首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The 1,029 series of mammary epithelial cell lines (D6, GP+E, r3 and r3T) are progressively more transformed: the latter two by val(12)ras. These cell lines respond to TGFbeta by undergoing early events of epithelial-mesenchymal transition (EMT), including morphological changes and redistribution of E-cadherin. Tumors formed by r3T cells in the choroid of the eye express vimentin, a late marker of EMT, possibly in response to TGFbeta. In vitro, vimentin expression is induced in all the cell lines by TGFbeta treatment, whereas cytokeratin expression is only slightly affected. Surprisingly, ras transformation results in a 10-fold suppression of vimentin expression. Neither suppression of vimentin by ras transformation nor induction by TGFbeta is mediated by the vimentin promoter in r3T cells. In transient transfection assays, several human vimentin promoter constructs are more active in the low-expressing r3T cell line than in the vimentin-expressing mesenchymal cell line NIH3T3. In the r3T cells, there is no effect of TGFbeta treatment for 9 days on the activity of either promoter. Azacytidine treatment does not affect vimentin expression in either NIH3T3 or r3T, suggesting that promoter methylation is not the mechanism of suppression by ras. Finally, the half-life of the vimentin mRNA is similar in both the r3T cells and NIH3T3 cells. We conclude that the suppression of vimentin expression by ras, and the relief of this suppression by TGFbeta, occurs in a promoter-independent fashion, possibly through sequences in the first or second intron.  相似文献   

2.
3.
TGFbeta can modulate neuroblastoma (NB) cell proliferation and differentiation in vitro. In this study we used a NB cell line (LAN-5) which has been shown to partially respond to TGFbeta and to present high levels of TGFbeta receptor type I and low levels of receptor type II (TbetaRII) on the cell surface. To evaluate the role of TbetaRII in mediating TGFbeta effects, LAN-5 cells were transfected with an expression vector containing the human full-length TbetaRII cDNA or with the empty vector pcDNA3. Compared to control CLV3 cells (transfected with empty plasmid) and parental LAN-5 cells, isolated neomycin-resistant clones (CL1 and CL3) expressed higher levels of TbetaRII, had reduced cell growth rate in vitro, and were unable to form tumors in vivo. Furthermore, isolated clones modified their morphology, assuming a terminally differentiated neuronal phenotype. Immunocytochemical staining demonstrated a basal increased expression of neural-specific markers, such as axonal growth-associated protein (GAP43) and neurofilaments (NF200). TGFbeta treatment further increased the synthesis of NF200 and GAP43 in the transfected clones as revealed by Western blot analysis. These data indicate that TbetaRII overexpression potentiates the TGFbeta signal transduction pathway, reverting NB cell neoplastic phenotype with the reduction of proliferation rate and the induction of terminal maturation.  相似文献   

4.
Drosophila oogenesis provides a useful system to study signal transduction pathways and their interactions. Through clonal analysis, we found that brinker (brk), a repressor of Dpp signaling, plays an important role in the Drosophila ovary, where its function is essential for dorsal appendage formation. In the absence of brk, operculum fates are specified at the expense of dorsal appendage fates. Brk is expressed by most of the oocyte associated follicle cells, starting from stage 8 of oogenesis. Transforming Growth Factor beta (TGFbeta) signaling represses brk expression in both the early stage egg chambers and in the anterior follicle cells. In brk mutant follicle cell clones at the dorsal anterior region, Broad Complex (BR-C) expression is down-regulated in a larger domain than in wild type. We show that BR-C is required for dorsal appendage development. In large anterior BR-C mutant clones, dorsal appendages are absent, and instead, the eggshell has an enlarged operculum like region at the anterior. In addition, we show that the Epidermal Growth Factor (EGF) receptor signaling represses the TGFbeta signaling in oogenesis by up-regulating brk expression. From our results and previously published data, it appears that anterior follicle cells integrate the levels of EGF receptor activation and TGFbeta receptor activation. Operculum fate results when the sum of the level of activation of both pathways reaches a threshold level, and reduction of activity of one pathway can be compensated to some extent by increase in the other pathway.  相似文献   

5.
6.
建立稳定、高效表达外源基因的SK-Hep1细胞株,以便进一步研究基因的作用.首先将调控质粒pCDNA6/TR转染SK-Hep1细胞,经潮霉素筛选得到多个稳定单克隆.各个单克隆分别扩大培养后,转染pCDNA4/TO/lacZ质粒,再经过DOX(强力霉素)诱导表达,检测β-半乳糖苷酶(β-D galaetosidase,β-gal)活性,从而筛选出高诱导水平低背景表达的SK-Hep1 tet-on细胞株.最后,再将pCDNA4/TO/c-myc质粒转染进SK-Hep1 tet-on细胞株,进一步通过Western blotting检测该系统对下游基因的表达调控.成功建立了一株受DOX调控的高诱导水平低背景表达的细胞株SK-Hep1 tet-on 10#.  相似文献   

7.
Transforming growth factor-beta (TGF-beta) is a potent mediator of cell proliferation and extracellular matrix formation, depending on the cell type and the physiological conditions. TGF-beta is usually secreted in a "latent" complex that needs activation before it can exert its effects. Several observations correlate increased expression of TGF-beta 1 with tumorigenesis. To evaluate the physiological relevance of increased TGF-beta 1 synthesis in tumor cells we established cell clones overexpressing TGF-beta 1 and observed the resulting physiological changes in TGF-beta overproducing cells in vitro and in vivo. As a model system we used the human E1A-transformed 293 tumor cells, which are insensitive to the direct growth modulatory effects of TGF-beta. The selection of this cell line allows an assessment of physiological alterations independent of TGF-beta induced proliferative changes. The use of two TGF-beta 1 expression vectors containing either the natural or a modified TGF-beta 1 precursor cDNA permitted the establishment of separate 293 cell lines overexpressing latent or active TGF-beta. Comparison of the resulting changes in glycolytic rate, adhesiveness and integrin and plasminogen activator expression established that, in vitro, both types of clones behaved similarly, indicating that expression of latent TGF-beta induces autocrine changes in the tumor cells and thus suggesting that some level of cell-associated activation occurs. TGF-beta overexpression resulted in an increased metabolic rate due to enhanced glycolysis, a property long associated with tumor cells. This increased glycolysis was not associated with altered proliferation. Cells overexpressing TGF-beta also displayed enhanced fibronectin mRNA and plasminogen activator synthesis and increased adhesiveness in vitro. They showed enhanced survival when plated sparsely on plastic in the absence of serum, and attached more readily to laminin. In addition, synthesis of several beta 1 integrins, in particular the alpha 1/beta 1, alpha 2/beta 1, and alpha 3/beta 1, all of which recognize laminin, were enhanced. Finally, cells overexpressing active TGF-beta, but not latent TGF-beta, also showed increased tumorigenicity in nude mice. Thus, an increase in endogenous TGF-beta synthesis confers several proliferation-independent phenotypic changes which may be of significance for the survival of the tumor cell inoculum or its subsequent growth, and for tumor formation and development. In the case of cells expressing active TGF-beta, the release of active TGF-beta into the vicinity of the tumor cells may also result in a more hospitable environment for tumor growth.  相似文献   

8.
9.
10.
11.
Three mammalian isoforms of transforming growth factor-beta (TGFbeta) are known, TGFbeta1, 2, and 3, that have non-overlapping functions during development. However, their specific roles in cancers such as prostate cancer are less clear. Here we show that primary cultures of prostatic epithelial cells preferentially produce and activate the latent TGFbeta2 isoform. Paired cultures of normal and malignant prostate cells from prostate cancer patients produced predominantly the TGFbeta2 isoform, with 30- to 70-fold less TGFbeta1. By mono-Q ion exchange chromatography, three major peaks of latent TGFbeta2 activity were observed corresponding to the known small latent TGFbeta2 complex, the known large latent TGFbeta2 complex and a novel eluting peak of latent TGFbeta2. Although prostate cells are known to activate latent TGFbeta, the mechanism for activation is currently unclear. We investigated whether prostate specific antigen (PSA), a serine protease used as a clinical marker for prostate cancer, could play a role in the activation of latent TGFbeta. Unlike plasmin, a known activator of both latent TGFbeta1 and 2, PSA specifically activated the recombinant small latent form of TGFbeta2, but not TGFbeta1. Prostate epithelial cells, therefore, preferentially produce the TGFbeta2 isoform and PSA, a protease produced by the prostate, specifically targets the activation of this TGFbeta isoform. PSA-mediated activation of latent TGFbeta2 may be an important mechanism for autocrine TGFbeta regulation in the prostate and may potentially contribute to the formation of osteoblastic lesions in bone metastatic prostate cancer.  相似文献   

12.
Human tissue-type plasminogen activator (t-PA) cDNA inserted into an Epstein-Barr virus (EBV) derived expression vector was transfected into human HeLa, 293, K-562 and hamster CHO-K1 cells and the expression of t-PA was studied. The best t-PA producing cell clones were found among CHO-K1 cells (up to 11 micrograms d-1 per 10(6) cells). However, HeLa and 293 cells were most efficiently transfected, e.g. about 70% of the selected cell clones were t-PA positive. The vector DNA copy numbers correlated with the mRNA levels and the protein levels for all cell lines analysed, with the exception for the K-562 cell line, where the production of t-PA was very low. The results obtained indicated that the highest expression levels were achieved in low density cultures.  相似文献   

13.
For the identification of modulators of the metabotropic glutamate receptor mGluR7, a functional cell-based high throughput screening (HTS) assay was developed. This assay utilizes the signal transduction pathway of mGluR7, which is negatively coupled to adenylyl cyclase. A cAMP-responsive luciferase reporter gene and rat mGluR7 cDNA were cotransfected into CHO-K1 cells by electroporation. Stable recombinant cells were selected by resistance to the antibiotic G418. Functional selection was carried out by analyzing the effect of the agonist glutamate to reduce elevated cAMP levels after forskolin stimulation. Out of 83 G418-resistant cell clones, the clone with the best functional characteristics was selected. This clone displayed the strongest reduction of forskolin-stimulated cAMP levels. Glutamate (10 mM) decreased cAMP levels, as monitored by luciferase expression, by about 50%, and the more potent agonist L-2-amino-4-phosphonobutyrate resulted in nearly complete reduction, exhibiting an EC(50) of 0.9 mM. The functional response of the clone did not change during cell passages, indicating the stability of this novel recombinant cell line. The luciferase reporter gene assay, which allows easy nonradioactive luminescence detection of mGluR7 activity, was optimized for its application in automated HTS.  相似文献   

14.
15.
Summary Osteoclasts are bone-resorbing cells that differentiate from macrophage precursors in response to receptor activator of NF-κB ligand (RANKL). In vitro models of osteoclast differentiation are principally based on primary cell cultures, which are poorly suited to molecular and transgene studies because of the limitations associated with the use of primary macrophage. RAW264.7 is a transfectable macrophage cell line with the capacity to form osteoclast-like cells. In the present study, we have identified osteoclast precursors among clones of RAW264.7 cells. RAW264.7 cell were cloned by limiting dilution and induced to osteoclast differentiation by treatment with recombinant RANKL. Individual RAW264.7 cell clones formed tartrate resistant acid phosphatase (TRAP)-positive multinuclear cells to various degrees with RANKL treatment. All clones tested expressed the RANKL receptor RANK. Each of the clones expressed the osteoclast marker genes TRAP and cathepsin-K mRNA with RANKL treatment. However, we noted that only select clones were able to form large, well-spread, TRAP-positive multinuclear cells. Clones capable of forming large TRAP-positive multinuclear cells also expressed β3 integrin and calcitonin receptor mRNAs and were capable of resorbing a mineralized matrix. All clones tested activated NF-κB with RANKL treatment. cDNA expression profiling of osteoclast precursor RAW264.7 cell clones demonstrates appropriate expression of a large number of genes before and after osteoclastic differentiation. These osteoclast precursor RAW264.7 cell clones provide a valuable model for dissecting the cellular and molecular regulation of osteoclast differentiation and activation.  相似文献   

16.
Genes newly identified as regulated by glucocorticoids in murine thymocytes   总被引:6,自引:0,他引:6  
Glucocorticoids induce dramatic biochemical and morphological changes in lymphocytes through an unknown process that requires RNA and protein synthesis. In order to identify genes involved in this response, we previously isolated 11 cDNA clones from the murine WEHI-7TG thymoma cell line that correspond to mRNAs induced by glucocorticoids. We now report the isolation of two new cDNA clones whose gene expression is regulated by glucocorticoids in WEHI-7TG cells. We further characterize the two new cDNA clones, as well as those described previously, by examining the response of each of the corresponding mRNAs to glucocorticoids in murine thymocytes. With the exception of two, all cDNAs correspond to genes that are induced by glucocorticoids in murine thymocytes within 4 h of treatment. We previously identified two of the cDNAs as the mouse VL30 retrovirus-like element and the mouse homolog of chondroitin sulfate proteoglycan core protein. We have now identified four additional cDNA clones that correspond to the genes for calmodulin, mitochondrial phosphate carrier protein, immunoglobulin (Ig)-related glycoprotein (GP-70), and the 70 kilodalton autoantigen for Lupus and Graves diseases. Two other cDNA clones represent previously undescribed genes: one shares a high similarity to known sequences for the family of G-protein-coupled receptors and the other to a human placental-specific protein, PP11. Another cDNA appears to contain sequences for an unknown gene and the remnants of a mouse transposon. ETn. The remaining clones represent new, unidentified genes induced by glucocorticoids in murine thymocytes and in the WEHI-7TG cell line.  相似文献   

17.
p53 is important in the development of hepatocellular carcinoma (HCC) and in therapeutic approaches, but the mechanism whereby it inhibits HCC growth is still unclear. The aim of the present study was to establish a HCC cell system in which p53 levels can be regulated. Full-length wild-type p53 cDNA obtained by PCR was cloned into a retroviral response vector controlled by the tetracycline responsive element (RevTRE-p53). The regulatory vectors RevTet-Off and RevTRE-p53 were transfected into a packaging cell line, PT67. Hep3B cells in which the p53 gene was deleted were infected with RevTet-Off viral particles from the PT67. Three G418-resistant cell clones with high luciferase expression and low background were infected with RevTRE-p53. By screening dozens of RevTRE-p53-infected clones with hygromycin we identified the one with the highest expression of p53 and the lowest background after doxycycline treatment. The results showed that p53 expression in this cell clone could be simply turned on or off by removing or adding doxycycline. Furthermore, it was found that the level of p53 protein was negatively and sensitively related to the doxycycline concentration. In conclusion, we have established a HCC cell line in which p53 expression can be switched on or off and regulated in a dose- and time-dependent manner.  相似文献   

18.
The 1246 cell line is a C3H mouse teratoma-derived adipogenic cell line that can proliferate and differentiate in defined medium. We have constructed a recombinant phage library containing complementary DNAs (cDNAs) prepared from mRNA of differentiated 1246 cells. This library was screened using a differential hybridization technique. We have isolated five different cDNA clones corresponding to mRNAs that are induced during adipogenesis of 1246 cells and one cDNA clone corresponding to mRNA that is decreased during adipogenesis. Among the mRNAs expressed during adipose differentiation, some are not expressed in undifferentiated cells, whereas some are expressed at very low levels under these conditions. Moreover, the level of induction during differentiation and the temporal expression of the mRNAs corresponding to these cDNAs varied. Our results indicate that one of the cDNA clones isolated, called 154, which selects a 2.2-kilobase mRNA, was induced 100-fold at a very early time during the onset of the differentiation program in 1246 cells and also in adipocyte precursors in primary culture. Direct sequencing of 154 cDNA insert revealed no homology with sequences in GenBank and PIR protein databases. The expression of 154 mRNA was stimulated by accelerators of differentiation such as dexamethasone and isobutylmethylxanthine and inhibited by tumor necrosis factor alpha, transforming growth factor beta, and epidermal growth factor, which are known inhibitors of 1246 cell differentiation. In addition, 154 mRNA level in adipocytes was down-regulated by tumor necrosis factor alpha, but not by transforming growth factor beta or epidermal growth factor. These results suggest that the increase in 154 mRNA expression is related to the onset of adipose differentiation. Further analysis of this clone should allow characterization of a novel protein induced early during the process of differentiation.  相似文献   

19.
The present study investigated the role of integrin-linked kinase (ILK) in TGFbeta1-stimulated invasion/migration of human ovarian cancer cells. We investigated TGFbeta1 regulation of ILK, and effects of ILK knockdown on TGFbeta1-stimulated invasion/migration and the associated proteinase systems, urokinase plasminogen activator (uPA) and matrix metalloproteinases (MMPs) in SKOV3 cells. TGFbeta1 stimulated ILK kinase activity, and had no effect on ILK protein/mRNA levels. Transient transfection of an ILK-specific siRNA (ILK-H) reduced ILK protein level, mRNA level and kinase activity. ILK knockdown by ILK-H suppressed the basal and TGFbeta1-stimulated invasion and migration. Further, ILK-H reduced the basal and TGFbeta1-stimulated secretion of uPA, and increased the secretion of its inhibitor (PAI-1). Conversely, ILK-H did not affect TGFbeta1-stimulated secretion of MMP2 and its cell-associated activator MT1-MMP. Additionally, TGFbeta1 activated Smad2 phosphorylation, and this was not affected by ILK knockdown. Earlier reports indicate that Smad2 activation increased the expression of MMP2 and MT1-MMP. Thus, TGFbeta1 may act through ILK-independent and Smad2-dependent signaling in regulating MMP2 and MT1-MMP in SKOV3 cells. Collectively, this study suggests that ILK serves as a key mediator in TGFbeta1 regulation of uPA/PAI-1 system critical for the invasiveness of human ovarian cancer cells. And ILK is a potential target for cancer therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号