首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Screening for leptomycin B (LMB)-resistant transformants in a gene library constructed in Schizosaccharomyces pombe with the chromosomal DNA of an LMB-resistant mutant of S. pombe and with multicopy plasmid pDB248' as the vector led to the isolation of a gene, named pmd1+, encoding a 1362-amino-acid protein. This protein showed great similarity in amino acid sequence to the mammalian P-glycoprotein encoded by the multidrug resistance gene, mdr, and the Saccharomyces cerevisiae a-factor transporter encoded by STE6. In addition, computer analyses predicted that the protein encoded by pmd1+ formed an intramolecular duplicated structure and each of the halves contained six transmembrane regions as well as two ATP-binding domains, as observed with the P-glycoproteins and the STE6 product. Consistent with this was that S. pombe cells containing the pmd1+ gene on a multicopy plasmid showed resistance not only to LMB but also to several cytotoxic agents. The pmd1 null mutants derived by gene disruption were viable and hypersensitive to these agents. All these data suggest that the pmd1+ gene encodes a protein that is a structural and functional counterpart of mammalian mdr proteins.  相似文献   

2.
A homologue of the multidrug resistance (MDR) gene was obtained while screening a potato stolon tip cDNA expression library with35S-labeled calmodulin. The mammalian MDR gene codes for a membrane-bound P-glycoprotein (170–180 kDa) which imparts multidrug resistance to cancerous cells. The potato cDNA (PMDR1) codes for a polypeptide of 1313 amino acid residues (ca. 144 kDa) and its structural features are very similar to the MDR P-glycoprotein. The N-terminal half of the PMDR1-encoded protein shares striking homology with its C-terminal half, and each half contains a conserved ATP-binding site and six putative transmembrane domains. Southern blot analysis indicated that potato has one or two MDR-like genes. PMDR1 mRNA is constitutively expressed in all organs studied with higher expression in the stem and stolon tip. The PMDR1 expression was highest during tuber initiation and decreased during tuber development.  相似文献   

3.
Increased expression of P-glycoprotein (Pgp) has been demonstrated to cause multidrug resistance (MDR) in vitro, and it may be responsible for chemotherapy failure in a number of human cancers. Pgp is a plasma membrane protein thought to function as an energy-dependent drug transporter. From its deduced protein sequence the topology of Pgp was proposed to contain 12 transmembrane domains with six extracellular loops and two cytoplasmic ATP-binding sites. To investigate further the membrane orientation of Pgp, we have expressed a full length cDNA of mouse mdr1, as well as its truncated forms, in a cell-free system supplemented with dog pancreatic microsomal membranes (RM). We determined which domains of the in vitro-synthesized Pgp had transversed the RM membranes by analyzing their resistance to protease digestion and their glycosylation state. To our surprise, this system revealed that a significant portion of in vitro-synthesized Pgp molecules has an additional glycosylated domain in the C-terminal half. Previously, only the first predicted extracellular loop near the N terminus had been thought to be glycosylated. Furthermore, we discovered that Pgp has at least two functional signal recognition particle/docking protein dependent signal sequences, one at the N-terminal half and the other at the C-terminal half. These findings suggest a new topological model for in vitro synthesized P-glycoprotein which may be relevant to its in vivo topology.  相似文献   

4.
The multidrug resistance gene product, P-glycoprotein or the multidrug transporter, confers multidrug resistance to cancer cells by maintaining intracellular levels of cytotoxic agents below a killing threshold. P-glycoprotein is located within the plasma membrane and is thought to act as an energy-dependent drug efflux pump. The multidrug transporter represents a member of the ATP-binding cassette superfamily of transporters (or traffic ATPases) and is composed of two highly homologous halves, each of which harbors a hydrophobic transmembrane domain and a hydrophilic ATP-binding fold. This review focuses on various biochemical and molecular genetic approaches used to analyze the structure, function, and mechanism of action of the multidrug transporter, whose most intriguing feature is its ability to interact with a large number of structurally and functionally different amphiphilic compounds. These studies have underscored the complexity of this membrane protein which has recently been suggested to assume alternative topological and quaternary structures, and to serve multiple functions both as a transporter and as a channel. With respect to the multidrug transporter activity of P-glycoprotein, progress has been made towards the elucidation of essential amino acid residues and/or polypeptide regions. Furthermore, the drug-stimulatable ATPase activity of P-glycoprotein has been established. The mechanism of drug transport by P-glycoprotein, however, is still unknown and its physiological role remains a matter of speculation.  相似文献   

5.
The MDR1 gene, responsible for multidrug resistance in human cells, encodes a broad specificity efflux pump (P-glycoprotein). P-glycoprotein consists of two similar halves, each half including a hydrophobic transmembrane region and a nucleotide-binding domain. On the basis of sequence homology between the N-terminal and C-terminal halves of P-glycoprotein, we have previously suggested that this gene arose by duplication of a primordial gene. We have now determined the complete intron/exon structure of the MDR1 gene by direct sequencing of cosmid clones and enzymatic amplification of genomic DNA segments. The MDR1 gene includes 28 introns, 26 of which interrupt the protein-coding sequence. Although both halves of the protein-coding sequence are composed of approximately the same number of exons, only two intron pairs, both within the nucleotide-binding domains, are located at conserved positions in the two halves of the protein. The other introns occur at different locations in the two halves of the protein and in most cases interrupt the coding sequence at different positions relative to the open reading frame. These results suggest that the P-glycoprotein arose by fusion of genes for two related but independently evolved proteins rather than by internal duplication.  相似文献   

6.
The multidrug resistance P-glycoprotein is an ATP-dependent drug pump that extrudes a broad range of hydrophobic compounds out of cells. Its physiological role is likely to protect us from exogenous and endogenous toxins. The protein is important because it contributes to the phenomenon of multidrug resistance during AIDS and cancer chemotherapy. We have used cysteine-scanning mutagenesis and thiol-modification techniques to map the topology of the protein, show that both nucleotide-binding domains are essential for activity, examine packing of the transmembrane segments, map the drug-binding site, and show that there is cross-talk between the ATP-binding sites and the transmembrane segments.  相似文献   

7.
We determined primary sequences of the LaMDR1 gene in Leishmania amazonensis, a protozoan parasite that causes cutaneous leishmaniasis. The longest open reading frame encodes 1341 amino acids for a protein consisting of two similar halves, each containing six putative transmembrane domains and one ATP-binding domain. The protein has no potential N-glycosylation sites at the extracellular region. The LaMDR1 protein was 91 and 78% identical to the closely related ldmdr1 in L. donovani and lemdr1 in L. enriettii, respectively, revealing less conservation in the C-terminal than in the N-terminal transmembrane domains. Transfection of LaMDR1 conferred a multidrug resistance phenotype to wild-type promastigotes, which exhibited a significant level of resistance to vinblastine, doxorubicin, and actinomycin D, but not to puromycin and colchicine. This drug specificity of LaMDR1 was overlapping with but distinct from that of ldmdr1, suggesting functional diversity of MDR1 proteins among different Leishmania species.  相似文献   

8.
Deletion and insertion mutants of the multidrug transporter   总被引:5,自引:0,他引:5  
The multidrug transporter is a 170,000-dalton membrane glycoprotein which confers multidrug resistance through its activity as an ATP-dependent efflux pump for hydrophobic, cytotoxic drugs. To determine the essential structural components of this complex membrane transporter we have altered an MDR1 cDNA in an expression vector by deletion and insertion mutations. The structure of the transporter deduced from its amino acid sequence suggests that it consists of two homologous, perhaps functionally autonomous, halves each with six transmembrane segments and a cytoplasmic ATP-binding domain. However, several carboxyl-terminal deletions, one involving 53 amino acids, the second removing 253 amino acids, and an internal deletion within the carboxyl-terminal half of the molecule, totally eliminate the ability of the mutant transporter to confer drug resistance. An internal deletion of the amino-terminal half, which removed residues 140-229, is also nonfunctional. Small carboxylterminal deletions of up to 23 amino acids leave a functional transporter, although the removal of 23 COOH-terminal amino acids reduces its ability to confer colchicine resistance. Insertions of 4 amino acids in a transmembrane domain, and in one of the two ATP-binding regions, have no effect on activity. These studies define some of the limits of allowable deletions and insertions in the MDR1 gene, and demonstrate the requirement for two intact halves of the molecule for a functional multidrug transporter.  相似文献   

9.
Multidrug resistance in animal cells is defined as the simultaneous resistance to a variety of compounds which appear to be structurally and mechanistically unrelated. One type of multidrug resistance is characterized by the decreased accumulation of hydrophobic natural product drugs, a phenotype which is mediated by an ATP-dependent integral membrane multidrug transporter termed P-glycoprotein or P170. The gene coding for P170 is calledMDR. The nucleotide-binding domain of P-glycoprotein shares sequence homology with a family of bacterial permease ATP-binding components. In addition, P170 as a whole is structurally very similar to a number of prokaryotic and eukaryotic proteins believed to be involved in transport activities. This review summarizes our current knowledge of the molecular biology and clinical significance ofMDR expression and P-glycoprotein transport activity, as well as some theories about the function of this protein in normal cells.  相似文献   

10.
11.
P-glycoprotein (P-gp) is an ATP-dependent drug pump that can transport a broad range of hydrophobic compounds out of the cell. The protein is clinically important because of its contribution to the phenomenon of multidrug resistance during AIDS/HIV and cancer chemotherapy. P-gp is a member of the ATP-binding cassette (ABC) family of proteins. It is a single polypeptide that contains two repeats joined by a linker region. Each repeat has a transmembrane domain consisting of six transmembrane segments followed by a hydrophilic domain containing the nucleotide-binding domain. In this mini-review, we discuss recent progress in determining the structure and mechanism of human P-glycoprotein.  相似文献   

12.
13.
The human MDR1 gene encodes the multidrug transporter (P-glycoprotein), a multidrug efflux pump. The highly homologous MDR2 gene product does not appear to be a functional multidrug pump. We have constructed a chimeric protein in which the first intracytoplasmic loop and the third and fourth transmembrane domains of the MDR1 protein were replaced by the analogous region of MDR2. Substitution of the MDR2 sequences encompassing amino acid residues 140 to 229 resulted in 17 amino acid changes, 10 in the intracytoplasmic loop (amino acids 141-188) and 7 in the transmembrane regions. This chimeric protein was expressed on the surface of NIH 3T3 cells where it bound [3H]azidopine but did not confer drug resistance. When only 4 residues, 165, 166, 168, and 169, were changed back to MDR1 amino acids, a functional drug transporter was recovered. When residues 165, 166, 168, and 169 from MDR2 were substituted into a functional MDR1 cDNA, the resulting construction was not able to confer drug resistance. These results indicate that the major functional differences between MDR1 and MDR2 in this region of P-glycoprotein reside in a small segment of the first intracytoplasmic loop. We also independently analyzed the effect of replacing Asn183 of MDR1 with Ser which occurs in MDR2. Substitution of Ser at position 183 in combination with Val at position 185 in P-glycoprotein resulted in a relative increase in resistance to actinomycin D, vinblastine, and doxorubicin in transfected NIH 3T3 cells. These results emphasize the importance of the first intracytoplasmic loop in P-glycoprotein in determining function and relative drug specificity of the transporter.  相似文献   

14.
The bacitracin resistance of Bacillus licheniformis, a producer of bacitracin, is mediated by the ABC transporter Bcr. Bacillus subtilis cells carrying bcr genes on high-copy number plasmids developed collateral detergent sensitivity, as did human cells with overexpressed multidrug resistance P-glycoprotein. Resistance against bacitracin and sensitivity of resistant cells to detergents were shown to be inseparable phenomena associated with the membrane part of Bcr transporter, namely protein BcrC. A fused protein, consisting of ATP-binding protein BcrA and membrane component BcrC was constructed. It resembled a half molecule of P-glycoprotein and was capable of providing a significant degree of antibiotic resistance and detergent sensitivity.  相似文献   

15.
A Staphylococcus epidermidis plasmid conferring inducible resistance to 14-membered ring macrolides and type B streptogramins has been analysed and the DNA sequence of the gene responsible for resistance determined. A single open reading frame of 1.464 kbp, preceded by a complex control region containing a promoter and two ribosomal binding sites, was identified. The deduced sequence of the 488-amino-acid protein (MsrA) revealed the presence of two ATP-binding motifs homologous to those of a family of transport-related proteins from Gram-negative bacteria and eukaryotic cells, including the P-glycoprotein responsible for multidrug resistance. In MsrA, but not these other proteins, the two potential ATP-binding domains are separated by a Q-linker of exceptional length. Q-linkers comprise a class of flexible interdomain fusion junctions that are typically rich in glutamine and other hydrophilic amino acids and have a characteristic spacing of hydrophobic amino acids, as found in the MsrA sequence. Unlike the other transport-related proteins, which act in concert with one or more hydrophobic membrane proteins, MsrA appears to function independently when cloned in a heterologous host (Staphylococcus aureus RN4220). MsrA might, therefore, interact with and confer antibiotic specificity upon other transmembrane efflux complexes of staphylococcal cells. The active efflux of [14C]-erythromycin from cells of S. aureus RN4220 containing msrA has been demonstrated.  相似文献   

16.
In order to study the structure of the multidrug resistance-associated protein (MRP1), which is one of the most important members of the ATP-binding cassette (ABC) protein family acting as drug-efflux systems, we have developed an epitope mapping-based strategy. By means of the mAb MRPr1, we have immunoselected clones from two distinct random peptide libraries displayed on phages and have identified several peptide sequences mimicking the internal conformation of this 190 kDa multidrug transporter protein. Phage clones able to block the immunolabeling of the MRPr1 antibody to MRP1-overexpressing multidrug resistance (MDR) H69/AR cells were isolated and, after sequencing the corresponding inserts, their amino acid sequence was compared to that of MRP1. This analysis led to the identification of the consensus sequence L.SLNWED, corresponding to the MRP1 segment LWSLNKED (residues 241-248). This MRP1 sequence is partially overlapping with the MRPr1 epitope GSDLWSLNKE (residues 238-247) previously mapped using peptide scanning techniques. These results demonstrate the high reliability of phage display technology to study not only the topography of complex integral membrane proteins such as MRP1, but also to help identify critical residues participating in the formation of the epitope structure.  相似文献   

17.
Molecular mechanism of multidrug resistance in tumor cells   总被引:2,自引:0,他引:2  
The ability of tumor cells to develop simultaneous resistance to multiple lipophilic cytotoxic compounds represents a major problem in cancer chemotherapy. This review describes recent molecular biological studies which resulted in the identification and cloning of the gene responsible for multidrug resistance in human tumor cells. This gene, designated mdr1, is overexpressed in all and amplified in many of the multidrug-resistant cell lines analyzed. Gene transfer and expression assays have indicated that the mdr1 gene is both necessary and sufficient for multidrug resistance. The product of the mdr1 gene is P-glycoprotein, a transmembrane protein which shares homology with several bacterial proteins involved in active membrane transport. P-glycoprotein appears to function as an energy-dependent efflux pump responsible for the removal of drugs from multidrug-resistant cells. The functions of the mdr system in normal cells and its potential clinical implications are discussed.  相似文献   

18.
Identification of members of the P-glycoprotein multigene family.   总被引:17,自引:5,他引:12       下载免费PDF全文
Overproduction of P-glycoprotein is intimately associated with multidrug resistance. This protein appears to be encoded by a multigene family. Thus, differential expression of different members of this family may contribute to the complexity of the multidrug resistance phenotype. Three lambda genomic clones isolated from a hamster genomic library represent different members of the hamster P-glycoprotein gene family. Using a highly conserved exon probe, we found that the hamster P-glycoprotein gene family consists of three genes. We also found that the P-glycoprotein gene family consists of three genes in mice but has only two genes in humans and rhesus monkeys. The hamster P-glycoprotein genes have similar exon-intron organizations within the 3' region encoding the cytoplasmic domains. We propose that the hamster P-glycoprotein gene family arose from gene duplication. The hamster pgp1 and pgp2 genes appear to be more closely related to each other than either gene is to the pgp3 gene. We speculate that the hamster pgp1 and pgp2 genes arose from a recent gene duplication event and that primates did not undergo this duplication and therefore contain only two P-glycoprotein genes.  相似文献   

19.
Inherent or acquired resistance of tumor cells to cytotoxic drugs represents a major limitation to the successful chemotherapeutic treatment of cancer. During the past three decades dramatic progress has been made in the understanding of the molecular basis of this phenomenon. Analyses of drug-selected tumor cells which exhibit simultaneous resistance to structurally unrelated anti-cancer drugs have led to the discovery of the human MDR1 gene product, P-glycoprotein, as one of the mechanisms responsible for multidrug resistance. Overexpression of this 170 kDa N-glycosylated plasma membrane protein in mammalian cells has been associated with ATP-dependent reduced drug accumulation, suggesting that P-glycoprotein may act as an energy-dependent drug efflux pump. P-glycoprotein consists of two highly homologous halves each of which contains a transmembrane domain and an ATP binding fold. This overall architecture is characteristic for members of the ATP-binding cassette or ABC superfamily of transporters. Cell biological, molecular genetic and biochemical approaches have been used for structure-function studies of P-glycoprotein and analysis of its mechanism of action. This review summarizes the current status of knowledge on the domain organization, topology and higher order structure of P-glycoprotein, the location of drug- and ATP binding sites within P-glycoprotein, its ATPase and drug transport activities, its possible functions as an ion channel, ATP channel and lipid transporter, its potential role in cholesterol biosynthesis, and the effects of phosphorylation on P-glycoprotein activity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Ycf1p is a member of the ATP-binding cassette transporter family of membrane proteins. Strong sequence similarity has been observed between Ycf1p, the cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance protein (MRP). In this work, we have examined the functional significance of several of the conserved amino acid residues and the genetic requirements for Ycf1p subcellular localization. Biochemical fractionation experiments have established that Ycf1p, expressed at single-copy gene levels, co-fractionates with the vacuolar membrane and that this co-fractionation is independent of vps15 , vps34 or end3 gene function. Several cystic fibrosis-associated alleles of the CFTR were introduced into Ycf1p and found to elicit defects analogous to those seen in the CFTR. An amino-terminal extension shared between Ycf1p and MRP, but absent from CFTR, was found to be required for Ycf1p function, but not its subcellular localization. Mutant forms of Ycf1p were also identified that exhibited enhanced biological function relative to the wild-type protein. These studies indicate that Ycf1p will provide a simple, genetically tractable model system for the study of the trafficking and function of ATP-binding cassette transporter proteins, such as the CFTR and MRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号