the activity of an alternative terminal oxidase compensating for the loss of the oxidase complex encoded by fixNOQP.  相似文献   

18.
19.
20.
To investigate the involvement of Rhizobium etli cbb (3) oxidase in the response of Phaseolus vulgaris to drought, common bean plants were inoculated with the R. etli strain, CFNX713, overexpressing this oxidase in bacteroids (cbb (3) (+)) and subjected to drought conditions. The negative effect of drought on plant and nodule dryweight, nitrogen content, and nodule functionality was more pronounced in plants inoculated with the wild-type (WT) strain than in those inoculated with the cbb (3) (+) strain. Regardless of the plant treatment, bacteroids produced by the cbb (3) (+) strain showed higher respiratory capacity than those produced by the WT strain. Inoculation of plants with the cbb (3) (+) strain alleviated the negative effect of a moderate drought on the respiratory capacity of bacteroids and the energy charge of the nodules. Expression of the FixP and FixO components of the cbb (3) oxidase was higher in bacteroids of the cbb (3) (+) strain than in those of the WT strain under all experimental conditions. The decline in sucrose synthase activity and the decrease in dicarboxylic acids provoked by moderate drought stress were more pronounced in nodules from plants inoculated with the WT strain than in those inoculated with the cbb (3) (+) strain. Taken together, these results suggest that inoculation of plants with a R. etli strain having enhanced expression of cbb (3) oxidase in bacteroids reduces the sensitivity of P. vulgaris-R. etli symbiosis to drought and can modulate carbon metabolism in nodules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号