首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative damage is a causal factor in aging and cancer, but it is still not clear how DNA damage, the cellular responses to such damage and its conversion to mutations by misrepair or misreplication contribute to these processes. Using transgenic mice carrying a lacZ mutation reporter, we have previously shown that mutations increase with age in most organs and tissues in vivo . It has also been previously shown that mouse cells respond to oxidative stress, typical of standard culture conditions, by undergoing cellular senescence. To understand better the consequences of oxidative stress, we cultured mouse embryo fibroblasts (MEFs) from lacZ mice under physiological oxygen tension (3%) or the high oxygen tension (20%) associated with standard culture, and determined the frequency and spectrum of mutations. Upon primary culture, the mutation frequency was found to increase approximately three-fold relative to the embryo. The majority of mutations were genome rearrangements. Subsequent culture in 20% oxygen resulted in senescence, followed by spontaneous immortalization. Immortalization was accompanied by an additional three-fold increase in mutations, most of which were G:C to T:A transversions, a signature mutation of oxidative DNA damage. In 3% oxygen, by contrast, MEFs did not senesce and the mutation frequency and spectrum remained similar to primary cultures. These findings demonstrate for the first time the impact of oxidative stress on the genomic integrity of murine cells during senescence and immortalization.  相似文献   

2.
3.
Mutations of the Xpc gene cause a deficiency in global genome repair, a subpathway of nucleotide excision repair (NER), in mammalian cells. We used transgenic mice harboring the lambda-phage-based lacZ mutational reporter gene to study the effect of an Xpc null mutation (Xpc-/-) on damage induction, repair and mutagenesis in mouse skin epidermis after UVB irradiation. UVB induced equal amounts of cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts (64PPs) in mouse skin epidermis of Xpc-/- and wild-type mice. CPDs were not significantly removed in either of the mouse genotypes by 12h after irradiation, whereas removal of 64PPs was observed in the wild-type. Irradiation with 300 and 400J/m2 UVB increased the lacZ mutant frequency in the Xpc-/- epidermis to at least twice as high as in the wild-type. Ninety-nine lacZ mutants isolated from the UVB-exposed epidermis of Xpc(-/-)mice were analyzed and compared with mutant sequences from irradiated wild-type mice. The spectra of the mutations in the two genotypes were both highly UV-specific and similar in the dominance of C-->T transitions at dipyrimidine sites; however, Xpc-/- mice had a higher frequency of two-base tandem substitutions, including CC-->TT mutations, three-base tandem substitutions and double base substitutions that were separated by one unchanged base in a three-base sequence (alternating mutations). These tandem/alternating mutations included a remarkably large number of triplet mutations, a recently reported, novel type of UV-specific mutation, characterized by multiple base substitutions or frameshifts within a three-nucleotide sequence containing a dipyrimidine. We concluded that the triplet mutation is a UV-specific mutation that preferably occurs in NER deficient genetic backgrounds.  相似文献   

4.
Mutational fingerprints of aging   总被引:8,自引:0,他引:8       下载免费PDF全文
Using a lacZ plasmid transgenic mouse model, spectra of spontaneous point mutations were determined in brain, heart, liver, spleen and small intestine in young and old mice. While similar at a young age, the mutation spectra among these organs were significantly different in old age. In brain and heart G:C→A:T transitions at CpG sites were the predominant mutation, suggesting that oxidative damage is not a major mutagenic event in these tissues. Other base changes, especially those affecting A:T base pairs, positively correlated with increasing proliferative activity of the different tissues. A relatively high percentage of base changes at A:T base pairs and compound mutants were found in both spleen and spontaneous lymphoma, suggesting a possible role of the hypermutation process in splenocytes in carcinogenesis. The similar mutant spectra observed at a young age may reflect a common mutation mechanism for all tissues that could be driven by the rapid cell division that takes place during development. However, the spectra of the young tissues did not resemble that of the most proliferative aged tissue, implying that replicative history per se is not the underlying causal factor of age-related organ-specific differences in mutation spectra. Rather, differences in organ function, possibly in association with replicative history, may explain the divergence in mutation spectra during aging.  相似文献   

5.
The o-aminoazotoluene (AAT) has been evaluated as a possible human carcinogen by the International Agency for Research on Cancer. In rodents, it is carcinogenic mainly in the liver, and also in lung following long term administration. We previously examined in lambda/lacZ transgenic mice for the induction of lacZ mutations in liver, lung, urinary bladder, colon, kidney, bone marrow, and testis. AAT induced gene mutations strongly in the liver and colon. In the present report, we reveal the molecular nature of mutations induced by AAT in the lambda cII gene (the cII gene, a phenotypically selectable marker in the lambda transgene, has 294bp, which makes it easier to sequence than the original target, the 3kb lacZ gene). The cII mutant frequency in liver and colon was five and nine times higher, respectively, in AAT-treated mice than in control mice. Sequence analysis revealed that AAT induced G:C to T:A transversions, whereas spontaneous mutations consisted primarily of G:C to A:T transitions at CpG sites.  相似文献   

6.
Dietary restriction (DR) has been shown to robustly extend lifespan in multiple species tested so far. The pro-longevity effect of DR is often ascribed to an increase in cellular defense against somatic damage, most notably damage by reactive oxygen species (ROS), considered a major cause of aging. Especially irreversible damage to DNA, the carrier of genetic information, is considered a critical causal factor in aging. Using a recently developed transgenic Drosophila melanogaster model system harboring a lacZ-plasmid construct that can be recovered in E. coli , spontaneous DNA mutation frequency in flies under DR and ad libitum conditions are measured. Three different DR conditions, imposed by manipulating levels of different types of yeast sources, were tested in females and males of two lacZ reporter gene lines. Feeding with the ROS producer paraquat at 1 mM resulted in a rapid accumulation of somatic mutations, indicating that the frequency of mutations at the lacZ locus is a reliable marker for increased oxidative stress. However, none of the DR conditions altered the accumulation of spontaneous mutations with age. These results suggest that the beneficial effects of DR are unlikely to be linked to protection against oxidative somatic DNA damage.  相似文献   

7.
Amyotrophic lateral sclerosis (ALS) is a progressive paralytic disorder caused by motor neuron degeneration. A similar disease phenotype is observed in mice overexpressing a mutant human hSOD1 gene (G93A, 1Gurd(1)). Mice transgenic for lacI (Big Blue) and human mutant (1Gurd(1), Mut hSOD1) or wild type (2Gur, Wt hSOD1) SOD1 genes were used to examine spontaneous mutation, oxidative DNA damage, and neurodegeneration in vivo. The frequency and pattern of spontaneous mutation were determined for forebrain (90% glia), cerebellum (90% neurons) and thymus from 5-month-old male mice. Mutation frequency is not elevated significantly and mutation pattern is unaltered in Mut hSOD1 mice compared to control mice. Mutation frequency is reduced significantly in the cerebellum of Wt hSOD1 mice (1.6x10(-5); P=0.0093; Fisher's Exact Test) compared to mice without a human transgene (2.7x10(-5)). Mutation pattern is unaltered. This first report of an endogenous factor that can reduce in vivo, the frequency of spontaneous mutation suggests potential strategies for lowering mutagenesis related to aging, neurodegeneration, and carcinogenesis.  相似文献   

8.
To characterize the nature of multiple mutations in the tissues of an intact animal, the Big Blue transgenic mouse mutation detection system was used to examine 1459 mutants from eight normal tissues and 507 mutants from 11 tumors. Multiple mutations occurred and predominantly doublet mutants were identified (i.e. two mutations within one mutant lacI gene), but multiplets of up to five mutations were observed. The frequency of doublets in normal tissues and spontaneous tumors from p53-deficient mice was enhanced to the same degree (660 and 667 fold, respectively) over that expected for two independent mutational events. Doublets, multiplets and singlets have similar patterns of mutation. The distance between mutations in doublets fits an exponential distribution, not that expected for randomly spaced events, suggesting that many doublets occur in rapid succession within the same cell cycle.  相似文献   

9.
We have previously reported the in vivo mutagenicity of aza-polycyclic aromatic hydrocarbons (azaPAHs), such as quinoline, benzo[f]quinoline, benzo[h]quinoline, 1,7-phenanthroline and 10-azabenzo[a]pyrene. The 1,10-diazachrysene (1,10-DAC) and 4,10-DAC, nitrogen-substituted analogs of chrysene, were shown to exhibit mutagenicity in Salmonella typhimurium TA100 in the presence of rat liver S9 and human liver microsomes in our previous report, although DACs could not be converted to a bay-region diol epoxide, the ultimate active form of chrysene, because of their nitrogen atoms. In the present study, we tested in vivo mutagenicity of DACs compared with chrysene using the lacZ transgenic mouse (Mutatrade markMouse) to evaluate the effect of the nitrogen substitution. DACs- and chrysene-induced mutation in all of the six organs examined (liver, spleen, lung, kidney, bone marrow and colon). The mutant frequencies obtained with chrysene showed only small differences between the organs examined and ranged from 1.5 to 3 times the spontaneous frequency. The 4,10-DAC was more mutagenic than chrysene in all the organs tested. The highest lacZ mutation frequency was observed in the lung of 4,10-DAC-treated mice and it was 19 and 6 times the spontaneous frequency and the frequency induced by chrysene, respectively. The 1,10-DAC induced lacZ mutation in the lung with a frequency 4.3- and 1.5-fold higher than in the control and chrysene-treated mice, respectively, although the mutant frequencies in the other organs of 1,10-DAC-treated mice were almost equivalent to those of chrysene-treated mice. Not only chrysene but also DACs depressed the G:C to A:T transition and increased the G:C to T:A transversion in the liver and lung. These results suggest that the two types of nitrogen substitutions in the chrysene structure may enhance mutagenicity in the mouse lung, although they showed no difference in the target-organ specificity and the mutation spectrum.  相似文献   

10.
Upon oxidative challenge the genome accumulates adducts and breaks that activate the DNA damage response to repair, arrest, or eliminate the damaged cell. Thus, reactive oxygen species (ROS) generated by endogenous oxygen metabolism are thought to affect mutation frequency. However, few studies determined the mutation frequency when oxidative stress is reduced. To test whether in vivo spontaneous mutation frequency is altered in mice with reduced oxidative stress and cell death rate, we crossed p66Shc knockout (p66KO) mice, characterized by reduced intracellular concentration of ROS and by impaired apoptosis, with a transgenic line harboring multiple copies of the lacZ mutation reporter gene as part of a plasmid that can be recovered from organs into Escherichia coli to measure mutation rate. Liver and small intestine from 2‐ to 24‐month‐old, lacZ (p66Shc+/+) and lacZp66KO mice, were investigated revealing no difference in overall mutation frequency but a significant increase in the frequency of size‐change mutations in the intestine of lacZp66KO mice. This difference was further increased upon irradiation of mice with X‐ray. In addition, we found that knocking down cyclophilin D, a gene that facilitates mitochondrial apoptosis acting downstream of p66Shc, increased the size‐change mutation frequency in small intestine. Size‐change mutations also accumulated in death‐resistant embryonic fibroblasts from lacZp66KO mice treated with H2O2. These results indicate that p66Shc plays a role in the accumulation of DNA rearrangements and suggest that p66Shc functions to clear damaged cells rather than affect DNA metabolism.  相似文献   

11.
Non-homologous end joining (NHEJ) is thought to be an important mechanism for preventing the adverse effects of DNA double strand breaks (DSBs) and its absence has been associated with premature aging. To investigate the effect of inactivated NHEJ on spontaneous mutation frequencies and spectra in vivo and in cultured cells, we crossed a Ku80-deficient mouse with mice harboring a lacZ-plasmid-based mutation reporter. We analyzed various organs and tissues, as well as cultured embryonic fibroblasts, for mutations at the lacZ locus. When comparing mutant with wild-type mice, we observed a significantly higher number of genome rearrangements in liver and spleen and a significantly lower number of point mutations in liver and brain. The reduced point mutation frequency was not due to a decrease in small deletion mutations thought to be a hallmark of NHEJ, but could be a consequence of increased cellular responses to unrepaired DSBs. Indeed, we found a substantial increase in persistent 53BP1 and gammaH2AX DNA damage foci in Ku80-/- as compared to wild-type liver. Treatment of cultured Ku80-deficient or wild-type embryonic fibroblasts, either proliferating or quiescent, with hydrogen peroxide or bleomycin showed no differences in the number or type of induced genome rearrangements. However, after such treatment, Ku80-deficient cells did show an increased number of persistent DNA damage foci. These results indicate that Ku80-dependent repair of DNA damage is predominantly error-free with the effect of alternative more error-prone pathways creating genome rearrangements only detectable after extended periods of time, i.e., in young adult animals. The observed premature aging likely results from a combination of increased cellular senescence and an increased load of stable, genome rearrangements.  相似文献   

12.
Transgenic mice harboring the lacZ gene within a plasmid that can be recovered and amplified in Escherichia coli, to establish mutant frequencies and spectra, have provided crucial insights into the relationships between mutations, cancer and aging in vivo. Here, we use embryonic fibroblasts from transgenic lacZ-plasmid reporter mice to determine the relationship between cell proliferation in culture and mutations induced by ultraviolet (UV) light. A single dose of 2.5J/m2 of UVC to actively proliferating cells caused an approximately eight-fold increase in mutant frequency 24 h after irradiation. Identically treated quiescent cells showed a two-fold increase in mutant frequency. Thus, whereas proliferation facilitated the acquisition of mutations, it was not an absolute requirement. Characterization of the UV-induced mutations indicated that the lower mutant frequency in quiescent cells was due mainly to a reduction in point mutations; size-change mutations, indicative of translocations or deletions, were relatively unaffected by the growth state of the cells. To investigate long-term genomic stability after UVC-induced damage, we monitored the lacZ locus in irradiated cells passaged for many generations in culture. The results indicated the emergence of jackpot mutations of rapidly changing frequency, most likely reflecting the successive emergence and decline of dominant cell clones during long-term culture. These findings show that the lacZ-plasmid locus is a valid reporter for studying induced mutations in short-term cultures of both quiescent and proliferating fibroblasts. In long-term cultures, the locus is less suitable for studying induced mutations owing to the instability of the cell population.  相似文献   

13.
Quinoline is carcinogenic to the liver in rodents, but it is not clear whether it acts by a genotoxic mechanism. We previously demonstrated that quinoline does induce gene mutation in the liver of lambda/lacZ transgenic mice. In the present report, we reveal the molecular nature of the mutations induced by quinoline in the lambda cII gene, which is also a phenotypically selectable marker in the lambda transgene. (The cII gene has 294bp, which enables much easier sequence analysis than the original lacZ gene (3kb)). The liver cII mutant frequency was nine times higher in quinoline-treated mice than in control mice. Sequence analysis revealed that quinoline induced primarily G:C to C:G transversions (25 of 34). Thus, we have confirmed that quinoline is genotoxic in its target organ, and the G:C to C:G transversion is the molecular signature of quinoline-induced mutations.  相似文献   

14.
To ensure proper transmission of genetic information, cells need to preserve and faithfully replicate their genome, and failure to do so leads to genome instability, a hallmark of both cancer and aging. Defects in genes involved in guarding genome stability cause several human progeroid syndromes, and an age‐dependent accumulation of mutations has been observed in different organisms, from yeast to mammals. However, it is unclear whether the spontaneous mutation rate changes during aging and whether specific pathways are important for genome maintenance in old cells. We developed a high‐throughput replica‐pinning approach to screen for genes important to suppress the accumulation of spontaneous mutations during yeast replicative aging. We found 13 known mutation suppression genes, and 31 genes that had no previous link to spontaneous mutagenesis, and all acted independently of age. Importantly, we identified PEX19, encoding an evolutionarily conserved peroxisome biogenesis factor, as an age‐specific mutation suppression gene. While wild‐type and pex19Δ young cells have similar spontaneous mutation rates, aged cells lacking PEX19 display an elevated mutation rate. This finding suggests that functional peroxisomes may be important to preserve genome integrity specifically in old cells.  相似文献   

15.
Increased genomic instability has been found associated with cancer and aging. The p53 tumor suppressor protein is a major determinant of genomic instability as a regulator of cell cycle control and apoptosis in response to DNA damage. To investigate the rate of age-related mutation accumulation in the absence of p53, we crossed Trp53 null mice with transgenic mice harboring a lacZ mutational target gene. In the hybrid animals, lacZ mutation frequencies at early age (i.e. at about 2 months) were found to be the same as in the control lacZ animals. However, up until about 6 months, when the Trp53-knockout mice usually die from cancer, mutations were found to accumulate with age in the spleen, and to a lesser extent in the liver, at a more rapid rate than in the control Trp53(+/+) or Trp53(+/-), lacZ hybrid mice. Treatment of 2-3-month-old Trp53(-/-), lacZ hybrid mice with the powerful mutagen ethyl nitrosourea (ENU) resulted in a higher number of mutations induced in the liver but not in the spleen, as compared to the Trp53(+/+), lacZ mice. These results suggest that p53 is not an important determinant of gene mutation induction, either spontaneously during development or after treatment with a mutagen. The accelerated age-related accumulation of mutations in normal spleen and liver could be explained by the defect in apoptosis, which would prevent severely damaged cells from being eliminated.  相似文献   

16.
Germ line DNA directs the development of the next generation and, as such, is profoundly different from somatic cell DNA. Spermatogenic cells obtained from young adult lacI transgenic mice display a lower spontaneous mutant frequency and greater in vitro base excision repair activity than somatic cells and tissues obtained from the same mice. However, spermatogenic cells from old lacI mice display a 10-fold higher mutant frequency. This increased spontaneous mutant frequency occurs coincidentally with decreased in vitro base excision repair activity for germ cell and testicular extracts that in turn corresponds to a decreased abundance of AP endonuclease. To directly test whether a genetic diminution of AP endonuclease results in increased spontaneous mutant frequencies in spermatogenic cell types, AP endonuclease heterozygous (Apex(+/-)) knockout mice were crossed with lacI transgenic mice. Spontaneous mutant frequencies were significantly elevated (approximately twofold) for liver and spleen obtained from 3-month-old Apex(+/-) lacI(+) mice compared to frequencies from Apex(+/+) lacI(+) littermates and were additionally elevated for somatic tissues from 9-month-old mice. Spermatogenic cells from 9-month-old Apex(+/-) lacI(+) mice were significantly elevated twofold compared to levels for 9-month-old Apex(+/+) lacI(+) control mice. These data indicate that diminution of AP endonuclease has a significant effect on spontaneous mutagenesis in somatic and germ line cells.  相似文献   

17.
Felix K  Rolink A  Melchers F  Janz S 《Mutation research》2003,522(1-2):135-144
To assess mutagenesis during early B-lymphocyte development in vitro, progenitor B cells (pre-B cells) were obtained from fetal livers of BALB/c mice and DBA/2N mice that harbored the transgenic shuttle vector, pUR288, with a lacZ reporter gene for the determination of mutant frequencies (MFs). Differentiation-arrested pre-B cells demonstrated a marked dose-dependent increase in lacZ mutant levels after exposure to gamma-irradiation with a peak MF of 250 x 10(-5) at 2.5 Gy. Without genotoxic treatment, pre-B cells undergoing spontaneous differentiation into surface IgM expressing immature B cells exhibited lacZ mutant levels of up to 95 x 10(-5). The mutational pattern was dominated in both experiments by illegitimate recombination mutations of lacZ, not point mutations. Likewise, in both experiments, the enforced expression of Bcl-2 resulted in a striking reduction of lacZ mutations. These findings indicated that mouse pre-B cells are prone to accumulate induced and self-inflicted mutations, particularly recombinations. Additionally, our studies revealed a heretofore unknown role of Bcl-2 in inhibiting mutagenesis during early B-cell development in mice.  相似文献   

18.
The lacI transgene used in the Big Blue (BB) mouse and rat mutation assays typically displays spontaneous mutation frequencies in the 5x10(-5) range. Recently, the bone marrow and bladder of the Big Blue rat were reported to have, by an order of magnitude, the lowest spontaneous mutation frequencies ever observed for lacI in a transgenic animal, approaching the value for endogenous targets such as hprt ( approximately 10(-6)). Since spontaneous mutations in transgenes have been attributed in part to deamination of 5-methylcytosine in CpG sequences, we have investigated the methylation status of the lacI transgene in bone marrow of BB rats and compared it to that present in other tissues including liver, spleen, and breast. The first 400 bases of the lacI gene were investigated using bisulfite genomic sequencing since this region contains the majority of both spontaneous and induced mutations. Surprisingly, all the CpG cytosines in the lacI sequence were fully methylated in all the tissues examined from both 2- and 14-week-old rats. Thus, there is no correlation between 5-methylcytosine content at CpG sites in lacI and the frequency of spontaneous mutation at this marker. We also investigated the methylation status of another widely used transgenic mutation target, the cII gene. The CpG sites in cII in BB rats were fully methylated while those in BB mice were partially methylated (each site approximately 50% methylated). Since spontaneous mutation frequency at cII is comparable in rat and mouse, the methylation status of CpG sequences in this gene also does not correlate with spontaneous frequency. We conclude that other mechanisms besides spontaneous deamination of 5-methylcytosine at CpG sites are driving spontaneous mutation at BB transgenic loci.  相似文献   

19.
With the goal of understanding the role of non-homologous end-joining repair in the maintenance of genetic information at the tissue level, we studied mutations induced by radiation and subsequent repair of DNA double-strand breaks in Ku70 gene-deficient lacZ transgenic mice. The local mutation frequencies and types of mutations were analyzed on a lacZ gene that had been chromosomally integrated, which allowed us to monitor DNA sequence alterations within this 3.1-kbp region. The mutagenic process leading to the development of the most frequently observed small deletions in wild-type mice after exposure to 20 Gy of X rays was suppressed in Ku70(-/-) mice in the three tissues examined: spleen, liver and brain. Examination of DNA break rejoining and the phosphorylation of histone H2AX in Ku70-deficient and -proficient mice revealed that Ku70 deficiency decreased the frequency of DNA rejoining, suggesting that DNA rejoining is one of the causes of radiation-induced deletion mutations. Limited but statistically significant DNA rejoining was found in the liver and brain of Ku70-deficient mice 3.5 days after irradiation, showing the presence of a DNA double-strand break repair system other than non-homologous end joining. These data indicate a predominant role of non-homologous end joining in the production of radiation-induced mutations in vivo.  相似文献   

20.
Transgenic mutation assays utilizing bacterial target genes display a high frequency of spontaneous mutation at CpG sequences. This is believed to result from the fact that: (1) the prokaryotic genes currently being used as transgenic mutation targets have a high CpG content and (2) these sequences are methylated by mammalian cells to produce 5-methylcytosine (5MC), a known promutagenic base. To study the effect of CpG content on the frequency and type of spontaneous mutation, we have synthesized an analogue of the bacterial lacI target gene (mrkII) that contains a reduced number of CpG sequences. This gene was inserted into a lambda vector and used to construct trangenic mice that undergo vector rescue from genomic DNA upon in vitro packaging. Results on spontaneous mutation frequency and spectrum have been collected and compared to those observed at the lacI gene in Big Blue™ transgenic mice. Spontaneous mutations at the mrkII gene occurred at a frequency in the mid-10−5 range and were predominantly base pair substitutions, similar to results seen in Big Blue™. However, mrkII mutations were distributed toward the carboxyl end of the gene instead of the bias toward the amino terminus seen in lacI. Unexpectedly, 23% of the spontaneous mrkII mutations were GC → AT transitions at CpG sequences (compared to 32% in lacI), despite the reduction in CpG number from 95 in lacI to only 13 in mrkII. Nine of the CpG bases undergoing transition mutations in mrkII have not been recorded previously as spontaneous sites in Big Blue™. Therefore, substantial reduction of the number of CpG sequences in the lacI transgene did not significantly reduce the rate of spontaneous mutation or alter the contribution of CpG-related events. This suggests that other factors are also operating to establish frequency and composition of spontaneous mutations in transgenic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号