首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The feeding behavior of two sympatric species of lemurs, Lemur cattaand Lemur fulvus,was studied in an enclosure simulating a natural habitat at the Duke University Primate Center. L. fulvusspent less time feeding during the day than L. catta.But the former species ate more fruit and had longer feeding bouts on preferred food items than L. catta.They also had a shorter food passage time than L. cattaand their choice of resting places was more influenced by food distribution. Furthermore, the two lemur species ate parts of different plant species and showed different reactions to chemical plant components. According to these results, L. fulvusis a more conservative feeder than L. catta.These interspecific differences in feeding behavior may be one of a number of differences that allow the two species to coexist. In allopatry, however, L. fulvusmay also adopt feeding patterns similar to those of L. catta.But L. cattawas never found to change its feeding strategies in different areas. It may be this option of L. fulvusto adopt different feeding strategies in different situations that allows this species to have the widest range of all Malagasy lemurs. Duke University Primate Center Publication No. 259.  相似文献   

2.
In visual operant conditioning ofDrosophila at the flight simulator, only motor output of flies—yaw torque—is recorded, which is involved in the conditioning process. The current study used a newly-designed data analysis method to study the torque distribution ofDrosophila. Modification of torque distribution represents the effects of operant conditioning on flies’ behavioral mode. Earlier works[10] showed that, when facing contradictory visual cues, flies could make choices based upon the relative weightiness of different cues, and it was demonstrated that mushroom bodies might play an important role in such choice behavior. The new “torque-position map” method was used to explore the CS-US associative learning and choice behavior inDrosophila from the aspect of its behavioral mode. Finally, this work also discussed various possible neural bases involved in visual associative learning, choice processing and modification processing of the behavioral mode in the visual operant conditioning ofDrosophila.  相似文献   

3.
Summary We have studied the effect of formamidines onDrosophila melanogaster. Low concentrations of formamidines are toxic to adultDrosophila. A mutant with reduced cAMP synthesis displays increased resistance to the toxin. Formamidines also reduce viability ofDrosophila eggs and retard imago eclosion. At sublethal concentrations, formamidines markedly affect the flies' behavior. Upon injection, the compounds increase muscle activity. Upon feeding, formamidines induce motor excitation, reduce phototaxis and impair olfactory learning without affecting the ability to recognize an olfactory cue. In vitro, two formamidines were found to inhibit octopamine-stimulated adenylate cyclase without affecting the basal activity of the enzyme, while a third one was found to stimulate adenylate cyclase; this stimulation was blocked by phentolamine and to a lesser degree by propranolol, thus resembling the effect of octopamine. The binding of [3H]octopamine toDrosophila head membranes was also inhibited. Taken together, our results indicate that formamidines interact with octopaminergic systems inDrosophila, exert both peripheral and central effects in the fly, and could be used to dissect the roles of octopamine in development and behavior, including behavioral plasticity. The results also suggest that formamidines could be used to select mutants in aminergic transmission and in the cAMP cascade.Abbreviations CDMF chlordimeform - DMPF N,N-dimethyl-N2-(2,4-dimethylphenyl) formamidine  相似文献   

4.
The prey capture behaviour of the orb-web spider Argiope keyserlingi Karsch was examined experimentally by subjecting spiders to two different feeding regimes (food deprived and food satiated) and three types of prey: Drosophila, blowflies (Lucilia cuprina) and bees (Apis mellifera). The attack behaviour of the spiders was influenced by both their foraging history and the type of prey. Food deprived spiders attacked Drosophila and bees more frequently than food satiated spiders, and food satiated spiders travelled more slowly to any of the prey types than food deprived spiders. Furthermore, Drosophila were never wrapped in silk but only grasped with the chelicerae, whereas both blowflies and bees were always wrapped. This provides experimental confirmation that feeding history affects the decision of orb-web spiders to accept or reject any given prey.  相似文献   

5.
Drosophila melanogaster feeds mainly on rotten fruits,which contain many kinds of sugar.Thus,the sense of sweet taste has evolved to serve as a dominant regulator and driver of feeding behavior.Although several sugar receptors have been described,it remains poorly understood how the sensory input is transformed into an appetitive behavior.Here,we used a neural silencing approach to screen brain circuits,and identified neurons labeled by three Gal4 lines that modulate Drosophila feeding behavior.These three Gal4 lines labeled neurons mainly in the suboesophageal ganglia(SOG),which is considered to be the fly’s primary taste center.When we blocked the activity of these neurons,flies decreased their sugar consumption significantly.In contrast,activation of these neurons resulted in enhanced feeding behavior and increased food consumption not only towards sugar,but to an array of food sources.Moreover,upon neuronal activation,the flies demonstrated feeding behavior even in the absence of food,which suggests that neuronal activation can replace food as a stimulus for feeding behavior.These findings indicate that these Gal4-labeled neurons,which function downstream of sensory neurons and regulate feeding behavior towards different food sources is necessary in Drosophila feeding control.  相似文献   

6.
We present a new temporal model of animal behavior based on the ethological idea that the internal states of the individual essentially determine the behavior. The internal states, however, are conditioned by the external stimuli. This model, including environmental and internal parameters, predicts a fractal property of the behavior, that is, an inverse power law distribution of the duration. Being consistent with the model, we have found a fractal property of feeding in Drosophila melanogaster: The dwelling time of starved flies on food showed a clear inverse power law distribution. The dependence of the fractal dimension on the intensity of food stimuli has been observed, and the predicted change into an exponential distribution was proved.  相似文献   

7.
Sensing satiety is a crucial survival skill for all animal species including human. Despite the discovery of numerous neuromodulators that regulate food intake in Drosophila, the mechanism of satiety sensing remains largely elusive. Here, we investigated how neuropeptidergic circuitry conveyed satiety state to influence flies’ food consumption. Drosophila tackykinin (DTK) and its receptor TAKR99D were identified in an RNAi screening as feeding suppressors. Two pairs of DTK+ neurons in the fly brain could be activated by elevated D-glucose in the hemolymph and imposed a suppressive effect on feeding. These DTK+ neurons formed a two-synapse circuitry targeting insulin-producing cells, a well-known feeding suppressor, via TAKR99D+ neurons, and this circuitry could be rapidly activated during food ingestion and cease feeding. Taken together, we identified a novel satiety sensor in the fly brain that could detect specific circulating nutrients and in turn modulate feeding, shedding light on the neural regulation of energy homeostasis.Subject terms: Calcium signalling, Nutrient signalling  相似文献   

8.
Summary Increasing data onDrosophila alcohol dehydrogenase (ADH) sequences have made it possible to calculate the rate of amino acid replacement per year, which is 1.7×10–9. This value makes this protein suitable for reconstructing phylogenetic relationships within the genus for those species for which no molecular data are available such asScaptodrosophila. The amino acid sequence ofDrosophila lebanonensis is compared to all of the already knownDrosophila ADHs, stressing the unique characteristic features of this protein such as the conservation of an initiating methionine at the N-terminus, the unique replacement of a glycine by an alanine at a very conserved position in the NAD domain of all dehydrogenases, the lack of a slowmigrating peptide, and the total conservation of the maximally hydrophilic peptide. The functional significance of these features is discussed.Although the percent amino acid identity of the ADH molecule inDrosophila decreases as the number of sequences compared increases, the conservation of residue type in terms of size and hydrophobocity for the ADH molecule is shown to be very high throughout the genusDrosophila. The distance matrix and parsimony methods used to establish the phylogenetic relationships ofD. lebanonensis show that the three subgenera,Scaptodrosophila, Drosophila, andSophophora separated at approximately the same time.  相似文献   

9.
Summary Natural selection at high densities has often been postulated to favour the evolution of greater efficiency of food use. Contrary to this expectation, a previous study suggested the existence of a trade-off between larval feeding rate and efficiency at using food to complete larval development in populations ofDrosophila melanogaster subjected to crowding for many generations. In this paper, we confirm the generality of such a density-dependent trade-off between food acquisition and utilization by demonstrating its occurrence in a new set ofDrosophila populations subjected to extreme larval crowding. We suggest that such trade-offs between food acquisition and food use may represent a general phenomenon in organisms exhibiting scramble competition. We test and reject the possible mechanistic explanation that decreased efficiency of food use in faster-feeding larvae may merely be a consequence of a faster passage of food through the gut, leading to incomplete assimilation of nutrients and energy.  相似文献   

10.
Shoaling behavior protects fishes from avian and piscine predation, but at the same time costs of group living arise due to several mechanisms including increased food competition. Most cave fishes live in an environment in which avian and piscine predators are lacking, and cave environments are often characterized by low food availability, leading to increased food competition. Altogether, this should favor the reduction of shoaling in cave fishes. We compared shoaling behavior (i.e. the tendency to associate with a stimulus shoal) among surface dwelling populations of the Atlantic molly, Poecilia mexicana, and two cave forms of that species. The first cave population of P. mexicana originated from the Cueva del Azufre and was previously recognized as the only cave form of a poeciliid fish. The second cave population examined came from a cave that was discovered only recently (Cueva Luna Azufre). In both cave forms shoaling behavior was reduced compared with surface dwelling mollies.  相似文献   

11.
Synopsis The optimal density of plankton required for the growth and development ofCoregonus lavaretus (L.) larvae is calculated on the basis of the volume of water searched, the probability of successful feeding responses, and the results of experimental growth studies. This amounts to 200–260 individual food organisms 1–1 (individual plankton 0.004 mg), or 14–17 individuals 1–1 (individual plankton 0.057 mg). The feeding optimum depends on water temperature and the time at which feeding begins.  相似文献   

12.
Summary Mutations of the bithorax complex result in segmental transformations in the thorax and abdomen ofDrosophila. The haltere discs from larvae homozygous forbx 3 orpbx are transformed so that the discs contain cells that will produce wing cuticle as well as cells that produce haltere cuticle. The pattern regulation behavior of these discs has been examined. The fate maps of the two discs were established, and then the regulative behavior of a number of fragments from both types of mutant discs was established by culturing the fragments in vivo prior to metamorphosis. The most important conclusion from this work is that the cells producing, haltere cuticle and wing cuticle within the same disc share the same positional information and that they communicate during pattern regulation.  相似文献   

13.
A number of bioactive peptides are involved in regulating a wide range of animal behaviors, including food consumption. Vertebrate neuropeptide Y (NPY) is a potent stimulator of appetitive behavior. Recently, Drosophila neuropeptide F (dNPF) and short NPF (sNPF), the Drosophila homologs of the vertebrate NPY, were identified to characterize the functions of NPFs in the feeding behaviors of this insect. Dm-NPFR1 and NPFR76F are the receptors for dNPF and sNPF, respectively; both receptors are G protein-coupled receptors (GPCRs). Another GPCR (CG5811; NepYR) was indentified in Drosophila as a neuropeptide Y-like receptor. Here, we identified 2 ligands of CG5811, dRYamide-1 and dRYamide-2. Both peptides are derived from the same precursor (CG40733) and have no significant structural similarities to known bioactive peptides. The C-terminal sequence RYamide of dRYamides is identical to that of NPY family peptides; on the other hand, dNPF and sNPF have C-terminal RFamide. When administered to blowflies, dRYamide-1 suppressed feeding motivation. We propose that dRYamides are related to the NPY family in vertebrates, similar to dNPF and sNPF.  相似文献   

14.
Food handouts from visitors to Mt. Emei, in The People’s Republic of China, have considerably increased the diversity of food available to an indigenous population of Macaca thibetana.Some 43% of the feeding time was spent at the trail area frequented by tourists. Ranging behavior was of two kinds: wandering around within the group’s most densely used areas and making peripheral excursions between the areas. Three kinds of trail-area use were observed: three-group overlapping, two-group overlapping, and exclusive. M. thibetanatended to use sheltered sites for sleeping, to ensure safety and/or to keep dry in a rainy habitat. Exclusively and successively used sleeping sites were noted. The average size of the home range per group was 3 km 2; the average population density for the entire range was 13/km2, and the biomass was 109 kg/km2. The population may be growing, a possibility that is also supported by previous analyses using data on group composition.  相似文献   

15.
Drosophila melanogaster has been used as a biological model system for almost a century. In the last several decades,Drosophila has been used as a system to probe the molecular basis of behavior and discoveries in the fly have been at the forefront of the elucidation of important basic mechanisms. This review will outline the variety of approaches that makeDrosophila an excellent model system with which to study the function of the enzyme calcium/calmodulin-dependent protein kinase II (CaMKII) in synaptic plasticity. CaMKII has a well documented role in behavior and synaptic plasticity in both vertebrates and invertebrates. The behavioral and genetic richness ofDrosophila allow for a multi-level approach to understanding the physiological roles of this enzyme's function.  相似文献   

16.
Mysis relicta has been recognized as an important component of many limnetic food webs. The first approach to studying the feeding habits ofM. relicta was the analysis of stomach contents. Assumptions regarding stomach content analysis have been tested and seasonal feeding estimates ofM. relicta have been reported recently. Laboratory grazing and/or predation experiments have recently been completed usingM. relicta primarily from Lakes Michigan and Tahoe.Mysis relicta is concluded to be opportunistic, capable of utilizing a variety of food resources. It may play an important role in structuring limnetic food webs.  相似文献   

17.
Previous studies have shown that exposure to urea-supplemented food inhibited fecundity inDrosophila females, and that this inhibition was not expressed when females were given a choice between regular and urea-supplemented food as an oviposition substrate. We assayed fecundity, on both regular food and urea-supplemented food, at 5, 15 and 25 days post eclosion on females from ten laboratory populations ofDrosophila melanogaster. The females assayed came from one of two treatments; they were maintained as adults on either regular or urea-supplemented food. We found that exposure to urea-supplemented food inhibited fecundity, relative to the levels exhibited on regular food, regardless of whether the urea was present in the assay medium, or in the medium on which the flies were maintained over the course of the experiment, thereby suggesting that urea has both a long-term (possibly physiological) as well as a short-term (possibly behavioural) inhibitory effect on fecundity ofDrosophila females. We also tested and ruled out the hypothesis that prior yeasting could ameliorate the inhibitory effect of urea in the assay medium on fecundity, as this was a possible explanation of why flies given a choice between regular and urea-supplemented food did not exhibit a preference for regular food in a previous study.  相似文献   

18.
Summary The nutritional requirement ofDrosophila cells (GM1 and GM2) was studied. TC Yeastolate contained in the medium forDrosophila cell culture was found to be replaceable with adenosine or inosine without appreciable changes in the generation time of cells. The optimal concentration of either adenosine or inosine was 0.01 mM. Whereas adenosine manifested cell toxicity at concentrations higher than 0.1 mM, in the case of inosine, such an inhibitory effect was not observed up to and at the concentration of 1.0 mM. Further-more, the plating efficiency at cell densities as low as 2×103 cells per cm2 was raised from 0 to 10% by supplementing inosine (0.1 mM) for the TC Yeastolate. Therefore inosine is in practice more useful than adenosine. Experiments using radioactive nucleosides suggested that both adenosine and inosine were exclusively incorporated into RNA as adenosine-monophosphate.  相似文献   

19.
We describe short-term changes in foraging behavior by wild Yakushima macaques (Macaca fuscata yakui),which inhabit a warm-temperate broad—leaved forest on Yakushima Island (30°N, 131°E), Japan. Rapid changes of dietary composition, activity budget, and range use by the monkeys occurred from May to June, apparently associated with changes in the availability of the fruit of Myrica rubraBefore the fruit ripened, monkeys spent less time moving and more time feeding on many species of leaves, which accounted for 40% of feeding time. However, when M. rubrabegan to ripen, they fed intensively on the fruit, which accounted for three-fourths of feeding time,though the activity budget remained unaffected As fiuit of M. rubradecreased,the monkeys fed more on the fruit of other species and on insects, and spent more time moving at higher speeds. There marked shifts in foraging pattern occurred within only two months. In terms of moving cost and dietary quality,Yakushima macaques shifted their foraging pattern according to the availability of M. rubrafrom a “low-cost, low-yield” strategy to a “low-cost, high-yield” strategy, and then to a more costly strategy. The ability to make such rapid shifts in foraging pattern may allow the macaques to effectively use the highly variable food supply within their small range.  相似文献   

20.
Abstract. 1. Predaceous insects may benefit from feeding on non‐prey foods, such as pollen, nectar, and honeydew, because they can provide nutrients that help maintain metabolism and enhance overall nutrient intake. Yet, the extent to which predaceous insects can assimilate non‐prey food and the importance of diet mixing during particular life history stages is poorly understood. In this study the relative contribution of an omnivorous diet to the growth and survivorship of a predaceous larva was tested in a hypothetical situation in which nutritionally optimal prey was not available. The study system comprised a predaceous larva (second‐ and third‐instar larvae of the green lacewing Chrysoperla carnea), nutritionally poor prey (larvae of Drosophila melanogaster), and non‐prey food (pollen suspension, a mixture of bee pollen and artificial nectar (1 M sucrose solution)). Chrysoperla carnea larvae in the mixed diet treatment were provided with both Drosophila larvae and pollen suspension, while those reared on the prey and non‐prey diet treatments received only Drosophila larvae or pollen suspension respectively. 2. The inclusion of pollen and sucrose in their diet enhanced the growth of C. carnea larvae. Second instars reared on the mixed diet developed significantly faster than their cohorts reared on the prey diet, however third instars reared on the mixed diet did not develop faster than their cohorts reared on the prey diet. Larvae reared on the mixed diet became larger adults than did those reared on either the prey or non‐prey diets. Third instars reared on the non‐prey diet completed their development while second instars in the non‐prey diet treatment failed to pupate. 3. Stable isotope analysis indicated that the larvae obtained most of their carbon (55–73%) and nitrogen (71–73%) from Drosophila but acquired only a minor amount of carbon (2–5%) and nitrogen (3–11%) from pollen. Larvae reared on the mixed and non‐prey diets acquired a relatively significant amount of carbon (23–51%) from sucrose. 4. A model, which included a novel fractionation factor to account for the isotopic effect of metamorphosis, was developed to explain the proportion of larval growth attributable to each diet item. It explained the adult δ13C values to within 0.2‰ and adult δ15N values to within 0.7‰ in all treatments. 5. Adults fed 15N‐labelled pollen as larvae retained the 15N signal of the pollen as adults. 6. The collective results of this study support the view that, despite their dependence on prey arthropods to obtain most of their dietary nitrogen, omnivorous lacewing larvae can enhance their growth and development by supplementing their diets with alternative non‐prey food resources. This finding is consistent with the notion that omnivory has evolved as a feeding strategy to acquire both additional nitrogen as well as trace nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号