首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nucleocapsids were isolated from purified enveloped nucleocapsids of Plodia interpunctella granulosis virus by treatment with Nonidet P-40. When analyzed on sodium dodecyl sulfate-polyacrylamide gels, the nucleocapsids consisted of eight polypeptides. One of these, a major component with a molecular weight of 12,500 (VP12), was selectively extracted from the nucleocapsids with 0.25 M sulfuric acid. Its electrophoretic mobility on acetic acid-urea gels was intermediate to that of cellular histones and protamine. Amino acid analysis showed that 39% of the amino acid residues of VP12 were basic: 27% were arginine and 12% were histidine. The remaining residues consisted primarily of serine, valine, and isoleucine. Proteins of similar arginine content also were extracted from the granulosis virus of Pieris rapae and from the nuclear polyhedrosis viruses of Spodoptera frugiperda and Autographa californica. The basic polypeptide appeared to be virus specific because it was found in nucleocapsids and virus-infected cells but not in uninfected cells. VP12 was not present in polypeptide profiles of granulosis virus capsids, indicating that it was an internal or core protein of the nucleocapsids. Electron microscopic observations suggested that the basic protein was associated with the viral DNA in the form of a DNA-protein complex.  相似文献   

2.
3.
The structural polypeptides of 12 baculovirus isolates which included nuclear polyhedrosis viruses (NPVs) and granulosis viruses (GVs) obtained from four different species of the insect genus Heliothis collected in different geographical regions of the world were characterized using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The matrix proteins were compared according to their molecular weights and peptide profiles produced after limited proteolysis. Examination of the matrix and virion polypeptide profiles revealed three major polypeptide phenotypes which corresponded to the three baculovirus morphological groups; singly embedded nuclear polyhedrosis viruses (SNPVs), multiply embedded nuclear polyhedrosis viruses (MNPVs), and granulosis viruses (GVs). Enveloped nucleocapsid polypeptide profiles of isolates within each NPV phenotype differed in only one polypeptide whereas the two GV isolates differed by as many as five polypeptides. Nucleocapsid polypeptide profiles of isolates within each of the NPV subgroups were identical while those profiles from the GV nucleocapsids differed slightly in molecular weight of one polypeptide.  相似文献   

4.
TN-368 cells were infected simultaneously with the closely related Autographa california (AcMNPV) and Rachiplusia ou (RoMNPV) nuclear polyhedrosis viruses. Progeny viral isolates were plaque purified, and their DNAs were analyzed with restriction endonucleases. Of 100 randomly cloned plaques, 7 were AcMNPV and RoMNPV recombinants, 5 were RoMNPV, and 88 were AcMNPV. The recombinants contained DNA sequences derived from both parental genomes. By comparing the restriction cleavage patterns of parental and recombinant DNAs, the crossover sites were mapped. A single double crossover was detected in each of the seven recombinant genomes. In addition, six of the seven recombinants revealed a crossover site mapping between 78 and 89% of the genome. The structural polypeptides of the seven recombinants and two parental viruses were analyzed by polyacrylamide gel electrophoresis, and their polyhedrins were identified by tryptic peptide mapping. An analysis of the segregation of three enveloped nucleocapsid proteins and of the polyhedrins among the recombinants located the DNA sequences coding for AcMNPV structural polypeptides with molecular weights of 37,000 (a capsid polypeptide), 56,000, and 90,000 and the RoMNPV structural polypeptides with molecular weights of 36,000 (a capsid polypeptide), 56,000, and 91,000. The AcMNPV and RoMNPV polypeptides of molecular weights 37,000 and 36,000, respectively, mapped within 78 to 89% or 1 to 29%, the polypeptides of molecular weights 55,000 and 56,000 mapped within 78 to 29%, and the polypeptides of molecular weights 90,000 and 91,000 mapped within 19 to 56% of the genome. The region of the parental DNAs that codes for polyhedrin was located within 70 to 89% of the genome.  相似文献   

5.
Purified measles virus was obtained from [35S]methionine-labeled cells infected at 33 degrees C and maintained in the absence of fetal calf serum. The pellet that was produced by a single high-speed ultracentrifuge spin of culture medium contained virus of purity sufficient for structural analysis. Purified virions contain seven polypeptides with estimated molecular weights of: L, 200,000; G, 80,000; P2, 70,000; NP, 60,000; A, 43,000; F1, 41,000; and M, 37,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Treatment of virions with 0.25% trypsin resulted in a less dense particle which lacked polypeptides G and F1. Solubilization of the viral membrane with the detergent Triton X-100 in low-salt buffer resulted in the loss of the G polypeptide, whereas in the presence of 1 M KCl, Triton X-100 also removed most of the M polypeptide. The nucleocapsids (p = 1.3) obtained from virions treated with Triton X-100 and 1 M KCl contained the L, P2, NP, and M polypeptides. Nucleocapsids isolated from the cytoplasm of infected cells were predominantly composed of the NP polypeptide with smaller amounts of either polypeptide P2 or novel polypeptides, related to NP, with estimated molecular weights of 56,000 to 58,000 and 45,000 to 46,000. A significant amount of polypeptide L was always found in association with nucleocapsids isolated either from virions or from the cytoplasm of infected cells. A membrane component containing the viral membrane polypeptides G, F1, and M was also isolated from infected cells. The data presented here thus suggest that L is an integral part of the nucleocapsid complex. In addition, 37,000-molecular-weight polypeptide (M) appears to have the function described for the matrix proteins of other paramyxoviruses.  相似文献   

6.
Cricket paralysis virus purified from Galleria mellonella larvae was shown to be similar to virus purified from Drosophila melanogaster cells. Cricket paralysis virus contained three major structural polypeptides of similar molecular weight (around 30,000), had a buoyant density of 1.344 g/ml, and had a capsid diameter of 27 nm. Twenty virus-induced polypeptides could be detected in CrPV-infected Drosophila cells. Two major polypeptides found in the infected cells corresponded to two structural viral polypeptides (VP1 and VP3), whereas the third major intracellular polypeptide was the apparent precursor of the third viral structural polypeptide (VP2). Three of the primary virus-induced polypeptides had molecular weights of 144,000, 124,000, and 115,000. These and other polypeptides were chased into lower-molecular-weight proteins when excess cold methionine was added after a short [35S]methionine pulse. Although cricket paralysis virus has a number of characteristics in common with the mammalian enteroviruses, the extremely fast processing of high-molecular-weight polypeptides into viral proteins seems atypical. Also, no VP4 (8,000 to 10,000 molecular weight) has been found in the virus particles.  相似文献   

7.
Analysis of purified naked and enveloped nucleocapsids of pseudorabies virus with high-resolution techniques has allowed a reassessment of their protein composition. Enveloped particles are shown to contain at least 20 proteins whose molecular weights are in the range 20,000 to 230,000. Naked nucleocapsids contain one major and seven minor proteins in the molecular weight range 20,000 to 155,000. Phosphorylation of at least one virion protein is shown to take place in vivo. These results demonstrate that pseudorabies virus is similar in its protein complement to other herpesviruses which have recently been examined.  相似文献   

8.
The biochemical and biophysical characteristics of the closely related Diacrisia virginica and Hyphantria cunea granulosis virus isolates were examined. Sucrose gradient sedimentation patterns of alkali-solubilized DGV and HcGV capsules were identical. The top, middle, and bottom fractions from either viral isolate were infectious when injected into susceptible host larvae. Electrophoretic analysis of alkaline-solubilized granulin extracts demonstrated that both viruses contain alkaline proteolytic activity. The major granulin protein (~28,000 daltons) of both isolates comigrated in a SDS-PAGE. Electrophoretic separation of the virus proteins demonstrated some quantitative differences between the two granulosis viruses. The enveloped nucleocapsids and the nucleocapsids of the two viruses were morphologically indistinguishable.  相似文献   

9.
10.
M Dolyniuk  E Wolff    E Kieff 《Journal of virology》1976,18(1):289-297
Two series of experiments were undertaken to identify the topological location of the structural polypeptides of Epstein-Barr virus. In the first series of experiments, nucleocapsids prepared by detergent treatment of enveloped virus with Nonidet P-40 and sodium deoxycholate were found to be composed of seven polypeptides, VP2, 6, 7.5, 24, 27, 31, ANd 33, which ranged in molecular weight from over 200 X 10(3) to 28 X 10(3). Nine other polypeptides, VP 4, 7, 8, 10, 15, 16, 23, 28, and 29, could be identified in preparations of Epstein-Barr virus nucleocapsids, but the relative amount of this second group of polypeptides was less in preparations of nucleocapsids than in preparations of enveloped virus. The incomplete removal of these polypeptides from enveloped virus by detergent treatment suggests that some of these polypeptides may be components of the envelope or tegument that lie in close proximity to the outer surface of the nucleocapsid In the second series of experiments periodic acid-Schiff-staining and glucosamine-containing components were identified with similar electrophoretic mobility to several of the polypeptides of enveloped virus (VP 5, 8, 9, 11, 12, 13, 14, 15, 16, 17, 28, and 29) that were completely or incompletely removed from purified virus preparations by detergent treatment. The similarity between the polypeptide composition of the nucleocapsids of Epstein-Barr virus and herpes simplex virus was in contrast to the dissimilarity between the nonnucleocapsid polypeptides of Epstein-Barr virus and herpes simplex virus.  相似文献   

11.
Protein content and localization of individual proteins of rabies virus have been studied. Four major proteins (estimated molecular weights, about 65,000, 54,000, 37,000 and 21,000), one minor component (molecular weight, about 200,000), and one intermediate (as regards its molar concentration) component (molecular weight, about 43,000) were revealed in rabies virus particles. In subviral particles accumulating in virus-infected cells, the 200,000-, 54,000-, and 37,000-dalton components were revealed. Some properties of the subviral particles allow them to be considered as viral nucleocapsids and the proteins composing them as analogs of L, N, and NS proteins of other rhabdoviruses. Thus, the protein composition of the rabies virus strain studied does not differ from that of other rhabdoviruses.  相似文献   

12.
Varicella-zoster virus (VZV) directs the synthesis of numerous glycosylated and nonglycosylated infected-cell-specific proteins, many of which are later incorporated into the virion as structural components. In this study, we characterized a nonglycosylated polypeptide complex with the aid of a VZV-specific murine monoclonal antibody clone, 251D9. As detected by indirect immunofluorescence, the antibody bound mainly to antigens located within the nuclei of infected cells and did not attach to an uninfected cell substrate. The polypeptide specificity of the monoclonal antibody was determined by immunoblot analysis of electrophoretically separated infected cell extracts to react with a 32,000-molecular-weight VZV-specific protein (p32); in addition, the antibody also bound to a 36,000-molecular-weight polypeptide. The synthesis of these antigens was unaffected by inhibitors of glycosylation. Nonionic or ionic detergents were only marginally effective in solubilization of the p32-p36 complex, and relatively small amounts were eluted from nuclei by high salt concentrations (2 M NaCl). The same proteins remained associated with the nuclear matrix of VZV-infected cells. We also demonstrated that the protein complex was a major component of purified VZV nucleocapsids; p32 was especially prominent in both full and empty capsids. Immunoblot analysis of the nucleocapsid preparation revealed two additional species (p34 and p38) in the p32-p36 complex. Phosphorylation was a distinctive feature of some of the constituents. In summary, these results indicate that the p32-p36 complex represents a family of structural proteins closely associated with the assembly of VZV nucleocapsids and the encapsidation of viral DNA.  相似文献   

13.
Yaba virus proteins were characterized by polyacrylamide gel electrophoresis. Electrophoresis of Yaba virion (proteins) dissociated by sodium dodecyl sulfate and 2-mercaptoethanol in continuous and discontinuous buffer systems yielded 37 polypeptide species by staining and by counting bands of radioactively labeled polypeptides. The molecular weights of the viral polypeptide species were found to range from 10,000 to 220,000 by comparing the relative distance of migration of viral proteins with proteins of known molecular weights. Two polypeptides were removed from purified virions by nonionic detergent nonidet P -40 treatment, and the amount of one polypeptide was reduced. Purified cores yielded 21 polypeptide species, none of which was labeled with radioactive glucosamine.  相似文献   

14.
To infect mammalian cells, enveloped viruses have to deposit their nucleocapsids into the cytoplasm of a host cell. Membrane fusion represents a key element in this entry mechanism. The fusion activity resides in specific, virally encoded membrane glycoproteins. Some molecular properties of these fusion proteins will be briefly described. These properties will then be correlated to the ability of a virus to fuse with target membranes, and to induce cell-cell fusion. Some molecular and physical parameters affecting virus fusion—at the level of either viral or target membrane or both—and the significance of modelling virus fusion by using synthetic peptides resembling viral fusion peptides, will also be discussed.  相似文献   

15.
The hypertrophy nuclear polyhedrosis virus of the armyworm, Pseudaletia unipuncta, causes a unique gradient of infected cells to form on the trachea. The movement and invasion of the virus apparently were not through adjacent intercellular membranes. The enveloped viruses emerged from the initially infected cell into an area between the cell plasma membrane and basal lamina, and then entered the uninfected tracheal cell either by lateral attachment and fusion of the viral envelope and the plasma membrane or by viropexis. The two methods of viral invasion into the cell suggest the presence of at least two phenotypically different enveloped viruses. Viropexis was initiated with an alignment of the peplomer spikes with regularly spaced, short radial striations on the inner coat of the plasma membrane. At a late state in viropexis, the viral envelope fused with the vacuole membrane, and an opening developed below the site of membrane fusion through which the nucleocapsid might enter the cytoplasm. Some nucleocapsids in membrane-lined vesicles resulting from viropexis appeared to be in a state of dissolution. Naked nucleocapsids were found along the nuclear envelope and within the nucleoplasm. No uncoating of the nucleocapsids was observed at the nucleopores, but uncoating seemed to occur in the nucleoplasm. Nucleocapsids were also found in the cytoplasm of nonsusceptible fat body cells, in which virus replication was not observed.  相似文献   

16.
Characterization of the proteins and nucleic acid of the gypsy moth nuclear polyhedrosis virus isolated in Ithaca, N.Y. (LdNPV-IT) is presented. A total of 29 viral structural proteins were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis when the virus was isolated in the absence of alkaline protease activity. Fourteen surface envelope viral proteins were identified by lactoperoxidase iodination. Eleven proteins were associated with nucleocapsids prepared by Nonidet P-40 detergent treatment. Distinct alterations of viral proteins were documented when virions were purified in the presence of occlusion body-associated alkaline protease(s). Restriction enzyme digests of viral DNA indicated that this isolate was composed of a large number of genetic variants. On the basis of the major molar fragments resulting from EcoRI, BamHI, BglII, and HindIII digests, the molecular weight of the LdNPV genome was approximately 88 × 106.  相似文献   

17.
We isolated polyadenylated RNA from the cytoplasm of cells infected with Autographa californica nuclear polyhedrosis virus late after infection (21 h postinfection). At that time intracellular protein synthesis was directed almost exclusively toward infected cell-specific proteins. The polyadenylic acid-containing RNA sequences in the cytoplasm at 21 h postinfection were radiolabeled in vitro and hybridized to A. californica nuclear polyhedrosis virus DNA restriction fragments. The polyadenylic acid-containing RNA was derived from regions representing the entire viral genome. Translation in a reticulocyte cell-free protein-synthesizing system of cytoplasmic RNA selected by hybridization to viral DNA and polyadenylic acid-containing RNA produced almost identical polypeptide patterns, suggesting that late after infection almost all of the cytoplasmic polyadenylic acid-containing RNA present in infected cells was of viral origin. Polyhedrin protein (molecular weight, 33,000) and a number of virion structural proteins were among the translation products which were identified by immunoprecipitation and by comparing molecular weights. In addition, some tentative nonstructural infected cell-specific proteins were also detected. Using the hybridization selection technique, we determined that sequences complementary to the message coding for polyhedrin were located on EcoRI fragment I of A. californica nuclear polyhedrosis virus DNA, whereas sequences coding for a putative nonstructural protein (molecular weight, 39,000) were on EcoRI fragment J.  相似文献   

18.
 用差速离心和蔗糖密度梯度离心提纯了家蚕核型多角体病毒及其核衣壳,并用SDS聚丙烯酰胺凝胶(均一胶和梯度胶)电泳分析了它们的结构蛋白。测量使用游标卡尺,计算使用微型计算机。凝胶用很染色方法染色。 结果表明,家蚕核型多角体病毒长381.2±17.81纳米,直径88.86±9.605纳米;核衣壳长328.9±5.917纳米,直径41.36±1.167纳米。两种凝胶电泳所得数据显示病毒粒子至少含有20组分子量不同的结构多肽,含量较多的是P31、P40、P28和P20。P45和一些小分子多肽看来主要存于囊膜上。P31的分子量与多角体蛋白相同,我们的实验表明它可能是病毒粒子和核衣壳的结构组分。  相似文献   

19.
The herpes simplex virus type 1 (HSV-1) tegument is the least understood component of the virion, and the mechanism of tegument assembly and incorporation into virions during viral egress has not yet been elucidated. In the present study, the addition of tegument proteins (VP13/14, VP16, VP22, and US9) and envelope glycoproteins (gD and gH) to herpes simplex virions in the cell body of rat dorsal root ganglion neurons was examined by immunoelectron microscopy. All tegument proteins were detected diffusely spread in the nucleus within 10 to 12 h and, at these times, nucleocapsids were observed budding from the nucleus. The majority (96%) of these nucleocapsids had no detectable label for tegument and glycoproteins despite the presence of tegument proteins in the nucleus and glycoproteins adjacent to the nuclear membrane. Immunolabeling for tegument proteins and glycoproteins was found abundantly in the cytoplasm of the cell body in multiple discrete vesicular areas: on unenveloped, enveloped, or partially enveloped capsids adjacent to these vesicles and in extracellular virions. These vesicles and intracytoplasmic and extracellular virions also labeled with Golgi markers, giantin, mannosidase II, and TGN38. Treatment with brefeldin A from 2 to 24 h postinfection markedly inhibited incorporation into virions of VP22 and US9 but to a lesser degree with VP16 and VP13/14. These results suggest that, in the cell body of neurons, most tegument proteins are incorporated into unenveloped nucleocapsids prior to envelopment in the Golgi and the trans-Golgi network. These findings give further support to the deenvelopment-reenvelopment hypothesis for viral egress. Finally, the addition of tegument proteins to unenveloped nucleocapsids in the cell body allows access to these unenveloped nucleocapsids to one of two pathways: egress through the cell body or transport into the axon.  相似文献   

20.
Some properties of influenza virus nucleocapsids   总被引:13,自引:10,他引:3       下载免费PDF全文
Nucleocapsids released from influenza virions by sodium deoxycholate sedimented heterogeneously in sucrose gradients. Highly infectious virus (complete) preparations yielded nucleocapsids with peak distributions at 64 and 56S; von Magnus type virus (incomplete) lacked 64S nucleocapsids. Treatment of influenza virus nucleocapsids with pancreatic ribonuclease rendered the associated viral ribonucleic acid (RNA) molecules acid-soluble, indicating that capsid proteins do not completely surround the viral RNA's. However, the capsid proteins remained associated after enzymatic hydrolysis of the RNA, as judged by persistently high sedimentation rates. Sedimentation rates of viral nucleocapsids reflected the sedimentation rates of the associated RNA's: 64S nucleocapsids contained 18S RNA, whereas 56S nucleocapsids contained 15S RNA, although in both cases RNA's sedimenting at 4 to 13S were also recovered. Furthermore, just as incomplete virions lacked 64S nucleocapsids, they also lacked 18S RNA. These findings support the hypothesis that the influenza virus genome is divided among several distinct pieces of RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号