首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of xenon with copper/6-hydroxydopa (2,4,5-trihydroxyphenethylamine) quinone (TPQ) amine oxidases from the plant pulses lentil (Lens esculenta) and pea (Pisum sativum) (seedlings), the perennial Mediterranean shrub Euphorbia characias (latex), and the mammals cattle (serum) and pigs (kidney), were investigated by NMR and optical spectroscopy of the aqueous solutions of the enzymes. (129)Xe chemical shift provided evidence of xenon binding to one or more cavities of all these enzymes, and optical spectroscopy showed that under 10 atm of xenon gas, and in the absence of a substrate, the plant enzyme cofactor (TPQ), is converted into its reduced semiquinolamine radical. The kinetic parameters of the analyzed plant amine oxidases showed that the k(c) value of the xenon-treated enzymes was reduced by 40%. Moreover, whereas the measured K(m) value for oxygen and for the aromatic monoamine benzylamine was shown to be unchanged, the K(m) value for the diamine putrescine increased remarkably after the addition of xenon. Under the same experimental conditions, the TPQ of bovine serum amine oxidase maintained its oxidized form, whereas in pig kidney, the reduced aminoquinol species was formed without the radical species. Moreover the k(c) value of the xenon-treated pig enzyme in the presence of both benzylamine and cadaverine was shown to be dramatically reduced. It is proposed that the lysine residue at the active site of amine oxidase could be involved both in the formation of the reduced TPQ and in controlling catalytic activity.  相似文献   

2.
Ruggiero CE  Dooley DM 《Biochemistry》1999,38(10):2892-2898
The stoichiometry of the topa quinone biogenesis reaction in phenylethylamine oxidase from Arthrobacter globiformis (AGAO) has been determined. We have shown that the 6e- oxidation of tyrosine to topa quinone (TPQ) consumes 2 mol of O2 and produces 1 mol of H2O2/mol of TPQ formed. The rate of H2O2 production is first-order (kobs = 1.0 +/- 0.2 min-1), a rate only slightly lower than the rate of TPQ formation directly determined previously (kobs = 1.5 +/- 0.2 min-1). This gives the following net reaction stoichiometry for TPQ biogenesis: E-Tyr + 2O2 --> E-TPQ + H2O2. This stoichiometry is in agreement with recently proposed mechanisms for TPQ biogenesis, and rules out several possible alternatives.  相似文献   

3.
4.
The catalytic reaction of copper/topa quinone (TPQ) containing amine oxidase consists of the initial, well-characterized, reductive half-reaction and the following, less studied, oxidative half-reaction. We have analyzed the oxidative half-reaction catalyzed by phenylethylamine oxidase from Arthrobacter globiformis (AGAO) by rapid-scan stopped-flow measurements. Upon addition of dioxygen to the substrate-reduced AGAO at pH 8.2, the absorption bands derived from the semiquinone (TPQ(sq)) and aminoresorcinol forms of the TPQ cofactor disappeared within the dead time (<1 ms) of the measurements, indicating that the reaction of the substrate-reduced enzyme with dioxygen is very rapid. Concomitantly, an early intermediate exhibiting an absorption band at about 410 nm was formed, which then decayed with a rate constant of 390 +/- 50 s(-1). This intermediate was detected more prominently in the reaction in D2O buffer (pD 8.1) and was assigned to a Cu(II)-peroxy species. The assignment was based on the observation that addition of H2O2 to the substrate-reduced AGAO under anaerobic conditions led to the formation of a new band at about 415 nm, accompanied by partial quenching of absorption bands derived from TPQ(sq). Other intermediates exhibiting absorption bands at about 310 and 340 nm were also observed in the oxidative half-reaction. Kinetics of the disappearance of these latter bands did not correspond with that of the Cu(II)-peroxy band at 410 nm but did well with that of the increase of the 480 nm absorption band due to the reoxidized TPQ. Rapid increase of the absorption in the 320-370 nm region was also observed for the reaction of the substrate-reduced, Ni-substituted enzyme with dioxygen. On the basis of these results, a possible mechanism is proposed for the oxidative half-reaction of the bacterial copper amine oxidase.  相似文献   

5.
The recently discovered organic cofactor of bovine serum amine oxidase, topa quinone, is an uncommon amino acid residue in the polypeptide backbone (Janes, S. M., Mu, D., Wemmer, D., Smith, A. J., Kaur, S., Maltby, D., Burlingame, A. L., and Klinman, J. P. (1990) Science 248, 981-987). The amine oxidase gene from the yeast Hansenula polymorpha has been cloned and sequenced (Bruinenberg, P. G., Evers, M., Waterham, H. R., Kuipers, J., Arnberg, A. C., and Geert, A. B. (1989) Biochim. Biophys. Acta 1008, 157-167). In order to understand the incorporation of topa quinone in eukaryotes, we have isolated yeast amine oxidase from H. polymorpha. Following protocols established with bovine serum amine oxidase, yeast amine oxidase was derivatized with [14C]phenylhydrazine, followed by thermolytic digestion and isolation of a dominant radiolabeled peptide by high pressure liquid chromatography. Comparison of resonance Raman spectra for this peptide to spectra of a model compound demonstrates that topa quinone is the cofactor. By alignment of a DNA-derived yeast amine oxidase sequence with the topa quinone-containing peptide sequence, it is found that the tyrosine codon, UAC, corresponds to topa quinone in the mature protein. In a similar manner, alignment of a tryptic peptide from bovine serum amine oxidase implicates tyrosine as the precursor to topa quinone in mammals.  相似文献   

6.
Kinetic properties of novel amine oxidase isolated from sainfoin (Onobrychis viciifolia) were compared to those of typical plant amine oxidase (EC 1.4.3.6) from lentil (Lens culinaris). The amine oxidase from sainfoin was active toward substrates, such as 1,5-diaminopentane (cadaverine) with K(m) of 0.09 mM and 1,4-diaminobutane (putrescine) with K(m) of 0.24 mM. The maximum rate of oxidation for cadaverine at saturating concentration was 2.7 fold higher than that of putrescine. The amine oxidase from lentil had the maximum rate for putrescine comparable to the rate of sainfoin amine oxidase with the same substrate. Both amine oxidases, like other plant Cu-amine oxidases, were inhibited by substrate analogs (1,5-diamino-3-pentanone, 1,4-diamino-2-butanone and aminoguanidine), Cu2+ chelating agents (diethyltriamine, 1,10-phenanthroline, 8-hydroxyquinoline, 2,2'-bipyridyl, imidazole, sodium cyanide and sodium azide), some alkaloids (L-lobeline and cinchonine), some lathyrogens (beta-aminopropionitrile and aminoacetonitrile) and other inhibitors (benzamide oxime, acetone oxime, hydroxylamine and pargyline). Tested by Ouchterlony's double diffusion in agarose gel, polyclonal antibodies against the amine oxidase from sainfoin, pea and grass pea cross-reacted with amine oxidases from several other Fabaceae and from barley (Hordeum vulgare) of Poaceae, while amine oxidase from the filamentous fungus Aspergillus niger did not cross-react at all. However, using Western blotting after SDS-PAGE with rabbit polyclonal antibodies against the amine oxidase from Aspergillus niger, some degree of similarity of plant amine oxidases from sainfoin, pea, field pea, grass pea, fenugreek, common melilot, white sweetclover and Vicia panonica with the A. niger amine oxidase was confirmed.  相似文献   

7.
Longu S  Mura A  Padiglia A  Medda R  Floris G 《Phytochemistry》2005,66(15):1751-1758
Copper/quinone amine oxidases contain Cu(II) and the quinone of 2,4,5-trihydroxyphenylalanine (topaquinone; TPQ) as cofactors. TPQ is derived by post-translational modification of a conserved tyrosine residue in the protein chain. Major advances have been made during the last decade toward understanding the structure/function relationships of the active site in Cu/TPQ amine oxidases using specific inhibitors. Mechanism-based inactivators are substrate analogues that bind to the active site of an enzyme being accepted and processed by the normal catalytic mechanism of the enzyme. During the reaction a covalent modification of the enzyme occurs leading to irreversible inactivation. In this review mechanism-based inactivators of plant Cu/TPQ amine oxidases from the pulses lentil (Lens esculenta), pea (Pisum sativum), grass pea (Lathyrus sativus) and sainfoin (Onobrychis viciifolia,) are described. Substrates forming, in aerobiotic and in anaerobiotic conditions, killer products that covalently bound to the quinone cofactor or to a specific amino acid residue of the target enzyme are all reviewed.  相似文献   

8.
The reactions of pea diamine oxidase (PSAO) and 2-phenylethylamine oxidase from Arthrobacter globiformis (AGAO) with pyridine-derived oximes were studied. Pyridine carbaldoximes and alkyl pyridyl ketoximes act as strong non-competitive inhibitors of the enzymes. The inhibition constants K(i) of these compounds vary between 10(-4) and 10(-5) M, for AGAO and some of the studied oximes were found even micromolar K(i) values. The presence of pyridine moiety in the studied compounds has remarkable influence on the inhibition potency. Elementary oximes lacking the heterocyclic ring, i.e., aliphatic (acetone oxime), alicyclic (cyclohexanone oxime) and aromatic (benzaldoxime), are considerably weaker non-competitive inhibitors (K(i) similar to 10(-3) or 10(-2) M). The position of the pyridine ring substitution by -C(R)=NOH group does not play a significant role for the inhibition potency of the studied oxime compounds. If the pyridine nitrogen is quaternised (in hydroxyiminomethyl-1-methylpyridinium iodides), the compound looses its inhibitory properties. Extended length of alkyl substituents on the ketoxime group of alkyl pyridyl ketoximes increases the K(i) value. The enzyme-bound copper represents one of possible target sites for pyridine-derived oxime inhibitors. The addition of an alkyl pyridyl ketoxime or a pyridine carbaldoxime to a native PSAO sample perturbs the absorption spectrum of the enzyme (by an absorption increase in the region 300-400 nm) that is not observed in the spectrum of reacted PSAO apoenzyme. However, an additional formation of hydrogen bonds with amino acid side-chains at the active site should be considered, namely for 3- and 4-substituted pyridine derivatives.  相似文献   

9.
The topa quinone (TPQ) cofactor of copper amine oxidase is produced by posttranslational modification of a specific tyrosine residue through the copper-dependent, self-catalytic process. We have site-specifically mutated three histidine residues (His431, His433, and His592) involved in binding of the copper ion in the recombinant phenylethylamine oxidase from Arthrobacter globiformis. The mutant enzymes, in which each histidine was replaced by alanine, were purified in the Cu/TPQ-free precursor form and analyzed for their Cu-binding and TPQ-generating activities by UV-visible absorption, resonance Raman, and electron paramagnetic resonance spectroscopies. Among the three histidine-to-alanine mutants, only H592A was found to show a weak activity to form TPQ upon aerobic incubation with Cu(2+) ions. Also for H592A, exogenous imidazole rescued binding of copper and markedly promoted the TPQ formation. Accommodation of a free imidazole molecule within the cavity created in the active site of H592A was suggested by X-ray crystallography. Although the TPQ cofactor in H592A mutant was readily reduced with substrate, its catalytic activity was very low even in the presence of imidazole. Combined with the crystal structures of the mutant enzymes, these results demonstrate the importance of the three copper-binding histidine residues for both TPQ biogenesis and catalytic activity, fine-tuning the position of the essential metal.  相似文献   

10.
Potential dioxygen-binding sites in three Cu amine oxidases have been investigated by recording X-ray diffraction data at 1.7-2.2A resolution for crystals under a high pressure of xenon gas. Electron-density difference maps and crystallographic refinement provide unequivocal evidence for a number of Xe-binding sites in each enzyme. Only one of these sites is present in all three Cu amine oxidases studied. Structural changes elsewhere in the protein molecules are insignificant. The results illustrate the use of xenon as a probe for cavities, in which a protein may accommodate a dioxygen molecule. The finding of a potential dioxygen-binding cavity close to the active site of Cu amine oxidases may be relevant to the function of the enzymes, since the formation of a transient protein-dioxygen complex is a likely step in the catalytic mechanism. No evidence was found for xenon binding in a region of the molecule that was previously identified in two other Cu amine oxidases as a potential transient dioxygen-binding site.  相似文献   

11.
Aim of this work was to find the best source for obtaining high amount of copper amine oxidase (EC 1.4.3.6) that can be further used for analytical or industrial applications. The study focused on plant enzymes, because they occur in much higher content in the starting material than the enzymes from other sources, have higher specific activity and are also more thermostable. Presence of the amine oxidase was tested in extracts from 4 to 7-d-old seedlings of thirty-four various Fabaceae plants. Amine oxidases from nine selected plants were purified by general method involving ammonium sulfate fractionation, controlled heat denaturation, and three chromatographic steps. Kinetic properties of the amine oxidases purified were tested with a wide range of substrates and inhibitors and were found to be very similar. Best purification yield, and total and specific activities were obtained for the enzyme from grass pea (Lathyrus sativus) throughout all purification steps. Hence, the grass pea extract was chosen as a suitable candidate for massive production of the amine oxidase. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Plant copper/topaquinone-containing amine oxidases (CAOs, EC 1.4.3.6) are enzymes oxidising various amines. Here we report a study on the reactions of CAOs from grass pea (Lathyrus sativus), lentil (Lens esculenta) and Euphorbia characias, a Mediterranean shrub, with N6-aminoalkyl adenines representing combined analogues of cytokinins and polyamines. The following compounds were synthesised: N6-(3-aminopropyl)adenine, N6-(4-aminobutyl)adenine, N6-(4-amino-trans-but-2-enyl) adenine, N6-(4-amino-cis-but-2-enyl) adenine and N6-(4-aminobut-2-ynyl) adenine. From these, N6-(4-aminobutyl) adenine and N6-(4-amino-trans-but-2-enyl)adenine were found to be substrates for all three enzymes (Km approximately 10(-4)M). Absorption spectroscopy demonstrated such an interaction with the cofactor topaquinone, which is typical for common diamine substrates. However, only the former compound provided a regular reaction stoichiometry. Anaerobic absorption spectra of N6-(3-aminopropyl)adenine, N6-(4-amino-cis-but-2-enyl)adenine and N6-(4-aminobut-2-ynyl)adenine reactions revealed a similar kind of initial interaction, although the compounds finally inhibited the enzymes. Kinetic measurements allowed the determination of both inhibition type and strength; N6-(3-aminopropyl)adenine and N6-(4-amino-cis-but-2-enyl)adenine produced reversible inhibition (Ki approximately 10(-5) - 10(-4) M) whereas, N6-(4-aminobut-2-ynyl)adenine could be considered a powerful inactivator.  相似文献   

13.
Plant copper/topaquinone-containing amine oxidases (CAOs, EC 1.4.3.6) are enzymes oxidising various amines. Here we report a study on the reactions of CAOs from grass pea (Lathyrus sativus), lentil (Lens esculenta) and Euphorbia characias, a Mediterranean shrub, with N6-aminoalkyl adenines representing combined analogues of cytokinins and polyamines. The following compounds were synthesised: N6-(3-aminopropyl)adenine, N6-(4-aminobutyl)adenine, N6-(4-amino-trans-but-2-enyl)adenine, N6-(4-amino-cis-but-2-enyl)adenine and N6-(4-aminobut-2-ynyl)adenine. From these, N6-(4-aminobutyl)adenine and N6-(4-amino-trans-but-2-enyl)adenine were found to be substrates for all three enzymes (Km~10?4?M). Absorption spectroscopy demonstrated such an interaction with the cofactor topaquinone, which is typical for common diamine substrates. However, only the former compound provided a regular reaction stoichiometry. Anaerobic absorption spectra of N6-(3-aminopropyl)adenine, N6-(4-amino-cis-but-2-enyl)adenine and N6-(4-aminobut-2-ynyl)adenine reactions revealed a similar kind of initial interaction, although the compounds finally inhibited the enzymes. Kinetic measurements allowed the determination of both inhibition type and strength; N6-(3-aminopropyl)adenine and N6-(4-amino-cis-but-2-enyl)adenine produced reversible inhibition (Ki~10?5–10?4?M) whereas, N6-(4-aminobut-2-ynyl)adenine could be considered a powerful inactivator.  相似文献   

14.
15.
The nature of the active site cofactor and the amino acid sequence flanking this structure have been determined in a range of copper amine oxidases. For enzymes from porcine plasma, porcine kidney, and pea seedlings, proteolytic digestion was performed on phenylhydrazone or p-nitrophenylhydrazone derivatives. Thermolysin treatment leads to relatively small active site peptides, which have been characterized by Edman degradation and by resonance Raman spectroscopy. Resonance Raman spectra of peptides show identical peak positions and intensities relative to each other and to a model p-nitrophenylhydrazone derivative of topaquinone hydantoin, establishing topaquinone as the cofactor in each instance. Edman degradation of peptides provides active site sequences for comparison to previous determinations with bovine serum and yeast amine oxidases. The available data establish a consensus sequence of Asn, Topa, Asp/Glu. Trypsin leads to significantly longer peptides, which reveal a high degree of sequence identity between plasma proteins from bovine and porcine sources (89%), with significantly decreased identity between the porcine serum and intracellular amine oxidases (56%). A lower degree of identity (45%) is observed between the pea seedling and mammalian enzymes. As an alternative to the isolation of active site peptides for topaquinone identification, visible spectra of intact proteins have been investigated. It is shown that p-nitrophenylhydrazone derivatives of native enzymes, active site-derived peptides, and a topaquinone model exhibit identical behavior, absorbing at 457-463 nm at neutral pH (pH 7.2) and at 575-587 nm in basic solution (1-2 M KOH). These spectral properties, which appear unique to topaquinone, provide a rapid and simple test for the presence of this cofactor in intact enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Polyamines (PAs) are low molecular weight metabolites involved in various physiological and developmental processes in eukaryotic and prokaryotic cells. The cellular PA level is regulated in part by the action of amine oxidases (AOs) including copper diamine oxidases (DAOs) and flavoprotein polyamine oxidases (PAOs). In this study, the isolation and characterization of flavin amine oxidases (FAOs) from Brassica juncea (BJFAO) and Arabidopsis (ATFAO1) are reported that were clustered in the same group as polyamine oxidases from maize (MPAO) and barley (BPAO1) and monoamine oxidases from mammalian species. ATFAO1 was temporally and spatially regulated in Arabidopsis and showed distinct expression patterns in response to different stress treatments. To investigate the in vivo function of FAO, transgenic Arabidopsis plants expressing sense, antisense, and double-stranded BJFAO RNAs were generated and those with altered activity of FAOs were selected for further characterization. It was found that the shoot regeneration response in transgenic plants was significantly affected by the modulated PA levels corresponding to FAO activities. Tissues that originated from transgenic plants with down-regulated FAO activity were highly regenerative, while those from transgenic plants with upregulated FAO activity were poorly regenerative. The shoot regeneration capacity in these transgenic plants was related to the levels of individual PAs, suggesting that FAO affects shoot regeneration by regulating cellular PAs. Furthermore, it was found that the effect of FAO activity on shoot regeneration was exerted downstream of the Enhancer of Shoot Regeneration (ESR1) gene, which may function in a branch of the cytokinin signalling pathway.  相似文献   

17.
18.
Four substrate analogs, 4-(2-naphthyloxy)-2-butyn-1-amine (1), 1,4-diamino-2-chloro-2-butene (2), 1,6-diamino-2,4-hexadiyne (3), and 2-chloro-5-phthalimidopentylamine (4) have been tested as inhibitors against mammalian, plant, bacterial, and fungal copper-containing amine oxidases: bovine plasma amine oxidase (BPAO), equine plasma amine oxidase (EPAO), pea seedling amine oxidase (PSAO), Arthrobacter globiformis amine oxidase (AGAO), Escherichia coli amine oxidase (ECAO), and Pichia pastoris lysyl oxidase (PPLO). Reactions of 1,4-diamino-2-butyne with selected amine oxidases were also examined. Each substrate analog contains a functional group that chemical precedent suggests could produce mechanism-based inactivation. Striking differences in selectivity and rates of inactivation were observed. For example, between two closely related plasma enzymes, BPAO is more sensitive than EPAO to 1 and 3, while the reverse is true for 2 and 4. In general, inactivation appears to arise in some cases from TPQ cofactor modification and in other cases from alkylation of protein residues in a manner that blocks access of substrate to the active site. Notably, 1 completely inhibits AGAO at stoichiometric concentrations and is not a substrate, but is an excellent substrate of PSAO and inhibition is observed only at very high concentrations. Structural models of 1 in Schiff base linkage to the TPQ cofactor in AGAO and PSAO (for which crystal structures are available) reveal substantial differences in the degree of interaction of bound 1 with side-chain residues, consistent with the widely divergent activities. Collectively, these results suggest that the development of highly selective amine oxidase inhibitors is feasible.  相似文献   

19.
The reaction of NO-derivatized polyamines called "NONOates" with an amine oxidase from lentil seedlings was studied. 3,3-Bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene (DETA-NONOate) and 3,3'-(hydroxynitrosohydrazino)bis-1-propanamine (DPTA-NONOate) were found to be irreversible inactivators of the lentil enzyme. The spectrum of the protein was strongly affected in the course of reaction with both compounds, leading to the formation of a covalent adduct with a stable band at 334 nm. The corresponding amine compounds diethylentriamine (DETA) and norspermidine (DPTA) were substrates of the lentil enzyme that did not lead to enzyme inactivation. Diethylamine-NONOate, not containing amino groups, was found to be an irreversible inactivator of the amine oxidase only in the presence of a substrate. Since all NONOates spontaneously decompose in solution with release of NO, it seems as if the latter is responsible for the enzyme inhibition. The insensitivity of the native enzyme to NO suggested that this compound was unreactive toward both the cofactors, 6-hydroxydopa quinone (TPQ) and Cu(II), and thus a model for the irreversible inactivation could involve the attack by NO of the Cu(I)-semiquinolamine radical catalytic intermediate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号