首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lowering high cholesterol concentration decreases the probability of atherosclerotic-related pathology onset. MUFA and PUFA decrease total plasma and LDL cholesterol but PUFA may increase the susceptibility of LDL to undergo oxidative modifications thus becoming more atherogenetic. Olive oil, the predominant fat source in Mediterranean diet, may combine the advantages of both lowering cholesterol level and decreasing LDL susceptibility to oxidation. We studied the effects of feeding MUFA vs PUFA enriched diet on LDL composition and feature in hypercholesterolemic (IIb) patients Antioxidant values remained constant during the study while LDL fatty acids composition reflected the dietary intake: MUFA concentration increased 11% whereas PUFA decreased 10% after olive oil diet (p < 0.05). PUFA/MUFA ratio and the unsaturation index were lower at the end of MUFA-enriched diet. The challenge, in vitro, of oleate-enriched LDL with Cu2+ yielded to lower lag-phase (p < 0.05) in diene conjugated production; the same LDL gave lower lipid hydroperoxide contents after exposition to AAPH. We conclude that oleate-enriched LDL and with lower PUFA content were more resistant to oxidative modifications, as measured by different peroxidation indexes. This feature acquired with the diet may be an useful tool for lowering LDL oxidation and indirectly their atherogenicity.  相似文献   

2.
We assessed the hepatic antioxidant status of spontaneously (SHR) and desoxicorticosterone acetate (DOCA)-induced hypertensive rats and that of respective normotensive Wistar Kyoto (WKY) and Sprague-Dawley (SPRD) rats. For this we evaluated, ex vivo in liver cytosols, reduced glutathione (GSH) content, glutathione-related enzyme (peroxidase, reductase and transferase) activities as well as the rate of lipid peroxidation in 9–11 week-old rats. The antioxidant status and the cytotoxicity of acetaminophen, a radical- and hydrogen peroxide-mediated hepatotoxic compound, were also assessed in vitro in cultured hepatocytes isolated from hypertensive (SHR, DOCA) and normotensive control (WKY, SPRD) rats. Our results suggest that a difference exists in the hepatic antioxidant status between rat strains, with GSH levels being lower (–15%) and lipid peroxidation rate higher (+30%) in WKY compared to SPRD rats. In hepatocyte cultures from WKY rats, both GSH content and catalase activity were lower (–30 and –70% respectively) compared to hepatocyte cultures from SPRD rats. This was associated with a 35% higher cytotoxicity of acetaminophen in cultured hepatocytes from WKY rats compared to that in hepatocytes from SPRD rats. Hypertension in DOCA rats (mmHg: 221 ± 9 vs. 138 ± 5 in control SPRD rats) was associated with decreases (about 30%) in both glutathione peroxidase (GSH-Px) and catalase activities, ex vivo in livers and in vitro in hepatocyte cultures. Hypertension in SHR (mmHg: 189 ± 7 vs. 130 ± 5 in control WKY rats) was also associated with decreases (about 50%) in GSH-Px activity, ex vivo in livers and in vitro in hepatocyte cultures but catalase activity was not modified. The IC50 of acetaminophen was also lower in hepatocytes from hypertensive rats compared to respective controls, which could be related to the weakened antioxidant status in hepatocytes from hypertensive rats. Our data thus suggest that hepatocyte cultures are appropriated tools in which to assess hepatotoxicity and hepatoprotection in hypertension.  相似文献   

3.
This study was designed to evaluate the effects of individual dietary long-chain n-3 polyunsaturated fatty acids (LCPUFA) on hypertension and cardiac consecutive disorders in spontaneously hypertensive rats (SHR) as compared to Wistar-Kyoto rats (WKY). Rats were fed for 2 months an eicosapentaenoic (EPA)- or docosahexaenoic acid (DHA)-rich diet (240 mg/day) or an n-3 PUFA-free diet. Male SHR (n=6), implanted with cardiovascular telemetry devices, were housed in individual cages for continuous measurements of cardiovascular parameters (blood pressure (BP) and heart rate (HR)) during either activity or rest periods, ECG were recorded during the quiet period. The n-6 PUFA upstream of arachidonic acid was affected in SHR tissues. The cardiac phospholipid fatty acid profile was significantly affected by dietary DHA supply, and EPA in a very lower extent, since DHA only was incorporated in the membranes instead of n-6 PUFAs. Endothelium n-6 PUFA content increased in all SHR groups. Compared to WKY, linoleic acid content decreased in both studied tissues. Cardiac noradrenalin decreased while the adrenal catecholamine stores decreased in SHR as compared to WKY. Both n-3 PUFA supply induced a decrease of adrenal catecholamine stores. Nevertheless after 6 weeks, DHA but not EPA induced a lowering-blood pressure effect and shortened the QT interval in SHR, most probably through its tissue enrichment and a specific effect on adrenergic function. Dietary DHA supply retards blood pressure development and has cardioprotective effect. These findings, showing the cardioprotective effects of DHA in living animals, were obtained in SHR, but may relate to essential hypertension in humans.  相似文献   

4.
This comparative study investigates the relationship between sarcoplasmic reticulum (SR) calcium(Ca2+)-ATPase transport activity and phospholamban (PLB) phosphorylation in whole cardiac homogenates of spo`ntaneously hypertensive rats (SHR) and their parent, normotensive Wistar Kyoto (WKY) strain during early postnatal development at days 1, 3, 6, 12 and at day 40 to ascertain any difference in SR Ca2+ handling before the onset of hypertension. At day 1, the rate of homogenate oxalate-supported Ca2+ uptake was significantly higher in SHR than in WKY (0.25 ± 0.02 vs 0.12 ± 0.01 nmoles Ca2+/mg wet ventricular weight/min, respectively; p < 0.001). This interstrain difference disappeared with further developmental increase in SR Ca2+ transport. Western Blot analysis and a semiquantitative ELISA did not reveal any difference in the amount of immunoreactive PLB (per mg of total tissue protein) between strains at any of the ages studied. In addition, levels of phosphorylated PLB formed in vitro in the presence of radiolabelled ATP and catalytic (C) subunit of protein kinase A did not differ between SHR and WKY at days 1, 3, 6 and 12. At day 40, C subunit-catalyzed formation of 32P-PLB was reduced by 66% (p < 0.001) in SHR when compared to age-matched WKY In the early postnatal period between day 1 and 12 SR Ca2+-transport values were linearly related to the respective 32P-PLB levels of both SHR and WKY rats. The results indicate that cardiac SR of SHR can sequester Ca2+ at a much higher rate immediately after birth compared to WKY rats. The disappearance of this interstrain difference with further development suggests that some endogenous neuroendocrine or nutritional factor(s) from the hypertensive mother may exert an influence upon the developing heart in utero resulting in a transiently advanced maturation of the SR Ca2+ transport function in SHR pups at the time of birth.  相似文献   

5.
An animal study was carried out to examine the beneficial influence of the known hypocholesterolemic spice principle-capsaicin on the susceptibility of low-density lipoprotein to oxidation in normal and hypercholesterolemic condition. In rats rendered hypercholeterolemic by maintaining them on a cholesterol-enriched diet for eight weeks, inclusion of capsaicin (0.015%) in the diet, produced significant hypocholesterolemic effect. Oxidation of low-density lipoprotein was induced either by copper ion in vitro after its isolation, or by ferrous ion in vivo in experimental rats under either normal or hypercholesterolemic situation and the beneficial effect of dietary capsaicin on the same was evaluated. LDL oxidation was measured by the thiobarbituric acid reactive substances (TBARS) formed and relative electrophoretic mobility of oxidized LDL. Dietary capsaicin was found to be protective to the LDL oxidation in vitro in the case of normal rats as indicated by reduction in TBARS by more than 40%. In the case of LDL isolated from hypercholesterolemic rats the extent of copper induced LDL oxidation was significantly lower than that of LDL isolated from normal rats. Dietary capsaicin did not make any difference in the extent of LDL oxidation in vitro in hypercholesterolemic rats. Ferrous ion induced in vivo oxidation of LDL was 71% lower in capsaicin fed normal rats. In high cholesterol feeding, Fe-induced in vivo oxidation of LDL was 73% lower, while the same was still marginally lower in capsaicin fed hypercholesterolemic rats. Hepatic lipid peroxidation was significantly decreased by dietary capsaicin in normal rats. While a significantly decreased level of lipid peroxidation was observed in hypercholesterolemic rats compared to normal rats, the same was not significantly altered by dietary capsaicin. Results suggest that dietary spice principle capsaicin is protective to LDL oxidation both in vivo and in vitro under normal situation, while in hypercholesterolemic situation where the extent of LDL oxidation is already lowered, capsaicin does not offer any further reduction.  相似文献   

6.
The exogenously hypercholesterolemic (ExHC) rat is a strain segregated from SD rats with a high response to dietary cholesterol. To understand the underlying mechanism(s) for this hypercholesterolemia, the interactive effects of dietary fatty acid and the susceptibility of rats to dietary cholesterol on the serum cholesterol concentration and hepatic mRNA abundance of the low-density lipoprotein (LDL) receptor, cholesterol 7alpha-hydroxylase (7alpha-hydroxylase) and 3-hydroxyl-3methylglutaryl (HMG) CoA reductase were examined. Both strains were fed on a diet supplemented with 10% each of olive, safflower or coconut oil with or without the addition of 1% cholesterol for one week. The ExHC rats fed on olive, safflower and coconut oil in combination with cholesterol respectively resulted in a 3.5-, 2.0- and 2.1-fold higher serum cholesterol concentration than that in the animals fed on the corresponding dietary fats without any supplementation of cholesterol (p < 0.01 by dietary cholesterol or type of fat). The dietary cholesterol dependent-elevation of serum cholesterol in the SD rats was less than 1.5-fold (p<0.01) and there was no dietary fat effect. The ExHC rats fed on the safflower oil-containing diet supplemented with cholesterol resulted in a higher mRNA abundance of the LDL receptor and 7alpha-hydroxylase than in the corresponding fat-fed rats without cholesterol (p<0.05). There was no dietary cholesterol-dependent change of mRNA abundance in either strain fed on olive or coconut oil, except for a decreased abundance of HMG CoA reductase mRNA in the olive oil-fed ExHC rats and coconut oil-fed Sprague-Dawley (SD) rats (p<0.05). These results indicate that the hepatic mRNA abundance of the LDL receptor and of 7alpha-hydroxylase depended on the dietary combination of cholesterol and a fatty acid and suggest that a linoleic acid-rich diet may alleviate exogenous hypercholesterolemia by activating the process involved in the hepatic uptake and biliary excretion of serum cholesterol.  相似文献   

7.
The effect of high flaxseed diet (HFD) on blood pressure (BP) and mesenteric arterial bed (MAB) reactivity was studied in spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats. HFD did not affect BP in either SHR (control, 157 +/- 3; HFD, 153 +/- 3 mmHg) or WKY (control, 114 +/- 2; HFD, 117 +/- 2 mmHg) rats. Increases in perfusion pressure of the endothelium-intact MAB to phenylephrine and norepinephrine were higher (p < 0.05) in SHR than in WKY rats and the HFD failed to alter these responses. Vasorelaxant responses to acetylcholine (ACh) and bradykinin (BK) were greater (p < 0.05) in SHR maintained on HFD compared to SHR on control diet. While HFD also enhanced ACh responses in WKY, the effect was less than in SHR. Responses to sodium nitroprusside (SNP), were similar in all groups. Since ACh and BK-induced responses of the MAB were augmented in SHR on HFD, with no changes in BP, it is suggested that HFD improves endothelial vasorelaxant function through a pressure-independent mechanism.  相似文献   

8.
Our results showed that alpha-asarone was an inhibitor of hepatic HMG-CoA reductase and that the administration of alpha-asarone at 80 mg/kg body wt. for 8 days decreased serum cholesterol by 38% (p < 0.001) in hypercholesterolemic rats. This alpha-asarone treatment affected mainly the serum LDL-cholesterol levels, leaving serum HDL-cholesterol lipoproteins unaffected, with a consequent decrease of 74% in the LDL/HDL ratio. In addition, alpha-asarone especially stimulated bile flow in hypercholesterolemic rats (60%), increasing the secretion of bile salts, phospholipids and bile cholesterol. The drug also reduced the cholesterol levels of gallbladder bile, whereas the concentration of phospholipids and bile salts increased only slightly, leading to a decrease in the cholesterol saturation index (CSI) of bile in the hypercholesterolemic rats. This CSI decrease and the increase in bile flow induced by alpha-asarone may account for the cholelitholytic effect of alpha-asarone. It seems that alpha-asarone induced clearance of cholesterol from the bloodstream and that the excess of hepatic cholesterol provided by LDL-cholesterol is diverted to bile sterol secretion via a bile choleresis process. The inhibition of HMG-CoA reductase and the increase in bile flow induced by alpha-asarone, as well as the decrease in the CSI, could then explain the hypocholesterolemic and cholelitholytic effects of alpha-asarone.  相似文献   

9.
The present study was undertaken to investigate the redox status in the retina of an experimental model that combines hypertension and diabetes. Spontaneously hypertensive rats (SHR) and their control Wystar Kyoto (WKY) rats were rendered diabetic and, after 20 days, the rats were sacrificed and the retinas collected. The superoxide production was higher in diabetic than in control WKY (p < 0.03) and SHR rats showed elevated superoxide production compared with WKY groups (p < 0.009). The glutathione antioxidant system was diminished only in diabetic SHR (p < 0.04). Tirosyne nitration was higher in diabetic WKY and control SHR compared with control WKY (p < 0.03), and further increment was observed in diabetic SHR (p < 0.02). The DNA damage estimated by immunohystochemistry for 8-OHdG was higher in control SHR than in WKY, mainly in diabetic SHR (p < 0.0001). Hypertension aggravates oxidative-induced cytotoxicity in diabetic retina due to increasing of superoxide production and impairment of antioxidative system.  相似文献   

10.
Erectile dysfunction (ED) is another manifestation of vascular disease. We evaluated the natural history of ED in the spontaneously hypertensive rat (SHR) and the respective participation of associated pathophysiological modifications, i.e., endothelial dysfunction and tissue remodeling. SHR and their normotensive counterparts [Wistar-Kyoto rats (WKY)] of 6, 12, and 24 wk of age (n = 12) were used to evaluate erectile function, erectile and aortic tissue reactivity, and remodeling. Erectile responses in SHR are reduced at all ages (P < 0.001). In both aortic and erectile tissues of SHR and WKY, relaxations to ACh are altered progressively with age, although more markedly in SHR. They are decreased at 12 wk of age in erectile tissue of SHR compared with WKY (maximal relaxation: -19.2 +/- 2.8% vs. -28.3 +/- 3.9%, P < 0.001) but only at 24 wk of age in aortas (-47.9 +/- 6.4% vs. -90.5 +/- 2.9%, P < 0.001). Relaxations to sodium nitroprusside are unaltered in aortic rings of both strains but enhanced in erectile tissue of SHR at 12 wk of age. Major modifications in the distribution of collagen I, III, and V in SHR occur in both types of tissue and are detectable sooner in erectile tissue compared with aortic tissue. The onset of ED is detectable before the onset of hypertension in the SHR. Structural and functional alterations, while similar, occur earlier in erectile compared with vascular tissue. If confirmed in humans, ED could be an early warning sign for hypertension, and common therapeutic strategies targeting both ED and hypertension could be investigated.  相似文献   

11.
The present study examined in vitro vasomotor function and expression of enzymes controlling nitric oxide (NO) bioavailability in thoracic aorta of adult male normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) that either remained sedentary (Sed) or performed 6 wk of moderate aerobic exercise training (Ex). Training efficacy was confirmed by elevated maximal activities of both citrate synthase (P = 0.0024) and beta-hydroxyacyl-CoA dehydrogenase (P = 0.0073) in the white gastrocnemius skeletal muscle of Ex vs. Sed rats. Systolic blood pressure was elevated in SHR vs. WKY (P < 0.0001) but was not affected by Ex. Despite enhanced endothelium-dependent relaxation to 10(-8) M ACh in SHR vs. WKY (P = 0.0061), maximal endothelium-dependent relaxation to 10(-4) M ACh was blunted in Sed SHR (48 +/- 12%) vs. Sed WKY (84 +/- 6%, P = 0.0067). Maximal endothelium-dependent relaxation to 10(-4) M ACh was completely restored in Ex SHR (93 +/- 9%) vs. Sed SHR (P = 0.0011). N(omega)-nitro-l-arginine abolished endothelium-dependent relaxation in all groups (P 相似文献   

12.
Maitake mushroom has been reported to favorably influence hypertension and diabetes mellitus. The purpose of this study was to compare the effects of whole Maitake mushroom powder and two extracts designated as ether soluble (ES) and water soluble (WS) on Zucker fatty rats (ZFR), a model of insulin resistance, and on spontaneously hypertensive rats (SHR), a model of genetic hypertension. In the initial study, we followed four groups of eight ZFR and SHR receiving special diets: a baseline diet (BD), BD + whole Maitake mushroom powder (20% w/w), BD + fraction ES (0.10% w/w), and BD + WS (0.22% w/w). Different effects of these dietary regimens on the 2 rat strains were found. At 35 days, only consumption of the ES diet significantly decreased systolic BP (SBP) in SHR (average 197 vs. 176 mm Hg, p < 0.001), while in ZFR only the groups consuming the whole Maitake and WS diets showed significantly decreased SBP (138 vs. 120–125 mm Hg, p < 0.001). A challenge test with losartan (an angiotensin II receptor blocker) indicates that angiotensin II does not play a major role in SBP regulation of ZFR, but does in SHR where consumption of ES relative to other groups significantly lowered activity of this system. In SHR, glucose, cholesterol, circulating insulin and HbA1C were virtually similar among all dietary groups; but whole Maitake (–22%), ES (–120%) and WS (–80%) diets were associated with decreased triglycerides, and the ES diet with lowered serum creatinine (–29%). In ZFR, circulating insulin and HbA1C were significantly decreased in the whole Maitake powder and ES groups, and tended to be lower in the WS group compared to control. In the ensuing studies, we gavaged ZFR once daily with water (control), 44 mg fraction WS, or 44 mg fraction WS plus 100 g niacin-bound chromium (NBC). Oral gavage of WS clearly lowered SBP and circulating glucose concentrations, more so with the addition of chromium. We conclude that the examined forms of Maitake mushroom have antihypertensive and antidiabetic potential which differ among rat strains. The ES fraction may decrease SBP in SHR via alteration in the renin-angiotensin system.  相似文献   

13.
Significant increases (P less than 0.001) in plasma insulin and triglyceride concentrations and in blood pressure were seen when SHR and WKY rats ate a fructose-enriched diet for 14 days. However, all of the changes were significantly accentuated (P less than 0.02-0.001) in SHR rats. Specifically the increment in plasma insulin concentration following the fructose-enriched diet was 42 +/- 4 microU/ml in SHR as compared to 25 +/- 4 microU/ml in WKY rats (P less than 0.001). Plasma triglyceride concentrations also increased to a greater degree in response to fructose in SHR rats (260 +/- 24 vs. 136 +/- 20 mg/dl, P less than 0.001). Finally, the fructose-induced increase in blood pressure of 29 +/- 4 mm of Hg in SHR rats was greater (P less than 0.02) than that seen in WKY rats (19 +/- 2 mm of Hg). There was no change in plasma glucose concentration in response to the fructose diet. WKY rats gained more weight than did the SHR rats. Thus, although plasma triglyceride and insulin concentration and blood pressure increased when either WKY or SHR rats consumed a fructose enriched diet, the magnitude of these changes was greater in SHR rats.  相似文献   

14.
Aortic stiffening is an independent risk factor that underlies cardiovascular morbidity in the elderly. We have previously shown that intrinsic mechanical properties of vascular smooth muscle cells (VSMCs) play a key role in aortic stiffening in both aging and hypertension. Here, we test the hypothesis that VSMCs also contribute to aortic stiffening through their extracellular effects. Aortic stiffening was confirmed in spontaneously hypertensive rats (SHRs) vs. Wistar‐Kyoto (WKY) rats in vivo by echocardiography and ex vivo by isometric force measurements in isolated de‐endothelized aortic vessel segments. Vascular smooth muscle cells were isolated from thoracic aorta and embedded in a collagen I matrix in an in vitro 3D model to form reconstituted vessels. Reconstituted vessel segments made with SHR VSMCs were significantly stiffer than vessels made with WKY VSMCs. SHR VSMCs in the reconstituted vessels exhibited different morphologies and diminished adaptability to stretch compared to WKY VSMCs, implying dual effects on both static and dynamic stiffness. SHR VSMCs increased the synthesis of collagen and induced collagen fibril disorganization in reconstituted vessels. Mechanistically, compared to WKY VSMCs, SHR VSMCs exhibited an increase in the levels of active integrin β1‐ and bone morphogenetic protein 1 (BMP1)‐mediated proteolytic cleavage of lysyl oxidase (LOX). These VSMC‐induced alterations in the SHR were attenuated by an inhibitor of serum response factor (SRF)/myocardin. Therefore, SHR VSMCs exhibit extracellular dysregulation through modulating integrin β1 and BMP1/LOX via SRF/myocardin signaling in aortic stiffening.  相似文献   

15.
The present study was undertaken to identify whether inflammation or oxidative stress is the primary abnormality in the kidney in spontaneously hypertensive rats (SHR). Renal inflammation and oxidative stress were evaluated in 2- and 3-week-old prehypertensive SHR and age-matched genetically normotensive control Wistar-Kyoto (WKY) rats. Blood pressure was similar in WKY and SHR rats at 2 and 3 weeks, of age. Renal inflammation (macrophage and nuclear factor-κB) was elevated in SHR at 3 weeks, but not at 2 weeks, of age compared with age-matched WKY rats. Renal oxidative stress (nitrotyrosine, 8-hydroxy-2′-deoxyguanosine and p47phox) was also clearly elevated in 3-week-old SHR compared with age-matched WKY rats. Additionally, NADPH oxidase subunit p47phox was found elevated in 2-week-old SHR compared to age-matched WKY rats. Moreover, antioxidant (N-acetyl-l-cysteine and Tempol) treatment reduced renal inflammation in prehypertensive SHR. We therefore conclude that the oxidative stress appears before inflammation as a primary abnormality in the kidney in prehypertensive SHR.  相似文献   

16.
The present study was undertaken to investigate the redox status in the retina of an experimental model that combines hypertension and diabetes. Spontaneously hypertensive rats (SHR) and their control Wystar Kyoto (WKY) rats were rendered diabetic and, after 20 days, the rats were sacrificed and the retinas collected. The superoxide production was higher in diabetic than in control WKY (p<0.03) and SHR rats showed elevated superoxide production compared with WKY groups (p<0.009). The glutathione antioxidant system was diminished only in diabetic SHR (p<0.04). Tirosyne nitration was higher in diabetic WKY and control SHR compared with control WKY (p<0.03), and further increment was observed in diabetic SHR (p<0.02). The DNA damage estimated by immunohystochemistry for 8-OHdG was higher in control SHR than in WKY, mainly in diabetic SHR (p<0.0001). Hypertension aggravates oxidative-induced cytotoxicity in diabetic retina due to increasing of superoxide production and impairment of antioxidative system.  相似文献   

17.
Male Syrian hamsters consumed diets containing incremental increases in dietary n-3 fatty acids from fish oil with either low (0.015% w/w) or moderate (0.1% w/w) dietary cholesterol content. Animals consuming diets containing moderate cholesterol, but not animals consuming diets containing low cholesterol, had increased plasma very low (VLDL)- and low density lipoprotein (LDL)-cholesterol levels with increasing fish oil consumption. The plasma concentration of high density lipoprotein (HDL)-cholesterol decreased by 43 and 32% with the consumption of the highest fish oil diets in the low and moderate dietary cholesterol groups, respectively. Hepatic LDL-receptor binding activity did not change with the consumption of low cholesterol diets, but gradually decreased with fish oil consumption in animals consuming the moderate cholesterol diets. Hepatic LDL-receptor binding and plasma LDL-cholesterol levels of the different dietary fish oil groups were highly correlated (r = -0.91). Fish oil consumption also caused an increase in hepatic free cholesterol but a decreased cholesteryl ester content. Therefore, in the Syrian hamster, the consumption of n-3 fatty acids increases LDL-cholesterol levels which can be partially explained by decreased hepatic LDL-receptor binding and this response to dietary n-3 fatty acids is dependent on the dietary cholesterol content. However, the effects of dietary n-3 fatty acids on HDL-cholesterol are independent of dietary cholesterol content.  相似文献   

18.
The Spontaneously Hypertensive rat (SHR) and its non-hypertensive companion strain, the Wistar-Kyoto (WKY) rat, provide an excellent comparative model to permit study of the differential properties of cutaneous microvascular beds. We explored the possibility that chronically elevated vascular pressures in the SHR rat might affect the microvascular constitution of the skin. We measured skin blood flow at the back and at the paw of a group of 20-week-old WKY rats and a contrast group of SHR rats. We then performed skin biopsies at these two locations and used the NIH Image program to count and measure the size of capillaries, arterioles, and venules. We also determined microvascular density as percentage of total tissue area. At basal temperature, skin blood flow was similar in the two rat strains at both the back and paw. Heat induced vasodilatation resulted in a 50% increase in blood flow at the back, reaching the same level in the two rat groups. However, at the paw site, thermal stimulation resulted in significantly greater flow (39.3 +/- 3.1 ml/100 gm tissue per min) in the SHR rats than the WKY rats (28.6 +/- 1.9 ml/100 gm tissue per min, P < 0.05). The ratio of systemic arterial pressure to skin blood flow was computed as an index of vascular resistance to flow. At basal temperature, this index was 50% greater for the SHR rats at both skin sites. At 44 degrees C, the resistance index decreased at both sites in both rat groups but was still approximately 50% higher at the back of the SHR than the WKY rats. In contrast, the resistance index at 44 degrees C at the paw site fell to the same level in both the SHR and WKY rats. There were twice as many capillaries at the back of the WKY rats than at the back of the SHR rats (9.2 +/- 2.0 per mm2 vs. 4.7 +/- 1.2 per mm2, P < 0.05). Expressed as a percentage of total tissue area, the capillary density at the back in the WKY rats was 0.064 +/- 0.010% as compared to 0.034 +/- 0.008% in the SHR rats (P < 0.05). There were five times more arterioles at the paw compared to the back in both rat groups with no significant difference between the groups. We measured the diameter of the lumen and the thickness of the wall of each arteriole and computed their ratio as an index of possible media hypertrophy. There were minimal differences seen in these parameters between the two rat groups at the back and paw sites. The venular density was significantly higher at the paw than at the back in both rat groups with no significant difference between them. Reduced capillary density at the back of the SHR rats may be a developmental adaptation to high blood pressure. Such a reduction in the pathways of blood flow may help account for increased flow resistance at that site, independent of arteriolar vasoconstriction.  相似文献   

19.
A 90-day feeding study with gerbils was conducted to evaluate the influence of dietary vitamin E levels (25 mg/kg diet, 75 mg/kg, 300 mg/kg, and 900 mg/kg), two levels of dietary methionione (casein or casein+L-methionine (1% w/w)) and two sources of lipid (soybean oil [20%] or soybean oil [4%]+coconut oil [16%, 1:4 w/w]) upon serum lipids (total cholesterol, HDL-cholesterol, LDL-cholesterol). In addition, this study examined the effects of diet-induced hyperhomocysteinemia and supplemental dietary vitamin E on the oxidation of low density lipoproteins. Tissue vitamin E (heart, liver, and plasma) demonstrated a dose response (P≤0.001) following the supplementation with increasing dietary vitamin E (25, 75, 300, and 900 mg/kg). In addition, tissue vitamin E levels were found to be higher (P≤0.001) in those animals receiving a combination of coconut oil+soybean oil as compared to the group receiving soybean oil solely. Blood cholesterol profiles indicated an increase (P≤0.001) in total cholesterol and LDL cholesterol by the influence of saturated fat and supplemental methionine. Low-density lipoprotein cholesterol profile demonstrated a reduction (P≤0.001) at the higher dietary vitamin E levels (300 and 900 mg/kg) as compared to the 25 mg/kg and 75 mg/kg dietary vitamin E. Plasma protein carbonyls were not influenced by dietary vitamin E nor by supplemental methionine intake. In vitro oxidation of LDL showed that vitamin E delayed the lag time of the oxidation phase (P≤0.001) and reduced total diene production (P≤0.001). On the contrary, supplemental methionine decreased (P≤0.001) the delay time of the lag phase, whereas total diene production was increased (P≤0.001). Plasma lipid hydroperoxides were significantly reduced (P≤0.05) with supplemental dietary vitamin E, whereas supplemental L-methionine (1%) resulted in a significant (P≤0.05) increase in lipid plasma hydroperoxide formation. Plasma homocysteine was elevated (P≤0.001) with supplemental dietary L-methionine (1%) as well as the inclusion of dietary saturated fat. The present data showed that 1) a combination of dietary lipids (saturated and unsaturated fatty acids) as well as vitamin E and methionine supplementation altered blood cholesterol lipoprotein profiles; 2) in vitro oxidation parameters including LDL (lag time and diene production) and plasma hydroperoxide formations were affected by vitamin E and methionine supplementation; and 3) plasma homocysteine concentrations were influenced by supplemental methionine and the inclusion of dietary saturated fat.  相似文献   

20.
The effects of dietary cholesterol and fatty acids on the plasma cholesterol level and rates of very low density lipoprotein (VLDL) cholesterol secretion and low density lipoprotein (LDL) transport through LDL receptors in the liver of the hamster were investigated. Increases of plasma VLDL- and LDL-cholesterol levels and VLDL-cholesterol secretion from hepatocytes were observed in animals fed a diet enriched with 0.1% cholesterol for 2 weeks in comparison with animals fed a control diet. The addition of dietary palmitic acid accelerated the effect of dietary cholesterol on plasma VLDL- and LDL-cholesterol levels and VLDL-cholesterol secretion from hepatocytes. Dietary linoleic acid accelerated the effect of dietary cholesterol on VLDL-cholesterol secretion from hepatocytes and diminished the effect on the plasma LDL-cholesterol level. Hepatic LDL receptor activity was considerably suppressed by a control diet containing 0.05% cholesterol and a further small suppression was induced by a diet enriched with 0.1% cholesterol with or without 5% palmitic acid. However, dietary linoleic acid diminished the effect of dietary cholesterol on the suppression of hepatic LDL receptor activity. These results suggest that dietary palmitic acid augments the effect of dietary cholesterol in elevating the plasma LDL-cholesterol level through acceleration of VLDL-cholesterol secretion from the liver, and that dietary linoleic acid diminishes the effect of dietary cholesterol in elevating the plasma LDL-cholesterol level by preventing the suppression of hepatic LDL receptor activity induced by cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号