首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 196 毫秒
1.
Infection of Galleria mellonella larvae with the entomopathogenic nematodes Steinernema feltiae (A21 and R strains) and Steinernema glaseri (Dongrae) resulted in several species of bacteria, including the respective bacterial symbiont, Xenorhabdus spp., growing in the infected insect cadavers. These other bacteria were Enterococcus in all three nematode infections studied and Acinetobacter in the S. feltiae infections. The respective populations of these bacteria changed with time. Following infection of G. mellonella larvae with any one of the Steinernema sp., only Enterococcus bacteria were detected initially in the dead larvae. Between 30 and 50h post-infection Xenorhabdus bacteria were detected and concurrent with this Enterococcus population declined to zero. This was probably due to secondary metabolites with antibacterial properties that were produced by Xenorhabdus. In the S. feltiae (both R and A21 strains) infections a third bacterium, Acinetobacter, appeared at about 130h (in S. feltiae A21 infections) or 100h (in S. feltiae R infections) and increased in population size to approximately that of Xenorhabdus. It was demonstrated that Enterococcus, orginating from the G. mellonella digestive tract, was sensitive to the organically soluble antimicrobials produced by Xenorhabdus but Acinetobacter, which was carried by the nematode, was not.  相似文献   

2.
Five bioassays were compared for their usefulness to determine the virulence of four nematode strains. The objective of this study was to develop standard assays for particular nematode species. In all assays, the nematodes Steinernema feltiae (strain UK), S. riobravis, S. scapterisci Argentina and Heterorhabditis bacteriophora HP88 were exposed to Galleria mellonella larvae. All bioassays except the sand column assay were conducted in multi-well plastic dishes. In the penetration rate assay, the number of individual nematodes invading the insect was determined after a 48-h exposure to 200 infective juveniles (IJs). In the one-on-one assay, each larva was exposed to an individual nematode for 72 h before insect mortality was recorded. In the exposure time assay, insect mortality was recorded after exposure to 200 IJs for variable time periods. The dose-response assay involved exposing larvae to different nematode concentrations over the range 1-200 IJs/insect and recording mortality every 24 h for a 96-h period. In the sand columns assay, insects were placed in the bottom of a plastic cylinder filled with sand. Nematodes were applied on top of the sand and insect mortality was determined after IJs had migrated through the cylinder. The highest mortality level in the sand column assay was obtained with IJs of S. feltiae followed by H. bacteriophora; treatments with S. riobravis and S. scapterisci produced low levels of insect mortality. In the other four assays, S riobravis was the most virulent, followed by S. feltiae, H. bacteriophora and S. scapterisci. In the exposure time assay, rapid mortality was achieved when the insects were exposed to S. feltiae and S. riobravis. For these nematode species, a gradual increase in the number of individuals which penetrated into cadavers was recorded. Conversely, the number of nematodes in the cadavers of insects infected by H. bacteriophora and S. scapterisci remained low during the entire exposure period. In this assay, exposing the insects to these nematodes resulted in a gradual increase in mortality. In the dose-response assay, complete separation among nematode species was obtained only after 48 h of incubation at a concentration of 15 IJs/insect. LD and LD values were calculated from 50 90 dose-response assay data. However, these values did not indicate differences among the different nematode species. The present study demonstrated the variation in entomopathogenic nematode performance in different bioassays and supports the notion that one common bioassay cannot be used as a universal measure of virulence for all species and strains because nematodes differ in their behavior. Furthermore, particular assays should be used for different purposes. To select a specific population for use against a particular insect, assays that are more laborious but which simulate natural environmental conditions (e.g. the sand column assay) or invasion by the nematode (e.g. the penetration rate assay) should be considered. In cases where commercial production batches of the same nematode strains are compared, simple and fast assays are needed (e.g. the one-on-one and exposure time assays). Further studies are needed to determine the relationships between data obtained in each assay and nematode efficacy in the field.  相似文献   

3.
Xenorhabdus bovienii (SS-2004) bacteria reside in the intestine of the infective-juvenile (IJ) stage of the entomopathogenic nematode, Steinernema jollieti. The recent sequencing of the X. bovienii genome facilitates its use as a model to understand host - symbiont interactions. To provide a biological foundation for such studies, we characterized X. bovienii in vitro and host interaction phenotypes. Within the nematode host X. bovienii was contained within a membrane bound envelope that also enclosed the nematode-derived intravesicular structure. Steinernema jollieti nematodes cultivated on mixed lawns of X. bovienii expressing green or DsRed fluorescent proteins were predominantly colonized by one or the other strain, suggesting the colonizing population is founded by a few cells. Xenorhabdus bovienii exhibits phenotypic variation between orange-pigmented primary form and cream-pigmented secondary form. Each form can colonize IJ nematodes when cultured in vitro on agar. However, IJs did not develop or emerge from Galleria mellonella insects infected with secondary form. Unlike primary-form infected insects that were soft and flexible, secondary-form infected insects retained a rigid exoskeleton structure. Xenorhabdus bovienii primary and secondary form isolates are virulent towards Manduca sexta and several other insects. However, primary form stocks present attenuated virulence, suggesting that X. bovienii, like Xenorhabdus nematophila may undergo virulence modulation.  相似文献   

4.
Nonfeeding infective juvenile (IJ) entomopathogenic nematodes (EPNs) are used as biological agents to control soil-dwelling insects, but poor storage stability remains an obstacle to their widespread acceptance by distributors and growers as well as a frustration to researchers. Age is one factor contributing to variability in EPN efficacy. We hypothesized that age effects on the infectiousness of IJs would be evident within the length of time necessary for IJs to infect a host. The penetration behavior of "young" (<1-wk-old) and "old" (2- to 4-wk-old) Heterorhabditis bacteriophora (GPS 11 strain), Steinernema carpocapsae (All strain), and Steinernema feltiae (UK strain) IJs was evaluated during 5 "exposure periods" to the larvae of the wax moth, Galleria mellonella. Individual larvae were exposed to nematode-infested soil for exposure periods of 4, 8, 16, 32, and 64 hr. Cadavers were dissected after 72 hr, and the IJs that penetrated the larvae were counted. Larval mortality did not differ significantly between 72- and 144-hr "observation periods," or points at which larval mortality was noted, for any age class or species. However, age and species effects were noted in G. mellonella mortality and nematode penetration during shorter time periods. Initial mortality caused by S. carpocapsae and H. bacteriophora IJs declined with nematode age but increased with S. feltiae IJ age. Young S. carpocapsae IJs penetrated G. mellonella larvae at higher rates than old members of the species (27-45% vs. 1-4%). Conversely, old S. feltiae IJs had higher penetration rates than young IJs (approximately 8 to 57% vs. 4 to approximately 31%), whereas H. bacteriophora IJs had very low penetration rates regardless of age (3-5.6%). Our results show that the effect of age on IJ infectiousness can be detected in IJs aged only 2 wk by a 4-hr exposure period to G. mellonella. These results have important implications for storage and application of EPNs and suggest the possibility of shortening the time required to detect nematodes in the soil.  相似文献   

5.
Galleria mellonella larvae infected with Steinernema riobrave soon showed (after 24 h) the typical growth of its Xenorhabdus sp. RIO symbiont and, in parallel, the growth of another Gram negative bacterial species in the body cavity. A population of Entercoccus sp. in the nematode infected larvae collapsed to zero by 96 h. The level of antibiotic and antimycotic activity followed a pattern similar to that of the growth curve to stationary phase of the Xenorhabdus sp. RIO symbiont, over a period of 168 h. The antimycotic activity was composed of exo- and endochitinases as well as other proteinaceous and some small molecule compounds. The changing pH, relatively high growth rate of Xenorhabdus sp. RIO compared with that of other Gram negative bacterial species and of collapse of the Enterococcus sp. population enabled Xenorhabdus sp. RIO to out-compete other species.  相似文献   

6.
Steinernema spp. third-stage infective juveniles (IJs) play a key role in the symbiotic partnership between these entomopathogenic nematodes and Xenorhabdus bacteria. Recent studies suggest that Steinernema carpocapsae IJs contribute to the nutrition and growth of their symbionts in the colonization site (vesicle) [Martens, E.C. and Goodrich-Blair, H., 2005. The S. carpocapsae intestinal vesicle contains a sub-cellular structure with which Xenorhabdus nematophila associates during colonization initiation. Cellular Microbiol. 7, 1723-1735.]. However, the morphological and physiological interactions between Xenorhabdus symbionts and Steinernema IJs are not understood in depth. This study was undertaken to assess the influence of culture conditions and IJ age on the structure, nutrition, and symbiont load (colonization level) of S. carpocapsae vesicles. Our observations indicate the vesicles of axenic IJs are shorter and wider than those of colonized IJs. Moreover, as colonized IJs age the vesicle becomes shorter and narrower and bacterial load declines. The colonization proficiency of several bacterial metabolic mutants was compared between two cultivation conditions: in vitro on lipid agar and in vivo in Galleria mellonella insects. Colonization defects were generally less severe in IJs cultivated in vivo versus those cultivated in vitro. However, IJs from both cultivation conditions exhibited similar declining bacterial load over time. These results suggest that although the vesicle forms in the absence of bacteria, the presence of symbionts within the vesicle may influence its fine structure. Moreover, these studies provide further evidence in support of the concept that the conditions under which steinernematid nematodes are cultivated and stored affect the nutritive content of the vesicle and the bacterial load, and therefore have an impact on the quality of the nematodes for their application as biological control agents.  相似文献   

7.
The symbiotic interaction between Steinernema carpocapsae and Xenorhabdus nematophila was investigated by comparing the reproduction, morphology, longevity, behavior, and efficacy of the infective juvenile (IJ) from nematodes reared on mutant or wild-type bacterium. Nematodes reared on the mutant X. nematophila HGB151, in which an insertion of the bacterial gene, rpoS, eliminates the retention of the bacterium in the intestinal vesicle of the nematode, produced IJs without their symbiotic bacterium. Nematodes reared on the wild-type bacterium (HGB007) produced IJs with their symbiotic bacterium. One or the other bacterial strain injected into Galleria mellonella larvae followed by exposing the larvae to IJs that were initially symbiotic bacterium free produced progeny IJs with or without their Xenorhabdus-symbiotic bacterium. The two bacterial strains were not significantly different in their effect on IJ production, sex ratio, or IJ morphology. IJ longevity in storage was not influenced by the presence or absence of the bacterial symbiont at 5 and 15 °C, but IJs without their bacterium had greater longevity than IJs with their bacterium at 25 and 30 °C, suggesting that there was a negative cost to the nematode for maintaining the bacterial symbiont at these temperatures. IJs with or without their symbiotic bacterium were equally infectious to Spodoptera exigua larvae in laboratory and greenhouse and across a range of soil moistures, but the absence of the bacterial symbiont inhibited nematodes from producing IJ progeny within the host cadavers. In some situations, such as where no establishment of an alien entomopathogenic nematode is desired in the environment, the use of S. carpocapsae IJs without their symbiotic bacterium may be used to control some soil insect pests.  相似文献   

8.
In this paper, we investigate the level of specialization of the symbiotic association between an entomopathogenic nematode (Steinernema carpocapsae) and its mutualistic native bacterium (Xenorhabdus nematophila). We made experimental combinations on an insect host where nematodes were associated with non-native symbionts belonging to the same species as the native symbiont, to the same genus or even to a different genus of bacteria. All non-native strains are mutualistically associated with congeneric entomopathogenic nematode species in nature. We show that some of the non-native bacterial strains are pathogenic for S. carpocapsae. When the phylogenetic relationships between the bacterial strains was evaluated, we found a clear negative correlation between the effect a bacterium has on nematode fitness and its phylogenetic distance to the native bacteria of this nematode. Moreover, only symbionts that were phylogenetically closely related to the native bacterial strain were transmitted. These results suggest that co-evolution between the partners has led to a high level of specialization in this mutualism, which effectively prevents horizontal transmission. The pathogenicity of some non-native bacterial strains against S. carpocapsae could result from the incapacity of the nematode to resist specific virulence factors produced by these bacteria.  相似文献   

9.
Xenorhabdus budapestensis can produce a variety of proteins that help this bacterium and its mutualistic nematode vector kill the host insect. In this report, we purified one protein fraction from the intracellular extract of X. budapestensis D43, which was designated HIP57. By injection, HIP57 caused Galleria mellonella larval bodies to blacken and die with an LD(50) of 206.81 ng/larva. Analyzes of HIP57 by two-dimensional gel electrophoresis showed that this protein was a single spot on the gel with a molecular weight of 57 kDa and a pI of ~5. Sequencing and bioinformatic analysis suggested that the HIP57 toxin was homologous to GroEL. GroEL has been accepted as molecule chaperon; however, our research revealed that HIP57 (GroEL) possesses another novel function as an insecticide. A GroEL phylogenetic tree defined the relationship among the related species of mutualistic bacteria (Xenorhabdus and Photorhabdus) from the entomopathogenic nematodes and the evolution within the family Enterobacteriaceae. Thus, GroEL could be a complement to 16S rDNA for studying the molecular phylogenies of the family Enterobacteriaceae. Phenoloxidase (PO) activity analysis of G. mellonella larvae injected with HIP57 suggested that the toxin activates the PO cascade, which provides an extensive defense reaction that potentially responsible for G. mellonella larval death.  相似文献   

10.
Two species of entomopathogenic nematodes, Heterorhabditis marelatus and Steinernema oregonense, were described recently from the west coast of North America. It is not known whether the bacterial symbionts of these nematodes are also unique. Here we compared partial 16S rRNA sequences from the symbiotic bacteria of these two nematodes with sequence from previously described Photorhabdus and Xenorhabdus species. The 16S sequence from the new Xenorhabdus isolate appears very similar to, although not identical to, that of X. bovienii, the common symbiont of S. feltiae. The new Photorhabdus isolate appears to be very distinct from other known Photorhabdus species, although its closest affinities are with the P. temperata group. We also verified a monoxenic association between each isolate and its nematode by amplifying and sequencing bacterial 16S sequence from crushed adult and juvenile nematodes and from bacterial cultures isolated from infected hosts.  相似文献   

11.
Seventeen entomopathogenic nematode species and strains were evaluated for virulence to the grape root borer, Vitacea polistiformis (Harris) in laboratory and greenhouse bioassays. Heterohabditis bacteriophora strain GPS11 and H. zealandica strain X1 produced a larval mortality rate of over 85% of larvae embedded in the root cambium in laboratory bioassays. The nematode species H. marelata and H. bacteriophora strain Oswego produced mortality rates of over 75%. Of the Steinernema species tested, S. carpocapsae strain 'All' performed the best with a mortality rate of 69%. All other nematode species and strains tested, with the exception of S. bicornutum , produced some degree of larval mortality. In the greenhouse bioassays, 93% control was achieved with H. zealandica strain X1 applied at 4 ×109 infective juveniles (IJs) acre1 -1 (9.88 ×10 9 IJs ha -1 ). H. bacteriophora strain GPS11 successfully reproduced in grape root borer larvae. The numbers of IJs produced within infected larvae were related to larval size. The survival rate of neonate larvae on grape root sections was 61%, which thus provides a means to rear the neonate larvae for bioassays.  相似文献   

12.
13.
Galleria mellonella L. larvae were infected with three species (seven strains) of Steinernema spp. or three species (three strains) of Heterorhabditis spp. Infected larvae were incubated at 22, 27, and 32 degrees C. Larvae were dorsally dissected every 6h over a 48-h period. Hemolymph was collected and streaked on tryptic soy agar plates. Several non-symbiotic bacterial species were identified from infected insect cadavers: Enterobacter gergoviae, Vibrio spp., Pseudomonas fluorescens type C, Serratia marcescens, Citrobacter freundii, and Serratia proteomaculans. At 18-24 h incubation, the nematode-associated symbiont occurred almost exclusively. Bacterial associates generally appeared outside the 18-24 h window. Infective juveniles of Steinernema feltiae (Filipjev) (27), Steinernema riobrave Cabanillas, Poinar, and Raulston (Oscar), or Steinernema carpocapsae (Weiser) (Kapow) were left untreated, or surface sterilized using thimerosal, then pipetted under sterile conditions onto tryptic soy agar plates. Several additional species of associated bacteria were identified using this method compared with the less extensive range of species isolated from infected G. mellonella. There was no difference in bacterial species identified from non-sterile or surface sterilized nematodes, suggesting that the bacteria identified originated from either inside the nematode or between second and third stage juvenile cuticles. Infective juveniles of S. feltiae (Cowles), S. carpocapsae (Cowles), and H. bacteriophora Poinar (Cowles) were isolated from field samples. Nematodes were surface-sterilized using sodium hypochlorite, mixed with G. mellonella hemolymph, and pipetted onto Biolog BUG (with blood) agar. Only the relevant symbionts were isolated from the limited number of samples available. The nematodes were then cultured in the laboratory for 14 months (sub-cultured in G. mellonella 7-times). Other Enterobacteriaceae could then be isolated from the steinernematid nematodes including S. marcescens, Salmonella sp., and E. gergoviae, indicating the ability of the nematodes to associate with other bacteria in laboratory culture.  相似文献   

14.
Prepupae of Galleria mellonella, Spodoptera exigua, and Pseudaletia unipuncta were highly susceptible to infection by the nematode Neoaplectana carpocapsae and its associated bacterium, Xenorhabdus nematophilus. On the other hand, pupae of the three species were significantly different in their susceptibility to the nematode. G. mellonella pupae were highly susceptible (100% mortality), S. exigua pupae were moderately susceptible (ca. 75% mortality), and P. unipuncta pupae were least susceptible (ca. 54% mortality). In the latter two species, many pupae died without any nematode development, but the typical signs associated with a nematode infection were evident. Age of the pupae and increasing the dosage of the nematode did not significantly affect mortality of S. exigua or P. unipuncta.  相似文献   

15.
The lux genes of Xenorhabdus luminescens, a symbiont of the nematode Heterorhabditis bacteriophora, were cloned and expressed in Escherichia coli. The expression of these genes in E. coli was qualitatively similar to their expression in X. luminescens. The organization of the genes is similar to that found in the marine luminous bacteria. Hybridization studies with the DNA that codes for the two subunits of luciferase revealed considerable homology among all of the strains of X. luminescens and with the DNA of other species of luminous bacteria, but none with the nonluminous Xenorhabdus species. Gross DNA alterations such as insertions, deletions, or inversions do not appear to be involved in the generation of dim variants known as secondary forms.  相似文献   

16.
We present results from epifluorescence, differential interference contrast, and transmission electron microscopy showing that Xenorhabdus nematophila colonizes a receptacle in the anterior intestine of the infective juvenile (IJ) stage of Steinernema carpocapsae. This region is connected to the esophagus at the esophagointestinal junction. The process by which X. nematophila leaves this bacterial receptacle had not been analyzed previously. In this study we monitored the movement of green fluorescent protein-labeled bacteria during the release process. Our observations revealed that Xenorhabdus colonizes the distal region of the receptacle and that exposure to insect hemolymph stimulated forward movement of the bacteria to the esophagointestinal junction. Continued exposure to hemolymph caused a narrow passage in the distal receptacle to widen, allowing movement of Xenorhabdus down the intestine and out the anus. Efficient release of both the wild type and a nonmotile strain was evident in most of the IJs incubated in hemolymph, whereas only a few IJs incubated in nutrient-rich broth released bacterial cells. Incubation of IJs in hemolymph treated with agents that induce nematode paralysis dramatically inhibited the release process. These results suggest that bacterial motility is not required for movement out of the distal region of the receptacle and that hemolymph-induced esophageal pumping provides a force for the release of X. nematophila out of the receptacle and into the intestinal lumen.  相似文献   

17.
侵染期的拟双角斯氏线虫Steinernema ceratophorum D43品系体外都包裹着一个透明的体鞘。为探明体鞘对线虫侵染力的影响, 了解鞘蛋白(sheath proteins, SPs)对大蜡螟Galleria mellonella 幼虫的免疫抑制作用, 本研究通过化学方法使拟双角斯氏线虫D43脱鞘, 以对寄主的致死率和侵入点数量为指标, 与包鞘线虫比较对大蜡螟幼虫的侵染力; 采用乙醇提取的方法获得线虫鞘蛋白, 利用双向电泳和质谱技术对鞘蛋白进行鉴定分析; 从血细胞数量和酚氧化酶活力两个方面评价鞘蛋白对大蜡螟幼虫免疫反应的抑制作用。结果表明: 0.5%次氯酸钠处理20 min可以保证95%以上的线虫存活和脱鞘。与包鞘线虫相比, 脱鞘线虫对大蜡螟幼虫的致死率显著降低, 致死时间延后, 节间膜侵入点数量显著减少。以35%乙醇提取的鞘蛋白提取物可鉴定出6种鞘蛋白, 其中一个被鉴定为丝氨酸蛋白酶。此外, 血腔注射鞘蛋白提取物可导致试虫血细胞数量明显降低, 酚氧化酶活力受到显著抑制。由此说明, 体鞘对拟双角斯氏线虫D43的侵染力具有显著影响, 鞘蛋白在抑制寄主昆虫免疫反应中发挥重要作用。  相似文献   

18.
We studied the host-finding and dispersion behaviour of Heterorhabditis megidis (strain NLHE 87.3) in the presence of Galleria mellonella or Otiorhynchus sulcatus larvae and strawberry roots. In large Petri dishes (19 cm diameter) filled with moist sand (8% w/w), and incubated at 15°C over 24 h, infective juveniles (IJs) responded positively to the presence of G. mellonella , to roots of a single strawberry plant and to O. sulcatus larvae in direct contact with roots of a single strawberry plant. A neutral or negative response was observed when IJs were presented with only O. sulcatus larvae or a combination of several strawberry plants with O. sulcatus larvae, either in contact or not in contact with the roots. IJs responded strongly to the combination of plant roots and feeding larvae indicating that the tritrophic interaction formed by IJs - O. sulcatus larvae - strawberry plants may be an infochemical-mediated interaction.  相似文献   

19.
In this work, we investigate the investment of entomopathogenic Steinernema nematodes (Rhabditidae) in their symbiotic association with Xenorhabdus bacteria (Enterobacteriaceae). Their life cycle comprises two phases: (1) a free stage in the soil, where infective juveniles (IJs) of the nematode carry bacteria in a digestive vesicle and search for insect hosts, and (2) a parasitic stage into the insect where bacterial multiplication, nematode reproduction, and production of new IJs occur. Previous studies clearly showed benefits to the association for the nematode during the parasitic stage, but preliminary data suggest the existence of costs to the association for the nematode in free stage. IJs deprived from their bacteria indeed survive longer than symbiotic ones. Here we show that those bacteria-linked costs and benefits lead to a trade-off between fitness traits of the symbiotic nematodes. Indeed IJs mortality positively correlates with their parasitic success in the insect host for symbiotic IJs and not for aposymbiotic ones. Moreover mortality and parasitic success both positively correlate with the number of bacteria carried per IJ, indicating that the trade-off is induced by symbiosis. Finally, the trade-off intensity depends on parental effects and, more generally, is greater under restrictive environmental conditions.  相似文献   

20.
Steinernema carpocapsae is an entomopathogenic nematode associated with a symbiotic bacterium, Xenorhabdus nematophilus. Both components of the complex participate in a pathogenic process in insects. This has raised two questions: how much does each one participate, and what mechanisms are involved? In this paper we compare the virulence of two strains of S. carpocapsae: a high virulent strain (Breton) and a low virulent strain (Az27), both of which are free of symbiotic bacteria. Breton and Az27 strains each one have similar ability to invade Galleria mellonella with median infectious times of 3.9 and 3.2 h, respectively. However, the LD(50) of the Breton and Az27 strains are 48.6 and 894.5 infective juveniles per insect, respectively. Breton strain takes 38 h to kill 100% of exposed insects, whereas Az27 takes three times longer. The lethal time of the low virulent strain in G. mellonella larvae is highly dependent on the number of nematodes which have penetrated the hemocelium, whereas it is not on the high virulent strain. Hemolymph patterns in SDS-PAGE of insects parasitized by the high virulent strain showed important differences in respect to the low virulent strain and control. Secretion/excretion products of the high virulent strain have important proteolytic activity as well as alpha-mannosidase and alpha-fucosidase activities, whereas, in secretion/excretion products of the avirulent strain, proteolytic activity was lower and alpha-mannosidase and alpha-fucosidase activities were undetected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号