首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The catalytic mechanism of phosphoenolpyruvate (PEP) carboxylase from Zea mays has been studied using (Z)- and (E)-3-fluorophosphoenolpyruvate (F-PEP) as substrates. Both (Z)- and (E)-F-PEP partition between carboxylation to produce 3-fluorooxalacetate and hydrolysis to produce 3-fluoropyruvate. Carboxylation accounts for 3% of the reaction observed with (Z)-F-PEP, resulting in the formation of (R)-3-fluorooxalacetate, and for 86% of the reaction of (E)-F-PEP forming (S)-3-fluorooxalacetate. Carboxylation of F-PEP occurs on the 2-re face, which corresponds to the 2-si face of PEP. The partitioning of F-PEP between carboxylation and hydrolysis is insensitive to pH but varies with metal ion. Use of 18O-labeled bicarbonate produces phosphate that is multiply labeled with 18O; in addition, 18O is also incorporated into residual (Z)- and (E)-F-PEP. The 13(V/K) isotope effect on the carboxylation of F-PEP catalyzed by PEP carboxylase at pH 8.0, 25 degrees C, is 1.049 +/- 0.003 for (Z)-F-PEP and 1.009 +/- 0.006 for (E)-F-PEP. These results are consistent with a mechanism in which carboxylation of PEP occurs via attack of the enolate of pyruvate on CO2 rather than carboxy phosphate. In this mechanism phosphorylation of bicarbonate to give carboxy phosphate and decarboxylation of the latter are reversible steps. An irreversible step, however, precedes partitioning between carboxylation to give oxalacetate and release of CO2, which results in hydrolysis of PEP.  相似文献   

2.
Role of phosphoenolpyruvate carboxylation in Acetobacter xylinum   总被引:5,自引:1,他引:4       下载免费PDF全文
Glucose-grown cells of Acetobacter xylinum oxidized acetate only when the reaction mixture was supplemented with catalytic quantities of glucose or intermediates of the citrate cycle. Extracts, prepared by sonic treatment, catalyzed the formation of oxalacetate when incubated with phosphoenolpyruvate (PEP) and bicarbonate. Oxalacetate was not formed in the presence of pyruvate plus adenosine triphosphate. The ability to promote carboxylation of PEP was lower in succinate-grown cells than in glucose-grown cells. PEP carboxylase, partially purified from extracts by ammonium sulfate fractionation, catalyzed the stoichiometric formation of oxalacetate and inorganic phosphate from PEP and bicarbonate. The enzyme was not affected by acetyl-coenzyme A or inorganic phosphate. It was inhibited by adenosine diphosphate in a manner competitive with PEP (K(1) = 1.3 mm) and by dicarboxylic acids of the citrate cycle; of these, succinate was the most potent inhibitor. It is suggested that the physiological role of PEP carboxylase in A. xylinum is to affect the net formation of C(4) acids from C(3) precursors, which are essential for the maintainance of the citrate cycle during growth on glucose. The relationship of PEP carboxylase to other enzyme systems metabolizing PEP and oxalacetate in A. xylinum is discussed.  相似文献   

3.
A method for the determination of bicarbonate in buffer solutions between pH 7.5 and 8.75 and in stock solutions of NaHCO3 is described. The HCO-3 is reacted with phosphoenolpyruvate (PEP) in the presence of PEP carboxylase (EC 4.1.1.31) and the oxaloacetate formed reduced to malate by NADH in the reaction catalyzed by malate dehydrogenase (EC 1.1.1.37). The extent of oxidation of NADH is measured spectrophotometrically. Experiments using standard solutions show that 1 mol of NADH is oxidized per mol of HCO-3 added. The method was used to establish the precautions needed to prepare buffer solutions containing less than 1% of the bicarbonate which would be present in the same buffers in equilibrium with air.  相似文献   

4.
The activities of phosphoenolpyruvate carboxylase (PEP carboxylase, EC 4.1.1.3.1) have been investigated in various organs of young nodulated Alnus glutinosa. The root nodules exhibited the highest specific enzyme activity when compared with the one in roots and leaves. Furthermore, in the root nodules the PEP carboxylase was predominantly localized in the cytosol of the large cortical cells containing the endophyte vesicles.Abbreviations PEP carboxylase phosphoenolpyruvate carboxylase - MDH malate dehydrogenase - PVP polyvinylpyrrolidone - PBS phosphate buffer saline  相似文献   

5.
The synthesis of 10 new phosphoenolpyruvate (PEP) analogues with modifications in the phosphate and the carboxylate function is described. Included are two potential irreversible inhibitors of PEP-utilizing enzymes. One incorporates a reactive chloromethylphosphonate function replacing the phosphate group of PEP. The second contains a chloromethyl group substituting for the carboxylate function of PEP. An improved procedure for the preparation of the known (Z)- and (E)-3-chloro-PEP is also given. The isomers were obtained as a 4 : 1 mixture, resolved by anion-exchange chromatography after the last reaction step. The stereochemistry of the two isomers was unequivocally assigned from the (3)J(H-C) coupling constants between the carboxylate carbons and the vinyl protons. All of these and other known PEP-analogues were tested as reversible and irreversible inhibitors of Mg2+- and Mn2+- activated PEP-utilizing enzymes: enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), pyruvate kinase, PEP carboxylase and enolase. Without exception, the most potent inhibitors were those with substitution of a vinyl proton. Modification of the phosphate and the carboxylate groups resulted in less effective compounds. Enzyme I was the least tolerant to such modifications. Among the carboxylate-modified analogues, only those replaced by a negatively charged group inhibited pyruvate kinase and enolase. Remarkably, the activity of PEP carboxylase was stimulated by derivatives with neutral groups at this position in the presence of Mg2+, but not with Mn2+. For the irreversible inhibition of these enzymes, (Z)-3-Cl-PEP was found to be a very fast-acting and efficient suicide inhibitor of enzyme I (t(1/2) = 0.7 min).  相似文献   

6.
Quantitative physiological characterization and isotopic tracer experiments revealed that pyruvate kinase mutants of Bacillus subtilis produced significantly more CO(2) from glucose in the tricarboxylic acid cycle than is explained by the remaining conversion of phosphoenolpyruvate (PEP) to pyruvate catalyzed by the phosphotransferase system. We show here that this additional catabolic flux into the tricarboxylic acid cycle was catalyzed by the PEP carboxykinase. In contrast to its normal role in gluconeogenesis, PEP carboxykinase can operate in the reverse direction from PEP to oxaloacetate upon knockout of pyruvate kinase in a riboflavin-producing B. subtilis strain and in wild-type 168. At least in the industrial strain, we demonstrate the additional capacity of PEP carboxykinase to function as a substitute anaplerotic reaction when the normal pyruvate carboxylase is inactivated. Presumably as a consequence of the unfavorable kinetics of an ATP-synthesizing anaplerotic PEP carboxykinase reaction, such pyruvate carboxylase mutants grow slowly or, as in the case of wild-type 168, not at all.  相似文献   

7.
A kinetic investigation of phosphoenolpyruvate carboxylase from Zea mays.   总被引:1,自引:0,他引:1  
J W Janc  M H O'Leary  W W Cleland 《Biochemistry》1992,31(28):6421-6426
The reaction catalyzed by phosphoenolpyruvate carboxylase from Zea mays has been studied kinetically. Results of initial velocity patterns and inhibition studies indicate that phosphoenolpyruvate carboxylase has a random sequential mechanism in which there is a high level of synergism in the binding of substrates. The preferred order of addition of reactants is Mg2+, phosphoenolpyruvate, and bicarbonate. The binding of Mg2+ is at equilibrium. Values for the various kinetic parameters are KiMg = 2.3 +/- 0.4 mM, KPEP = 3.6 +/- 0.6 mM, KiPEP = 0.2 +/- 0.07 mM, and Kbicarbonate = 0.18 +/- 0.04 mM. In addition, double inhibition experiments have been performed to examine the nature of the active site interactions with the putative intermediates, carboxy phosphate and the enolate of pyruvate. Highly synergistic inhibition of phosphoenolpyruvate carboxylase was observed in the presence of oxalate and carbamyl phosphate (alpha = 0.0013). However, an antisynergistic relationship exists between oxalate and phosphonoformate (alpha = 2.75).  相似文献   

8.
Phosphoenolpyruvate (PEP) carboxylase (orthophosphate:oxalacetate carboxylase (phosphorylating), EC 4.1.1.31) was purified 19-fold from the obligate chemoautotroph, Thiobacillus thioparus. Michaelis constants for the substrates were found to be 0.44 mM for phosphoenolpyruvate, 0.89 mM for bicarbonate, and 0.37 mM for magnesium, using Tris-HC1, pH 7.3. 1-Aspartate, 1-malate, and orthophosphate were found to be inhibitors of enzyme activity, while acetyl CoA, FDP, GTP, and CDP had no effect. Dioxane greatly stimulated enzyme activity.  相似文献   

9.
The phytotoxin fusicoccin (FC) causes rapid synthesis of malate in coleoptile tissues, presumably via phosphoenolpyruvate (PEP) carboxylase coupled with malate dehydrogenase. The possibility that FC directly affects PEP carboxylase in Avena sativa L. and Zea mays L. coleoptiles was studied and rejected. The activity of this enzyme is unaffected by FC whether FC is added in vitro or a pretreatment to the live material. FC does not change the sensitivity of the enzyme to bicarbonate or malate. The activity of FC, instead, appears to be indirect. The pH sensitivity of PEP carboxylase is such that its activity, and thus the rate of malate synthesis, may be enhanced by an increase in cytoplasmic pH accompanying FC-induced H+ excretion. Since the enzyme is also particularily sensitive to bicarbonate levels, malate synthesis may also be enhanced by FC-induced uptake or generation of CO2.  相似文献   

10.
Isolated intact mesophyll protoplasts from Zea mays L. were used as an enzyme source for studying properties of phosphoenolpyruvate (PEP) carboxylase (EC 4.1 1 31) just after release from cells into the reaction medium. After the injection of protoplasts into the assay mixture, an initial lag of activity was observed, mainly due to the time necessary for complete disruption of protoplasts by the osmotic shock. The final specific activity obtained was ca 18 μmol mg-1 of liberated protein min-1, a value comparable to that usually achieved after arduous purification. Under the assay conditions employed, the chloroplasts were not disrupted and the retention of their proteins, together with the use of purified mesophyll protoplasts, were obviously the reasons for the high specific activity obtained. The activity and properties of phosphoenolpyruvate carboxylase stored in isolated protoplasts were stable for at least 24 h at 5°C. The main difference between the protoplast-derived and the routinely extracted enzyme was the sensitivity to malate inhibition, which was partially lost in the extracted phosphoenolpyruvate carboxylase; no difference was found in the Km(PEP). The stress imposed by the protoplast isolation procedure diminished the sensitivity of the enzyme to malate inhibition, so that it can be inferred that the real malate sensitivity of pbosphocnolpyruvale carboxylase is even greater and that it is grossly underestimated with routinely extracted enzyme.  相似文献   

11.
Acetyl phosphate produced an increase in the maximum velocity (Vmax. for the carboxylation of phosphoenolpyruvate catalysed by phosphoenolpyruvate carboxylase. The limiting Vmax. was 22.2 mumol X min-1 X mg-1 (185% of the value without acetyl phosphate). This compound also decreased the Km for phosphoenolpyruvate to 0.18 mM. The apparent activation constants for acetyl phosphate were 1.6 mM and 0.62 mM in the presence of 0.5 and 4 mM-phosphoenolpyruvate respectively. Carbamyl phosphate produced an increase in Vmax. and Km for phosphoenolpyruvate. The variation of Vmax./Km with carbamyl phosphate concentration could be described by a model in which this compound interacts with the carboxylase at two different types of sites: an allosteric activator site(s) and the substrate-binding site(s). Carbamyl phosphate was hydrolysed by the action of phosphoenolpyruvate carboxylase. The hydrolysis produced Pi and NH4+ in a 1:1 relationship. Values of Vmax. and Km were 0.11 +/- 0.01 mumol of Pi X min-1 X mg-1 and 1.4 +/- 0.1 mM, respectively, in the presence of 10 mM-NaHCO3. If HCO3- was not added, these values were 0.075 +/- 0.014 mumol of Pi X min-1 X mg-1 and 0.76 +/- 0.06 mM. Vmax./Km showed no variation between pH 6.5 and 8.5. The reaction required Mg2+; the activation constants were 0.77 and 0.31 mM at pH 6.5 and 8.5 respectively. Presumably, carbamyl phosphate is hydrolysed by phosphoenolpyruvate carboxylase by a reaction the mechanism of which is related to that of the carboxylation of phosphoenolpyruvate.  相似文献   

12.
Phenylphosphate, a structural analog of phosphoenolpyruvate (PEP), was found to be an activator of phosphoenolpyruvate carboxylase (PEP carboxylase) purified from maize leaves. This finding suggested the presence in the enzyme of a regulatory site, to which PEP could bind. We carried out kinetic studies on this enzyme using controlled concentrations of free PEP and of Mg-PEP complex and developed a theoretical kinetic model of the reaction. In summary, the main conclusions drawn from our results, and taken as assumptions of the model, were the following: (i) The affinity of the active site for the complex Mg-PEP is much higher than that for free PEP and Mg2+ ions, and therefore it can be considered that the preferential substrate of the PEP-catalyzed reaction is Mg-PEP. (ii) The enzyme has a regulatory site specific for free PEP, to which Mg2+ ions can not bind. (iii) The binding of free PEP, or an analog molecule, to this regulatory site yields a modified enzyme that has much lower apparent Km values and apparent Vmax values than the unmodified enzyme. So, free PEP behaves as an excellent activator of the reaction at subsaturating substrate concentrations, and as an inhibitor at saturating substrate concentrations. These findings may have important physiological implications on the regulation of the PEP carboxylase in vivo activity and, consequently, of the C4 pathway, since increased reaction rates would be obtained when the concentration of PEP rises, even at limiting Mg2+ concentrations.  相似文献   

13.
On the intermediacy of carboxyphosphate in biotin-dependent carboxylations   总被引:1,自引:0,他引:1  
T Ogita  J R Knowles 《Biochemistry》1988,27(21):8028-8033
In the ATP-dependent carboxylation of biotin that is catalyzed by most biotin-dependent carboxylases, a fundamental mechanistic question is whether the ATP activates bicarbonate (via the formation of carboxyphosphate as an intermediate) or whether the ATP activates biotin (via the formation of O-phosphobiotin). We have resorted to three mechanistic tests using the biotin carboxylase subunit of acetyl-CoA carboxylase from Escherichia coli: positional isotope exchange, intermediate trapping, and 18O tracer experiments on the ATPase activity. First, no catalysis of positional isotope exchange in adenosine 5'-[( alpha, beta-18O, beta, beta-18O2]triphosphate) was observed when either biotin or bicarbonate was absent, nor was any exchange seen in the presence of both N-1-methylbiotin and bicarbonate. Second, the putative carboxyphosphate intermediate could not be trapped as its trimethyl ester, under conditions of incubation and analysis where the authentic triester was shown to be adequately stable. In the third test, however, we showed that the ATPase activity of biotin carboxylase that is seen in the absence of biotin, an activity that is known to parallel the normal carboxylase reaction when biotin is present, occurs with the transfer of an 18O label directly from [18O]bicarbonate into the product Pi. This result suggests that the bicarbonate-dependent biotin-independent ATPase reaction catalyzed by biotin carboxylase goes via carboxyphosphate and that the carboxylation of biotin itself may proceed analogously.  相似文献   

14.
(Z)-3-Chlorophosphoenolpyruvate has been synthesized by the reaction of 3,3-dichloropyruvic acid with trimethylphosphite, followed by deesterification. This compound is a competitive inhibitor of pyruvate kinase and phosphoenolpyruvate carboxylase. Pyruvate kinase is not inactivated upon prolonged incubation with the compound, but phosphoenolpyruvate carboxylase is slowly inactivated (t1/2 = 5 h). The compound is a substrate for both enzymes, being acted upon by pyruvate kinase approximately 0.1% as rapidly as phosphoenolpyruvate itself. In the case of phosphoenolpyruvate carboxylase, the compound is converted into a 3:1 mixture of chloropyruvate and chlorooxalacetate, at an overall rate that is about 25% the carboxylation rate for phosphoenolpyruvate.  相似文献   

15.
Phosphoenolpyruvate carboxylase from leaves of the C4 plant Setaria verticillata (L.) Beauv. is activated by light; day levels of activity are reached after 30 minutes of illumination. Photoactivation is prevented by inhibitors of photosynthetic electron flow or of photophosphorylation and by D,L-glyceraldehyde, which inhibits the reductive pentose phosphate pathway.Although the extractable activity in the dark is not affected by temperature the photoactivation is prevented when both illumination and extraction are done under low temperature (5 C). High temperature (30 C) during either illumination or extraction is needed for activation. Once the enzyme is photoactivated at 30 C, a transfer of the leaves to 5 C does not abolish the extra activity.The results suggest that both unimpaired electron flow and photophosphorylation are prerequisites for the activation of phosphoenolpyruvate carboxylase. Low temperature apparently suppresses either the transport to the cytoplasm of a photosynthetic intermediate or the activating reaction itself. The inclusion of phosphoenolpyruvate in the extraction medium increases the night activity.On the basis of the available information, it is suggested that phosphoenolpyruvate could be the activator in vivo. In that case, the activation of phosphoenolpyruvate carboxylase would depend on internal CO2 level and prior photoactivation of both pyruvate, orthophosphate, dikinase and NADP malate dehydrogenase.Abbreviations PEPCase phosphoenolpyruvate carboxylase - PEP phosphoenolpyruvate - PAR photosynthetically active radiation - CCCP carbonyl cyanide m-chlorophenylhydrazone - DCMU 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea - DSPD disalicylidenpropanediamine - MV methylviologen - ME malic enzyme - MDH malate dehydrogenase - PPDK pyruvate, Pi dikinase - CAM Crassulacean Acid Metabolism  相似文献   

16.
Phosphoenolpyruvate (PEP) carboxylase was purified over 400-fold from Plasmodium berghei. The purified enzyme was stable in 0.4 m potassium phosphate buffer (pH 7.4) containing 0.5 m glucose, 1 mm ethylenediaminetetraacetic acid (EDTA), and 1 mm MgCl(2). It had a molecular weight of 280,000 determined by sucrose density gradient centrifugation in this buffer, but it aggregated and was unstable in the presence of different salts or a more dilute solution of potassium phosphate. The K(m) for PEP was 2.6 mm and that for Mg(2+) was 1.3 mm. The K(m) for bicarbonate was 2 mm. Citrate, nucleotides, and EDTA inhibited the PEP carboxylase of P. berghei by decreasing the concentration of free magnesium ions, but acetyl-coenzyme A, fructose-1,6-diphosphate, and aspartate did not influence its activity. A chloroquine concentration of 1.8 x 10(-4)m inhibited the enzyme 50%.  相似文献   

17.
The effects of NaCl on the kinetic properties of desalted phosphoenolpyruvate carboxylase (PEP carboxylase, EC 4.1.1.31) from two halophytes, Suaeda monoica Forssk. ex. J.F. Gmel and Chloris gayana Kunth. were investigated. The tolerance of PEP carboxylase to NaCl in the reaction medium depends on the enzyme pre-conditioning as well as on the concentration of its substrate PEP in the assay medium. Addition of PEP to the extraction and the storage medium, stabilizes the enzyme. Such a pre-treated enzyme is inhibited by NaCl in the presence of low concentrations of PEP in the assay medium but is activated by NaCl in the presence of PEP at concentrations above 1.0 m M . NaCl modifies the nH value, K' and Vmax, and seems to act as an allosteric effector.  相似文献   

18.
According to the conventional glycolytic sequence [3,4-14C]glucoseyields phosphoenolpyruvate (PEP) labeled in position C-1. Thisyields pyruvate through pyruvate kinase reaction also labeledin C-1. Subsequent metabolism of pyruvate to acetyl CoA releasesradioactive carbon dioxide. Alternatively PEP may be convertedto oxalacetate by PEP carboxylase and then into organic andamino acids which retain the label. The procedure adopted wasto trap carbon dioxide evolved and isolate organic acids producedafter feeding [3,4-14C]glucose to developing soybean cotyledons.Under conditions of 27?C and pH of 7.5 and 8.5 about 60% ofthe glycolytic carbon was processed by pyruvate kinase and 40%by PEP carboxylase. At lower temperature (15?C) 60% of the carbonwas directed through the PEP carboxylase reaction. This maybe caused by cold lability of pyruvate kinase which was demonstratedin in vitro assays. Low pH, down to 5.5, reduced organic acidproduction by inhibition of PEP carboxylase activity. Pyruvatekinase was not affected and carbon dioxide evolution remainedconstant at varying pH. PEP carboxyiase and pyruvate kinaseindependently feed their products into two separate metabolicpools. Possibly they should jointly be considered as final enzymesin the glycolytic pathway of plants. (Received April 3, 1982; Accepted June 12, 1982)  相似文献   

19.
H. Schnabl  C. Kottmeier 《Planta》1984,162(3):220-225
Properties of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) obtained from isolated guard-cell protoplasts of Vicia faba L. were determined following rapidly desalting of the extract on a Sephadex G 25 column. The activity of PEP carboxylase was measured as a function of PEP and malate concentration, pH and K+ concentration within 2–3 min after homogenization of the guard-cell protoplasts. The activity of this enzyme was stimulated by PEP concentrations of 0.1 to 0.75 mM and by K+ ions (12 mM), but inhibited by PEP concentrations above 1 mM and by malate. Changes in the Km(PEP) and Vmax values with increasing malate concentrations (2.5 and 5 mM) indicate that the malate level, varying in relation to the physiological state of guard cells, plays an important role in regulating the properties of phosphoenolpyruvate carboxylase.Abbreviations CAM Crassulacean acid metabolism - GCP guard-cell protoplast - PEP phosphoenolpyruvate Dedicated to Professor Dr. Hubert Ziegler on the occasion of his 60th birthday  相似文献   

20.
The activities of the carboxylating enzymes ribulose-1,5-biphosphate (RuBP) carboxylase and phosphoenolpyruvate (PEP) carboxylase in leaves of three-week old Zea mays plants grown under phytotron conditions were found to vary according to leaf position. In the lower leaves the activity of PEP carboxylase was lower than that of RuBP carboxylase, while the upper leaves exhibited high levels of PEP carboxylase. Carbon dioxide compensation points and net photosynthetic rates also differed in the lower and upper leaves. Differences in the fine structure of the lowermost and uppermost leaves are shown. The existence of both the C3 and C4 photosynthetic pathways in the same plant, in this and other species, is discussed.Abbreviations PEP phosphoenolpyruvate - RuBP ribulose-1,5-biphosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号