首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:探讨长程颅内电极监测及电刺激方法,在感觉运动区皮质发育不良的难治性癫痫外科手术评估中的意义。方法:筛选MRI提示的皮质发育不良区域与重要功能区-感觉运动区位置关系密切的11例难治性癫痫患者,且头皮长程视频脑电监测及PET检查也初步提示癫痫发作与皮质发育不良所在脑区有关,在可疑脑区放置颅内电极,然后进行颅内电极长程视频脑电监测及电刺激检测,对癫痫起源位置及功能区定位,明确癫痫发作起源区域与感觉运动功能区的解剖学关系,在定位结果指导下进行切除术。结果:11例中3例位于左侧半球,8例位于右侧半球,11例感觉运动功能区皮质分布均存在不同程度变异,7例癫痫发作起源区域与感觉运动功能区一定范围重叠,其中5例与感觉区重叠,该5例切除了起源区域与发作有关的部分感觉区,2例部分致痫灶与运动区重叠,该2例仅切除了除与发作有关的运动区以外的癫痫起源区域,4例癫痫发作起源区域与感觉运动功能区相对独立,该4例完全切除癫痫发作起源区域;手术后6例患者发作消失,2例患者发作频率减少90%以上,1例癫痫发作控制无效,2例患者发生部分感觉缺失,但对生活无明显影响。结论:在皮质发育不良的癫痫患者中,有较高比例的病人伴有功能区皮层分布的变异,长程颅内电极监测及电刺激能够实现癫痫起源区域及功能区精确定位,明确功能区变异情况,对于指导病灶切除,避免损伤功能区皮质,减少术后并发症具有重要意义。  相似文献   

2.
梁亮  徐樊  井哓荣  王超  梁秦川  郭恒  孟强  李焕发  张华  高国栋 《生物磁学》2011,(8):1498-1501,1525
目的:探讨长程颅内电极监测及电刺激方法,在感觉运动区皮质发育不良的难治性癫痫外科手术评估中的意义。方法:筛选MRI提示的皮质发育不良区域与重要功能区-感觉运动区位置关系密切的11例难治性癫痫患者,且头皮长程视频脑电监测及PET检查也初步提示癫痫发作与皮质发育不良所在脑区有关,在可疑脑区放置颅内电极,然后进行颅内电极长程视频脑电监测及电刺激检测,对癫痫起源位置及功能区定位,明确癫痫发作起源区域与感觉运动功能区的解剖学关系,在定位结果指导下进行切除术。结果:11例中3例位于左侧半球,8例位于右侧半球,11例感觉运动功能区皮质分布均存在不同程度变异,7例癫痫发作起源区域与感觉运动功能区一定范围重叠,其中5例与感觉区重叠,该5例切除了起源区域与发作有关的部分感觉区,2例部分致痫灶与运动区重叠,该2例仅切除了除与发作有关的运动区以外的癫痫起源区域,4例癫痫发作起源区域与感觉运动功能区相对独立,该4例完全切除癫痫发作起源区域;手术后6例患者发作消失,2例患者发作频率减少90%以上,1例癫痫发作控制无效,2例患者发生部分感觉缺失,但对生活无明显影响。结论:在皮质发育不良的癫痫患者中,有较高比例的病人伴有功能区皮层分布的变异,长程颅内电极监测及电刺激能够实现癫痫起源区域及功能区精确定位,明确功能区变异情况,对于指导病灶切除,避免损伤功能区皮质,减少术后并发症具有重要意义。  相似文献   

3.
Motor learning in man: A review of functional and clinical studies   总被引:1,自引:0,他引:1  
This chapter reviews results of clinical and functional imaging studies which investigated the time-course of cortical and subcortical activation during the acquisition of motor a skill. During the early phases of learning by trial and error, activation in prefrontal areas, especially in the dorsolateral prefrontal cortex, is has been reported. The role of these areas is presumably related to explicit working memory and the establishment of a novel association between visual cues and motor commands. Furthermore, motor associated areas of the right hemisphere and distributed cerebellar areas reveal strong activation during the early motor learning. Activation in superior-posterior parietal cortex presumably arises from visuospatial processes, while sensory feedback is coded in the anterior-inferior parietal cortex and the neocerebellar structures. With practice, motor associated areas of the left-hemisphere reveal increased activity. This shift to the left hemisphere has been observed regardless of the hand used during training, indicating a left-hemispheric dominance in the storage of visuomotor skills. Concerning frontal areas, learned actions of sequential character are represented in the caudal part of the supplementary motor area (SMA proper), whereas the lateral premotor cortex appears to be responsible for the coding of the association between visuo-spatial information and motor commands. Functional imaging studies which investigated the activation patterns of motor learning under implicit conditions identified for the first, a motor circuit which includes lateral premotor cortex and SMA proper of the left hemisphere and primary motor cortex, for the second, a cognitive loop which consists of basal ganglia structures of the right hemisphere. Finally, activity patterns of intermanual transfer are discussed. After right-handed training, activity in motor associated areas maintains during performance of the mirror version, but is increased during the performance of the original-oriented version with the left hand. In contrary, increased activity during the mirror reversed action, but not during the original-oriented performance of the untrained right hand is observed after left-handed training. These results indicate the transfer of acquired right-handed information which reflects the mirror symmetry of the body, whereas spatial information is mainly transferred after left-handed training. Taken together, a combined approach of clinical lesion studies and functional imaging is a promising tool for identifying the cerebral regions involved in the process of motor learning and provides insight into the mechanisms underlying the generalisation of actions.  相似文献   

4.
Neuroactive Amino Acids in Focally Epileptic Human Brain: A Review   总被引:3,自引:0,他引:3  
Studies of neuroactive amino acids and their regulatory enzymes in surgically excised focally epileptic human brain are reviewed. Concentrations of glutamate, aspartate and glycine are significantly increased in epileptogenic cerebral cortex. The activities of the enzymes, glutamate dehydrogenase and aspartate aminotransferase, involved in glutamate and aspartate metabolism are also increased. Polyamine synthesis is enhanced in epileptogenic cortex and may contribute to the activation of N-methyl-D-aspartate (NMDA) receptors. Nuclear magnetic resonance spectroscopy (NMRS) reveals that patients with poorly controlled complex partial seizures have a significant diminution in occipital lobe gamma aminobutyric acid (GABA) concentration. The activity of the enzyme GABA-aminotransaminase (GABA-T) which catalyzes GABA degredation is not altered in epileptogenic cortex. NMRS studies show that vigabatrin, a GABA-T inhibitor and effective antiepileptic, significantly increases brain GABA. Glutamate decarboxylase (GAD), responsible for GABA synthesis, is diminished in interneurons in discrete regions of epileptogenic cortex and hippocampus. In vivo microdialysis performed in epilepsy surgery patients provides measurements of extracellular amino acid levels during spontaneous seizures. Glutamate concentrations are higher in epileptic hippocampi and increase before seizure onset reaching potentially excitotoxic levels. Frontal or temporal cortical epileptogenic foci also release aspartate, glutamate and serine particularly during intense seizures or status epilepticus. GABA in contrast, exhibits a delayed and feeble rise in the epileptic hippocampus possibly due to a reduction in the number and/or efficiency of GABA transporters.  相似文献   

5.
As an introduction to the main theme of this conference an overview of the organization of the tetrapod forebrain is presented with emphasis on the telencephalic representation of sensory and motor functions. In all classes of tetrapods, olfactory, visual, octavolateral, somatosensory and gustatory information reaches the telencephalon. Major differences exist in the telencephalic targets of sensory information between amphibians and amniotes. In amphibians, three targets are found: the lateral pallium for olfactory input, the medial pallium for visual and multisensory input, and the lateral subpallium for visual, octavolateral and somatosensory information. The forebrains of reptiles and mammals are similar in that the dorsal surface of their cerebral hemisphere is formed by a pallium with three major segments: (a) an olfactory, lateral cortex; (b) a 'limbic' cortex that forms the dorsomedial wall of the hemisphere, and (c) an intermediate cortex that is composed entirely of isocortex in mammals, but in reptiles (and birds) consists of at least part of the dorsal cortex (in birds the Wulst) and a large intraventricular protrusion, i.e. the dorsal ventricular ridge. In birds, the entire lateral wall of the hemisphere is involved in this expansion. The intermediate pallial segment receives sensory projections from the thalamus and contains modality-specific sensory areas in reptiles, birds and mammals. The most important differences between the intermediate pallial segment of amniotes concern motor systems.  相似文献   

6.
The present study examined the neural basis of vivid motor imagery with parametrical functional magnetic resonance imaging. 22 participants performed motor imagery (MI) of six different right-hand movements that differed in terms of pointing accuracy needs and object involvement, i.e., either none, two big or two small squares had to be pointed at in alternation either with or without an object grasped with the fingers. After each imagery trial, they rated the perceived vividness of motor imagery on a 7-point scale. Results showed that increased perceived imagery vividness was parametrically associated with increasing neural activation within the left putamen, the left premotor cortex (PMC), the posterior parietal cortex of the left hemisphere, the left primary motor cortex, the left somatosensory cortex, and the left cerebellum. Within the right hemisphere, activation was found within the right cerebellum, the right putamen, and the right PMC. It is concluded that the perceived vividness of MI is parametrically associated with neural activity within sensorimotor areas. The results corroborate the hypothesis that MI is an outcome of neural computations based on movement representations located within motor areas.  相似文献   

7.
The purpose of this study was to compare cerebral cortical representation of experimentally induced reflexive swallow with that of volitional swallow. Eight asymptomatic adults (24-27 yr) were studied by a single-trial functional magnetic resonance imaging technique. Reflexive swallowing showed bilateral activity concentrated to the primary sensory/motor regions. Volitional swallowing was represented bilaterally in the insula, prefrontal, cingulate, and parietooccipital regions in addition to the primary sensory/motor cortex. Intrasubject comparison showed that the total volume of activity during volitional swallowing was significantly larger than that activated during reflexive swallows in either hemisphere (P < 0.001). For volitional swallowing, the primary sensory/motor region contained the largest and the insular region the smallest volumes of activation in both hemispheres, and the total activated volume in the right hemisphere was significantly larger compared with the left (P < 0.05). Intersubject comparison showed significant variability in the volume of activity in each of the four volitional swallowing cortical regions. We conclude that reflexive swallow is represented in the primary sensory/motor cortex and that volitional swallow is represented in multiple regions, including the primary sensory/motor cortex, insular, prefrontal/cingulate gyrus, and cuneus and precuneus region. Non-sensory/motor regions activated during volitional swallow may represent swallow-related intent and planning and possibly urge.  相似文献   

8.
1. Experiments were performed to investigate the effects of cortical lesions on convulsive behaviour. Rats were lesioned in the left motor or sensory cortex by aspirating cortical tissue 2 to 3 months prior to the elicitation of convulsions. Convulsions were induced in the awake rats by the GABA antagonist Na-penicillin (Na-PCN) which was applied into the superficial layer of the foreleg field of their right motor cortex. Convulsive activity was recorded by means of the EEG. 2. The time courses of convulsive cortical activity were similar in the animals without or with a cortical lesion. Generalized seizures belonged to the tonic-clonic type in both intact and lesioned rats. 3. The early period of convulsive activity was described by the time to the onset (latency) of the first convulsive potential, jerk and seizure, and by the mean repetition rate of jerks during the first ten minutes, and the duration of the first generalized seizure. None of these parameters was significantly affected by a cortical lesion. 4. The median duration of the convulsive activity in intact animals was 162 min. In rats with a lesion in the sensory cortex it raised to more than 540 min while a lesion of the motor cortex increased the median duration to more than 273 min. The differences between intact and lesioned rats were significant (p less than 0.01 and p = 0.05, respectively). 5. The median time to the onset of the last generalized seizure in intact rats corresponded to 92 min with respect to the time of Na-PCN application. In rats with a lesion of the sensory cortex the last seizure was generated 433 min and in animals with a lesion of the motor cortex 167 min after Na-PCN treatment of the motor cortex of one side. This increase of latency of the last seizure was significant for the rats with a lesioned sensory area (p less than 0.02) or motor area (p = 0.05) compared to that of the intact rats. Additionally, the number of generalized seizures was significantly (p less than 0.01) increased by both groups of rats with a lesion of the motor or sensory cortex. 6. It is suggested that a substantial lesion of the cortex decreases predominantly the intrinsic cortical inhibition thus destabilizing brain function. This destabilizing effect becomes pronounced under the condition of superimposed suppression of the GABAergic cortical component. It is concluded that the intrinsic cortical inhibitory mechanism which in the intact brain acts against hyperexcitation and prevents the development of neuronal synchronization, i.e. the formation of seizures, becomes less effective in performing this task once an abnormal brain activation has developed.  相似文献   

9.
We studied the effect of acute unilateral cerebellar lesions on the cerebello-thalamo-cortical projection in cats. The lesions were classified into two groups according to their extent. In group I the lesion only covered the cerebellar cortex, while in group II both the cerebellar cortex and deep cerebellar nuclei were removed. Early (short-latency) and late (long-latency) waves, evoked by an electrical stimulation of a forelimb, were collected contralateral to the stimulated leg hemisphere. Pre- and postsurgery recordings from primary and non-primary (motor and parietal) cortices were compared. Cerebellar impairment had a strong influence on discharges of all the considered cortical areas. Early non-primary and primary responses increased in group I and remained unchanged in group II. Late somatosensory evoked potentials components were suppressed in both groups. An inhibitory influence of the cerebellar cortex on the thalamo-cortical projection was confirmed. Changes within the primary sensory cortex may suggest an engagement of that area in the compensation process of cerebellar dysfunction shortly after cerebellar lesion. An alteration in the unaffected hemisphere activation indicate that the spino-cerebellar and cerebello-cortical inputs, responsible for somatosensory evoked potentials generation, are regulated through contralateral and ipsilateral pathways. These pathways are unmasked by cerebellar lesion.  相似文献   

10.
The rat brain thermal fields were studied using the thermoencephaloscopic technique in three experimental conditions: the genetic catalepsy (GC rat strain), cataleptic phase of an audiogenic epileptic seizure (Krushinski?-Molodkina strain), and pharmacological catalepsy produced by haloperidol injection (Wistar rats). Irrespective of the experimental conditions, the state of catalepsy, accompanied by a decrease in the muscle tone and inhibition of motor reactions, was characterized by total asymmetric cooling of the brain cortex with the dominance of the right hemisphere. Temperature difference between the parieto-occipital areas of the right and left hemispheres reached 0.3-0.6 degree C.  相似文献   

11.
The results of recent studies in primates provide convincing evidence that the cortex on the medial wall of the hemisphere contains multiple areas concerned with the generation and control of body movement. Highlights of these findings include the demonstration that each of these motor areas has substantial direct projections to the spinal cord, somatotopically organized projections to the primary motor cortex, a 'motor' map, revealed by intracortical stimulation, and neuronal activity that precedes trained hand movements.  相似文献   

12.
Movement-related potentials (MRPs) associated with tongue protrusions and vocalizations were recorded from chronically implanted subdural electrodes over the lower perirolandic area in 7 patients being evaluated for epilepsy surgery. In 3 patients, tongue protrusions elicited a clearly defined, well localized slow negative Bereitschaftspotential (BP) at the motor tongue area, and a positive BP at the sensory tongue area. At the motor tongue area the negative BP was followed by a negative slope (NS′) and a motor potential (MP), and at the sensory tongue area the positive BP and a positive reafferent potential (RAP) were seen but no NS′ and MP could be identified. In the other 4 patients, tongue protrusions elicited positive BP, NS′ and MP at the motor and sensory tongue area, and positive RAP at the sensory area. It was concluded that BPs, NS′ and MPs are mainly generated in the motor cortex involving the crown as well as the anterior bank of the central fissure. The sensory cortex (areas 3a and 3b) also participated in the generation of BPs but to a lesser degree. Different degree of involvement of these multiple generators most likely explains the interindividual variability of polarity and distribution of the MRPs. RAPS most likely arise from primary sensory areas 1 and 2. Brain potentials were also recorded at the motor (2 patients) and sensory (2 patients) language areas, but no specific language-related potentials could be identified.Evoked potentials to lip stimulation were investigated in 4 patients. In 3 patients, the responses at the sensory tongue area (P16, N21 and P30) had the same latency but opposite polarity to those at the motor tongue area. In the other patient, the responses (P16, N21 and P30) at the motor and sensory tongue areas were of the same polarity. The MRPs to tongue protrusions in those 4 patients revealed the same polarity relationship between the pre- and postcentral potentials. However, the maximal amplitude of evoked potentials and MRPs was seen at almost the same electrodes, suggesting that the main generators for these MRPs and evoked potentials must be located at contiguous areas in the anterior and posterior bank, respectively, of the central fissure.  相似文献   

13.
When we speak, we provide ourselves with auditory speech input. Efficient monitoring of speech is often hypothesized to depend on matching the predicted sensory consequences from internal motor commands (forward model) with actual sensory feedback. In this paper we tested the forward model hypothesis using functional Magnetic Resonance Imaging. We administered an overt picture naming task in which we parametrically reduced the quality of verbal feedback by noise masking. Presentation of the same auditory input in the absence of overt speech served as listening control condition. Our results suggest that a match between predicted and actual sensory feedback results in inhibition of cancellation of auditory activity because speaking with normal unmasked feedback reduced activity in the auditory cortex compared to listening control conditions. Moreover, during self-generated speech, activation in auditory cortex increased as the feedback quality of the self-generated speech decreased. We conclude that during speaking early auditory cortex is involved in matching external signals with an internally generated model or prediction of sensory consequences, the locus of which may reside in auditory or higher order brain areas. Matching at early auditory cortex may provide a very sensitive monitoring mechanism that highlights speech production errors at very early levels of processing and may efficiently determine the self-agency of speech input.  相似文献   

14.
An EEG cross-correlation analysis has shown that in children aged four to five years higher sensory analysis of verbal commands and their meaning was reflected in the nature of synchronous interactions between oscillatory processes and their spatial-temporal patterns. At the moment of perception of the command "listen" highly synchronous synphasic relations were recorded between biopotentials in the associative infero-parietal cortex and projection temporal centres of the left hemisphere. Oscillations of the parietal areas preceded the rhythms of the occipital, motor and frontal lobes in the left hemisphere; slow oscillations with a 3 osc/sec frequency predominated, and the intensity of the periodic processes increased. The command "look" evoked a high degree of synchronous synphasic relations of biopotentials in the parietal-occipital cortical parts of both hemispheres; oscillations with 6 osc/sec frequency predominated; their intensity rose; synphasic relations of oscillations in parietal and motor and temporal centres grew more manifest, while the rhythmic activity in the parietal zones preceded the potentials in the frontal lobes of both hemispheres.  相似文献   

15.
Mechanisms of epileptic activity in nervous systems were studied using the identified neurons B1 through B4 in the buccal ganglia of the snail Helix pomatia as a model system. Activities were recorded with intracellular microelectrodes. Epileptiform activity was induced by bath application of an epileptogenic drug (pentylenetetrazol: 1 mM to 40 mM, or etomidate: 0.1 mM to 1.0 mM). Epileptiform potentials recorded from the somata of neurons consisted of paroxysmal depolarization shifts (PDSs). With increasing concentration of an epileptogenic drug, pacemaker potentials in neuron B3 developed into PDS. Simultaneously several types of chemical post-synaptic potentials were suppressed in amplitude. Since on the one hand epileptic seizures only appear when PDS are synchronized in many neurons and since on the other hand synaptic potentials were found to be suppressed during epileptic conditions, mechanisms underlying neuronal synchronization were studied. Evidence was found that, under epileptogenic conditions only, neurons were synchronized by an non-synaptic release of substances. Strong depolarizations accompanied by an increase in intracellular calcium concentration are known to induce an unspecific exocytosis. Thus, an unspecific exocytosis from the dendrites of PDS-generating neurons probably appears under epileptic conditions and synchronizes neighbouring neurons.  相似文献   

16.
Intramuscular injection of diazepam to rats at doses of 0.01 and 2 mg/kg 25-30 min after penicillin application to the rat brain cortex leads to alteration of periodic appearance of epileptic seizures (ES), to changes in the seizure pattern, and to emergence of periodic acceleration of epileptiform discharges (ED). Injection of diazepam at a dose of 2 mg/kg 20 min before penicillin application results in the reduction of ED latency in the epileptogenic focus and in a decrease in their frequency before seizures as compared to the control animals without diazepam injection. ES appear irregularly, their quantity is markedly reduced while duration is increased. Diazepam injection leads to disappearance of the rat moving reaction during ER and ES. In vivo experiments diazepam (2 mg/kg) does not influence brain cortex Na, K-ATPase of crude synaptosomes. However, diazepam leads to an increase in Na, K-ATPase activity both in the primary and dependent secondary epileptogenic foci. It is suggested that the anticonvulsant action of diazepam may be underlain by its activating effect on Na, K-ATPase of neuronal membranes in the epileptogenic focus.  相似文献   

17.
 We examined the cerebral cortex of five autopsied individuals without neurological and psychiatric diseases by immunohistochemistry using an anti-human recombinant choline acetyltransferase (ChAT) polyclonal antibody and in situ hybridization with 35S-labeled human ChAT riboprobes. The immunohistochemistry detected positive neurons which were medium-sized or large pyramidal neurons located predominantly in layers III and V. The density of such neurons was higher in the motor and secondary sensory areas than in other cortical areas; the immunoreactive neurons in layer V were more densely distributed in the motor area and those in layer III were distributed in the secondary sensory areas. Positively stained, non-pyramidal neurons were observed in the superficial layer of the cingulate gyrus and parahippocampus. No immunoreactive neurons were found in the primary sensory areas. The in situ hybridization detected some neurons with signals for ChAT mRNA in the cerebral cortex, most of which were distributed in layer V of the motor area and in layer III of the secondary visual area. These results indicate that the human cerebral cortex contains cholinergic neurons and displays regional and laminal variations in their distribution. Accepted: 17 November 1998  相似文献   

18.
It is now well established that in epileptic patients, hypometabolic foci appear during interictal periods. The meaning and the mechanism of such an hypometabolism are as yet unclear. The aim of the present investigation was to look for a putative relationship between glucose metabolism in the brain and the genesis of seizures in mice using administration of the convulsant, methionine sulfoximine. Besides its epileptic action, methionine sulfoximine is a powerful glycogenic agent. We analyzed the epileptogenic and glycogenic effects of methionine sulfoximine in two inbred mouse strains with different susceptibility towards the convulsant. CBA/J mice displayed high response to methionine sulfoximine. The tonic convulsions appeared 5-6 h after MSO administration, without brain glycogen content variations during the preconvulsive period. These mice died of status epilepticus during the first seizure(s). Conversely, C57BL/6J mice displayed low response to MSO. The tonic and clonic seizures appeared 8 to 14 h after MSO administration with only 2% mortality. The seizures were preceded by an increase in brain glycogen content during the preconvulsive period. Moreover, during seizures, C57BL/6J mice were able to mobilize this accumulated brain glycogen, that returned to high value after seizures. The epileptic and glycogenic responses of the parental strains were also observed in mice of the F2 generation. The F2 mice that convulsed early (16%) did not utilize their small increase in brain glycogen content, and resembled CBA/J mice; while the F2 mice that seized tardily (24%) increased their brain glycogen content before convulsion, utilized it during convulsions, and resembled C57BL/6J mice. Sixty percent of the F2 mice presented an intermediate pattern in epileptogenic responses to the convulsant. These data suggest a possible genetic link between the two MSO effects, epileptiform seizures and increase in brain glycogen content. The increase in brain glycogen content and the capability of its mobilization during seizures could delay the seizure's onset and could be considered a "resistance factor" against the seizures.  相似文献   

19.
Glycogen is degraded during brain activation but its role and contribution to functional energetics in normal activated brain have not been established. In the present study, glycogen utilization in brain of normal conscious rats during sensory stimulation was assessed by three approaches, change in concentration, release of (14)C from pre-labeled glycogen and compensatory increase in utilization of blood glucose (CMR(glc)) evoked by treatment with a glycogen phosphorylase inhibitor. Glycogen level fell in cortex, (14)C release increased in three structures and inhibitor treatment caused regionally selective compensatory increases in CMR(glc) over and above the activation-induced rise in vehicle-treated rats. The compensatory rise in CMR(glc) was highest in sensory-parietal cortex where it corresponded to about half of the stimulus-induced rise in CMR(glcf) in vehicle-treated rats; this response did not correlate with metabolic rate, stimulus-induced rise in CMR(glc) or sequential station in sensory pathway. Thus, glycogen is an active fuel for specific structures in normal activated brain, not simply an emergency fuel depot and flux-generated pyruvate greatly exceeded net accumulation of lactate or net consumption of glycogen during activation. The metabolic fate of glycogen is unknown, but adding glycogen to the fuel consumed during activation would contribute to a fall in CMR(O2)/CMR(glc) ratio.  相似文献   

20.
Using the evoked potential technique, studies have been made on localization of the projectional sensory areas in the cerebral cortex (visual, acoustic and somatosensory) of the porpoise T. truncatus. Distribution of these projectional areas in the porpoise is quite different as compared to that in other mammals. Visual and acoustic areas are shifted to the dorsal part of the hemisphere, all the sensory areas investigated exhibit a direct contact with each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号