首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Weiss, Emilio (Naval Medical Research Institute, Bethesda, Md.). Adenosine triphosphate and other requirements for the utilization of glucose by agents of the psittacosis-trachoma group. J. Bacteriol. 90:243-253. 1965.-The agent of meningopneumonitis cultivated in the allantoic cavity of chick embryos and purified by differential centrifugations was employed for most of the studies of the requirements for glucose utilization. The evolution of C(14)O(2) from glucose-1-C(14) was used as the criterion of metabolic activity in most experiments. The rate of glucose utilization increased somewhat during the first hour of incubation at 34.4 C and became approximately constant during the second hour. Changes in glucose concentration from 1 to 5 mm did not appreciably affect metabolic activity. More vigorous CO(2) production was obtained when the ratio of K(+)-Na(+) was >1 and, under certain conditions, when the concentration of inorganic phosphate was relatively high (0.05 m). Glucose utilization was entirely dependent on added adenosine triphosphate (ATP) and Mg(++). The effect of ATP was greatly reduced when the microorganisms were partially disrupted with sonic energy. Adenosine diphosphate (ADP) could be substituted for ATP, but the activity was reduced to less than 20%. ATP was not required when glucose-6-phosphate was substituted for glucose. With ADP and glucose, glucose-6-phosphate was an effective competitor of glucose utilization. Nicotinamide adenine dinucleotide phosphate (NADP) enhanced CO(2) production from carbon 1, but not from other carbons, with glucose and, especially, glucose-6-phosphate as substrates. ATP and NADP produced the above-described effects only when their concentrations were comparable to those of the substrates. These concentrations always exceeded the amount of CO(2) produced (0.05 to 0.5 mumole/mg of agent protein). The concentration of NADP could be reduced when oxidized glutathione was added. Diphosphothiamine had no effect on CO(2) production. Qualitatively similar results were obtained with the agent of trachoma purified from yolk sac. These experiments furnish evidence that agents of the psittacosistrachoma group, despite their enzymatic capabilities, require an exogenous source of energy.  相似文献   

2.
The glucose-6-phosphate oxidation pathway present in microsomes was studied using intact microsomal membranes. The oxidation activity, which was measured by monitoring the formation of 14CO2 from [1-14C]glucose 6-phosphate, was greatly stimulated when azodicarboxylic acid bis(dimethylamide), methylene blue or cumene hydroperoxide was added to the assay mixture. Glutathione peroxidase and glutathione reductase are suggested to be involved in the oxidation reaction induced by these oxidizing reagents. We detected a significant activity of the glutathione reductase inherent to microsomes. The microsomal glutathione reductase is latent and requires detergent to reveal its activity. 4,4'-Diisothiocyanostilbene 2,2'-disulfonic acid (DIDS) inhibited the 14CO2 formation, but the inhibition was released by the addition of a detergent. Moreover, the inhibitory effect of DIDS was reversed by glucose 6-phosphate but not by mannose 6-phosphate. We conclude that the glucose-6-phosphate oxidation pathway in intact microsomes starts working under oxidative stress and that a transporter specific for glucose 6-phosphate is involved in the reaction.  相似文献   

3.
In this study, the effects of bitter yam sapogenin extract or commercial diosgenin on intestinal disaccharidases and some renal enzymes in diabetic rats were investigated. Diabetic male Wistar rats were fed diets supplemented with 1% sapogenin extract or commercial diosgenin for 3 weeks. Plasma glucose, intestinal disaccharidases and the activities of transaminases, acid phosphatase, glucose-6-phosphatase, ATP citrate lyase, glucose-6-phosphate dehydrogenase and pyruvate kinase were assessed for the level of metabolic changes in the kidney of diabetic rats. Sapogenin extract or commercial diosgenin supplementation resulted in a significant decrease in lactase and maltase activities in all three regions of the intestine compared to the diabetic control group. However, the test diets significantly reduced intestinal sucrase activity in the proximal and mid regions. Test diets supplementation resulted in a significant decrease in the activities of the transaminases compared to the normal and diabetic control groups. The activity of glucose-6-phosphatase was significantly increased while the activities of ATP citrate lyase, pyruvate kinase and glucose-6-phosphate dehydrogenase were significantly reduced in the kidney of the diabetic control rats compared to the normal group. Test diets supplementation did not significantly alter glucose-6-phosphatase, ATP citrate lyase and pyruvate kinase activities compared to the diabetic control. However, there was a significant increase in glucose-6-phosphate dehydrogenase activity toward the normal group. In conclusion, the consumption of bitter yam sapogenin extract or commercial diosgenin demonstrated hypoglycemic properties, which are beneficial in diabetes by reducing intestinal disaccharidases activities; however, bitter yam sapogenin extract may adversely affect the integrity of kidney membrane.  相似文献   

4.
ATP-depleted human red cells have been incubated in a glucose-containing medium with [32P]orthophosphate in the presence and in the absence of cyclic 3',5'-AMP and dibutyril cyclic 3',5'-AMP. Spectrin, pyruvate kinase, phosphofructokinase, glucose-6-phosphate dehydrogenase and hemoglobin A1 have been purified and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Protein-bound radioactivity has been measured from the sodium dodecyl sulfate polyacrylamide gels and the trichloroacetic acid-precipitated proteins. In the cytosol, the most intense phosphorylation was found for pyruvate kinase whose, in the presence of cyclic AMP, specific radioactivity was comparable to that of the membrane protein and spectrin. In the absence of cyclic nucleotides it was five times less phosphorylated. Phosphofructokinase was only phosphorylated when the red cells were incubated with cyclic nucleotides; the extent of phosphorylation was four times less than for pyruvate kinase. Hemoglobin, glucose-6-phosphate dehydrogenase and a contaminant protein copurified with phosphofructokinase were not phosphorylated: the 'background' of the radioactivity found for these proteins was 100 times less than for pyruvate kinase and spectrin, and 20 times less than for phosphofructokinase (+cyclic AMP).  相似文献   

5.
Extracts of cells of Streptococcus faecalis var. liquefaciens strain 31 incorporated (14)CO(2) into aspartate. Dialyzed extracts produced radioactive oxalacetate in the absence of exogenously added glutamate and pyridoxal-5'-phosphate and produced radioactive aspartate in the presence of these components. Reduced nicotinamide adenine dinucleotide or reduced nicotinamide adenine dinucleotide phosphate could not be substituted for adenosine triphosphate (ATP); phosphoenolpyruvate even in the presence of nucleoside diphosphates could not replace pyruvate plus ATP; propionate plus coenzyme A (CoA) could not replace pyruvate in supporting CO(2) fixation by cell extracts. Fixation by dialyzed cell extracts required pyruvate, ATP, MgSO(4), and was stimulated by biotin, KCl, 2-mercaptoethanol, CoA, and acetyl CoA. Inhibition of fixation occurred when avidin, NaCl, oxalacetate, or aspartate was added to dialyzed extracts. On the basis of the products formed and the effects of substrates and cofactors on the fixation reaction, it was concluded that pyruvate carboxylase is responsible for CO(2) fixation in this microorganism.  相似文献   

6.
Concentrations of ATP, ADP, AMP, cAMP as well as pyruvate and glucose-6-phosphate were measured in B. lastocladiella emersonii cells developing via RS morphogenetic pathway. They varied significantly in the course of development (1.3-14.8 mumole/g dry weight for the sum of ATP+ADP+AMP; 0.012-5.3 nmole for cAMP; 0.47-1.9 mumole for pyruvate; 0.36-4.78 mumole for glucose-6-phosphate). At the same time the adenylate energy charge remained essentially unchanged (about 0.8) from the middle of exponential growth till the end of the stationary phase. At the late stages of RS-sporangia formation the concentration of all the above compounds decreased by about 10 times, and the adenylate energy charge only by 30%. Positive correlation between the levels of ATP and cAMP in RS cells was demonstrated. The concentration of adenylic nucleotides and cAMP showed the most noticable changes at the end of exponential growth; transition of the point of no return was not accompanied by significant changes in the pools of adenylic system, cAMP or energy charge.  相似文献   

7.
Soluble enzymes were immobilized and visualized by polyacrylamide gel slabs, impregnated with the incubation medium including auxiliary enzymes. The method has several advantages over existing techniques which make use of gel films or a semipermeable membrane. The diffusion of tissue compounds is effectively limited, while auxiliary enzymes may be operative. Moreover the viscosity of the medium is temperature-independent so that the incubation temperature can be varied. To demonstrate the suitability of the method glycerol-3-phosphate dehydrogenase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase, hexokinase, phosphoglucomutase and aldolase were visulaized in human or rat skeletal muscle. Cytosolic and mitochondrial glycerol-3-phosphate dehydrogenase were both visualized in the absence of added NAD+ and menadione. For the visualization of ATP producint enzymes, like creatine kinase and pyruvate kinase, the method is not suitable.  相似文献   

8.
We investigated the effect of the gas environment on the enzymatic reactions of intact isolated cells of the agents of trachoma and of meningopneumonitis of the host-dependent genus Chlamydia. In comparison with the reactions taking place in a gas phase of air, O(2) depressed CO(2) production from pyruvate and glutamate by trachoma and from glutamate by meningopneumonitis. O(2) enhanced the degradation of pyruvate by meningopneumonitis, but this effect was due to increased H(2)O(2), and was reversed by added catalase. Both dehydrogenation of alpha-ketoglutarate and was reversed by added catalase. Dehydrogenation of alpha-ketoglutarate by both agents and production of CO(2) from C(1) of glucose-6-phosphate were stimulated by O(2) and depressed in N(2). The latter activity was stimulated in air, O(2), and N(2) by nicotinamide adenine dinucleotide phosphate (NADP) in relation to the amount added, and also in air or O(2), but not in N(2), by moderate amounts of NADP and an excess of oxidized glutathione with concomitant formation of H(2)O(2). A small but significant amount of O(2) was consumed during the course of these reactions. It is suggested that glutathione reductase activity can occur only when accompanied by an oxidative reaction, and that this close link between the two reactions represents a mechanism of electron transport which transfers hydrogen to molecular O(2).  相似文献   

9.
Summary Soluble enzymes were immobilized and visualized by polyacrylamide gel slabs, impregnated with the incubation medium including auxiliairy enzymes. The method has several advantages over existing techniques which make use of gel films or a semipermeable membrane. The diffusion of tissue compounds is effectively limited, while auxiliary enzymes may be operative. Moreover the viscosity of the medium is temperature-independent so that the incubation temperature can be varied.To demonstrate the suitability of the method glycerol-3-phosphate dehydrogenase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase, hexokinase, phosphoglucomutase and aldolase were visualized in human or rat skeletal muscle. Cytosolic and mitochondrial glycerol-3-phosphate dehydrogenase were both visualized in the absence of added NAD+ and menadione.For the visualization of ATP producing enzymes, like creatine kinase and pyruvate kinase, the method is not suitable.  相似文献   

10.
A large part of the hexokinase activity of the rat brain 20,000g supernatant became mitochondrial bound when incubated with rat heart mitochondria which had been pretreated with glucose-6-phosphate. This binding was dependent on small-molecular compounds (as yet unidentified) of the brain supernatant. Divalent cations, spermine, and pentalysine strongly stimulated the binding of brain supernatant hexokinase to heart mitochondria. Inorganic phosphate, alpha-glycerophosphate, and fructose-1,6-diphosphate showed some stimulatory effect. No effect was observed with insulin or glucose. Mitochondria isolated from hearts of fasted rats had less specific hexokinase activity than mitochondria from fasted and then carbohydrate refed rats. This dietary treatment had no significant effect on the total heart hexokinase activity. Oligomycin did not inhibit the formation of creatine phosphate or glucose-6-phosphate by isolated rabbit heart mitochondria incubated in the presence of phosphoenolpyruvate and pyruvate kinase. However, the presence of creatine inhibited the formation of glucose-6-phosphate when the ATP/ADP ratio was low, indicating that creatine kinase has a greater access to ATP/ADP translocation than has hexokinase.  相似文献   

11.
A typical facultative methylotroph Pseudomonas oleovorans oxidizes methanol to formaldehyde by a specific dehydrogenase which is active towards phenazine metosulphate. Direct oxidation of formalydehyde to CO2 via formiate is a minor pathway because the activities of dehydrogenases of formaldehyde and formiate are lwo. Most formaldehyde molecules are involved in the hexulose phosphate cycle, which is confirmed by a high activity of hexulose phosphate synthase. Formaldehyde is oxidized to CO2 in the dissimilation branch of the cycle providing energy for biosynthesis; this confirmed by higher levels of dehydrogenases of glucose-6-phosphate and 6-phosphogluconate during the methylotrophous growth of the cells. The acceptor of formaldehyde (ribulose-5-phosphate) is regenerated and pyruvate is synthesized in the assimilation branch of the hexulose phosphate cycle. Aldolase of 2-keto-3-deoxy-6-phosphogluconate plays an important role in this process. Further metabolism of trioses involves reactions of the tricarboxylic acid cycle which performs mainly an anabolic function due to complete repression of alpha-ketoglutarate dehydrogenase during the methylotrophous growth. The carbon of methanol is partially assimilated as CO2 by the carboxylation of pyruvate or phosphoenolpyruvate. NH+4 is assimilated by the reductive amination of alpha-ketoglutarate.  相似文献   

12.
Pyruvate kinase from Propionibacterium shermanii was shown to be activated by glucose-6-phosphate (G-6-P) at non-saturating phosphoenol pyruvate (PEP) concentrations but other glycolytic and hexose monophosphate pathway intermediates and AMP were without effect. Half-maximal activation was obtained at 1 mM G-6-P. The presence of G-6-P decreased both the PEP0.5V and ADP0.5V values and the slope of the Hill plots for both substrates. The enzyme was strongly inhibited by ATP and inorganic phosphate (Pi) at all PEP concentrations. At non-saturating (0.5 mM) PEP, half-maximal inhibition was obtained at 1.8 mM ATP or 1.4 mM Pi. The inhibition by both Pi and ATP was largely overcome by 4 mM G-6-P. The specific activity of pyruvate kinase was considerably higher in lactate-, glucose- and glycerol-grown cultures than that of the enzyme catalysing the reverse reaction, pyruvate, phosphate dikinase. It is suggested that the activity of pyruvate kinase in vivo is determined by the balance between activators and inhibitors such that it is inhibited during gluconeogenesis while, during glycolysis, the inhibition is relieved by G-6-P.Abbreviations PEP phosphoenolpyruvate - G-6-P glucose-6-phosphate - Pi inorganic phosphate  相似文献   

13.
In the present work methods for the localization of glucose-6-phosphate and phosphoenolpyruvate residues on tissue sections by means of labeled with colloidal gold specific enzymes (glucose 6-phosphate dehydrogenase and pyruvate kinase) are described. In order to get sufficient amount of labeled enzyme to the protein salts, used to stabilize colloidal gold salts, albumin was added. Residues of glucose-6-phosphoenolpyruvate were scattered equally through the villi of human placenta. In rat liver centrolobular localized hepatocytes had high content of specific staining. There were a lot of glucose-6-phosphate residues in hepatocytes nuclei.  相似文献   

14.
15.
A new approach for adenosine triphosphate (ATP) regeneration in a cell-free protein synthesis system is described. We first show that pyruvate can be used as a secondary energy source to replace or supplement the conventional secondary energy source, phosphoenol pyruvate (PEP). We also report that glucose-6-phosphate, an earlier intermediate of the glycolytic pathway, can be used for ATP regeneration. These new methods provide more stable maintenance of ATP concentration during protein synthesis. Because pyruvate and glucose-6-phosphate are the first and last intermediates of the glycolytic pathway, respectively, the results also suggest the possibility of using any glycolytic intermediate, or even glucose, for ATP regeneration in a cell-free protein synthesis system. As a result, the methods described provide cell-free protein synthesis with greater flexibility and cost efficiency.  相似文献   

16.
Different values exist for glucose metabolism in white matter; it appears higher when measured as accumulation of 2-deoxyglucose than when measured as formation of glutamate from isotopically labeled glucose, possibly because the two methods reflect glycolytic and tricarboxylic acid (TCA) cycle activities, respectively. We compared glycolytic and TCA cycle activity in rat white structures (corpus callosum, fimbria, and optic nerve) to activities in parietal cortex, which has a tight glycolytic-oxidative coupling. White structures had an uptake of [(3)H]2-deoxyglucose in vivo and activities of hexokinase, glucose-6-phosphate isomerase, and lactate dehydrogenase that were 40-50% of values in parietal cortex. In contrast, formation of aspartate from [U-(14)C]glucose in awake rats (which reflects the passage of (14)C through the whole TCA cycle) and activities of pyruvate dehydrogenase, citrate synthase, alpha-ketoglutarate dehydrogenase, and fumarase in white structures were 10-23% of cortical values, optic nerve showing the lowest values. The data suggest a higher glycolytic than oxidative metabolism in white matter, possibly leading to surplus formation of pyruvate or lactate. Phosphoglucomutase activity, which interconverts glucose-6-phosphate and glucose-1-phosphate, was similar in white structures and parietal cortex ( approximately 3 nmol/mg tissue/min), in spite of the lower glucose uptake in the former, suggesting that a larger fraction of glucose is converted into glucose-1-phosphate in white than in gray matter. However, the white matter glycogen synthase level was only 20-40% of that in cortex, suggesting that not all glucose-1-phosphate is destined for glycogen formation.  相似文献   

17.
TCA循环中间产物对酿酒酵母胞内代谢关键酶活性的影响   总被引:1,自引:0,他引:1  
对酿酒酵母在添加苹果酸、柠檬酸和琥珀酸的混合培养基与其在YEPD培养基中胞内丙酮酸激酶、葡萄糖-6-磷酸脱氢酶、异柠檬酸脱氢酶、苹果酸脱氢酶、乙醇脱氢酶的酶活力差异进行了对比分析。结果表明:添加苹果酸使胞内丙酮酸激酶、异柠檬酸脱氢酶、苹果酸脱氢酶、乙醇脱氢酶的酶活分别下降34.82%、57.23%、39.15%、12.10%;添加柠檬酸使胞内丙酮酸激酶、异柠檬酸脱氢酶、苹果酸脱氢酶的酶活分别下降50.17%、42.20%、48.40%;添加琥珀酸使胞内丙酮酸激酶、葡萄糖-6-磷酸脱氢酶、异柠檬酸脱氢酶、苹果酸脱氢酶、乙醇脱氢酶的酶活分别下降34.16%、34.16%、50.87%、50.87%、12.37%。丙酮酸激酶、异柠檬酸脱氢酶和苹果酸脱氢酶对3种有机酸的耐受性较差,葡萄糖-6-磷酸脱氢酶、乙醇脱氢酶对3种有机酸的耐受具有选择性。  相似文献   

18.
The rapid phase of fructose-1,6-bisphosphatase (FBPase) inactivation following glucose addition to starved yeast cells [reported previously] is inhibited on addition of 10 mM chloroquine (CQ) at about pH 8. This inhibition of inactivation was shown to be due to the prevention of phosphorylation of the enzyme. CQ was also found to inhibit general protein phosphorylation in the yeast cells. Glycolysis, as observed by changes in intracellular glucose-6-phosphate and extracellular glucose and ethanol concentrations, was shown to be significantly inhibited in cells treated with CQ. Similarly, a decrease in ATP concentrations was observed. However, during the early stages of phosphorylation of FBPase, levels of ATP were similar in cells containing CQ as in those without CQ. Thus, decrease in ATP levels is not thought to be significantly responsible for the inhibition of protein phosphorylation. However, the phosphorylating activity of cyclic AMP-dependent protein kinases is inhibited in vitro by relatively low concentrations of CQ. Thus, prevention of protein phosphorylation by CQ is believed to be due to inhibition of protein kinases in yeast cells.Abbreviations FBPase fructose-1,6-bisphosphatase - CQ chloroquine - SDS sodium dodecyl sulfate - G6P glucose-6-phosphate - TCA trichloroacetic acid  相似文献   

19.
The interaction of fatty-acid synthesis with starch synthesis has been studied in intact amyloplasts isolated from floral buds of cauliflower (Brassica oleracea L.). These amyloplasts perform acetate-dependent fatty acid synthesis at maximum rates only at high external ATP concentrations. Neither pyruvate nor malate inhibit acetate-dependent fatty-acid synthesis. In contrast, acetate is inhibitory to the low pyruvate-dependent fatty acid synthesis. These observations indicate that neither pyruvate nor malate are used as natural precursors of fatty-acid synthesis. In contrast to fatty-acid synthesis, the rate of glucose-6-phosphate-dependent starch synthesis is already saturated in the presence of much lower ATP concentrations. Rising rates of starch synthesis influence negatively the process of acetate-dependent fatty acid synthesis. This inhibition appears to occur under both limiting and saturating concentrations of external ATP, indicating that the rate of ATP uptake is limiting when both biochemical pathways are active. The rate of starch synthesis is modulated specifically by the concentration of 3-phosphoglycerate in the incubation medium. This observation leads to the conclusion that the activity of ADP-glucose pyrophosphorylase is of primary importance for the control of both, starch and fatty-acid synthesis. Using the modified approach of Kacser and Burns (1973; Symp. Soc. Exp. Biol.27, 65–104) we have quantified the contribution of the rate of starch synthesis to the control of the metabolic flux through fatty-acid synthesis.Abbreviations ADPGlc-PPase ADPglucose pyrophosphorylase - Glc6P glucose-6-phosphate - PGA 3-phosphoglyceric acid  相似文献   

20.
Radiolabeled pyruvate, glucose, glucose-6-phosphate, acetate, and malate are all variously utilized for fatty acid and glycerolipid biosynthesis by isolated pea (Pisum sativum L.) root plastids. At the highest concentrations tested (3-5mM), the rates of incorporation of these precursors into fatty acids were 183, 154, 125, 99 and 57 nmol h-1 mg-1 protein, respectively. In all cases, cold pyruvate consistently caused the greatest reduction, whereas cold acetate consistently caused the least reduction, in the amounts of each of the other radioactive precursors utilized for fatty acid biosynthesis. Acetate incorporation into fatty acids was approximately 55% dependent on exogenously supplied reduced nucleotides (NADH and NADPH), whereas the utilization of the remaining precursors was only approximately 10 and 20% dependent on added NAD(P)H. In contrast, the utilization of all precursors was greatly dependent (85-95%) on exogenously supplied ATP. Palmitate, stearate, and oleate were the only fatty acids synthesized from radioactive precursors. Higher concentrations of each precursor caused increased proportions of oleate and decreased proportions of palmitate synthesized. Radioactive fatty acids from all precursors were incorporated into glycerolipids. The data presented indicate that the entire pathway from glucose, including glycolysis, to fatty acids and glycerolipids is operating in pea root plastids. This pathway can supply both carbon and reduced nucleotides required for fatty acid biosynthesis but only a small portion of the ATP required  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号