首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Bell 《Biophysical journal》1985,48(2):349-353
The conductance of rabbit sarcoplasmic reticulum K+ channels incorporated into artificial bilayers of varying lipid composition was measured at different K+ and proton concentrations. Protons competitively inhibit the K+ conductance with a Ki of 0.5 microM. In negatively charged membranes, the conductance is well described by Gouy-Chapman-Stern theory modified to include the inhibitory effect of protons of the conductance and assuming that the channel mouth is isolated by 5-10 A from bilayer surface.  相似文献   

2.
The effects of local anesthetics (LAs), including aminoamides and aminoesters, on the characteristics of single gramicidin A (GA) channels in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers were studied. Aminoamides, namely lidocaine (LDC), prilocaine (PLC), mepivacaine (MPV), and bupivacaine (BPV), reduced the conductance of GA channels. Aminoesters influenced the current fluctuations induced by GA differently; procaine (PC) did not affect the fluctuations, whereas tetracaine (TTC) distinctly reduced the conductance of single GA channels. Using electrophysiological technique, we estimated the changes in the membrane boundary potential at the adsorption of LAs; LDC, PLC, MPV, BPV, and TTC substantially increased, while PC did not affect it. To elucidate which component of the membrane boundary potential, the surface or dipole potential, is responsible for the observed effects of LAs, we employed a fluorescence assay. We found that TTC led to a significant increase in the membrane dipole potential, whereas the adsorption of LDC, PLC, MPV, BPV, and PC did not produce any changes in the membrane dipole potential. We concluded that aminoamides affected the surface potential of lipid bilayers. Together, these data suggest that the effects of LAs on the conductance of single GA channels are caused by their influence on membrane electrostatic potentials; the regulation of GA pores by aminoamides is associated with the surface potential of membranes, whereas TTC modulation of channel properties is predominantly due to changes in dipole potential of lipid bilayers. These data might provide some significant implications for voltage-gated ion channels of cell membranes.  相似文献   

3.
In this communication we report the effects of general anesthetics on the mobility and order of spin labeled stearic acid derivatives in synaptic membranes and in bilayers formed from the lipids extracted therefrom. The anesthetics studied abolish the immobilization induced by synaptic membrane proteins on the membrane lipids : this effect, observed particularly in the bilayer core, is interpreted as a labilization of lipid-protein interactions induced by anesthetics.  相似文献   

4.
The partial molar volumes of anesthetics in lipid bilayers   总被引:1,自引:0,他引:1  
The excess volumes of mixing of benzyl alcohol, halothane, and methoxyflurane in water and in suspensions of several lipid bilayers have been determined at 25 degrees C using a novel excess volume dilatometer. The excess volumes of mixing in water were all found to be negative, whereas in lipid suspensions they were all more positive than those in water alone. From known partition coefficients the partial molar volumes of these three solutes in the lipid bilayers were calculated. These values were all close to the molar volumes of the pure anesthetics, as was a value determined for halothane in olive oil. Halothane was studied in dipalmitoylphosphatidylcholine below its phase transition, and was found to exhibit a much larger excess volume than in any other system we studied. The potency of these three anesthetics was determined in tadpoles. It was calculated that at equi-anesthetic doses these three agents caused an expansion in egg lecithin/cholesterol (2:1) bilayers of 0.21 +/- 0.015%. This result is consistent with the hypothesis that general anesthetics act by expanding membranes.  相似文献   

5.
The actions of alcohols and anesthetics on ion channels are poorly understood. Controversy continues about whether bilayer restructuring is relevant to the modulatory effects of these surface active agents (SAAs). Some voltage-gated K channels (Kv), but not KvAP, have putative low affinity alcohol-binding sites, and because KvAP structures have been determined in bilayers, KvAP could offer insights into the contribution of bilayer mechanics to SAA actions. We monitored KvAP unitary conductance and macroscopic activation and inactivation kinetics in PE:PG/decane bilayers with and without exposure to classic SAAs (short-chain 1-alkanols, cholesterol, and selected anesthetics: halothane, isoflurane, chloroform). At levels that did not measurably alter membrane specific capacitance, alkanols caused functional changes in KvAP behavior including lowered unitary conductance, modified kinetics, and shifted voltage dependence for activation. A simple explanation is that the site of SAA action on KvAP is its entire lateral interface with the PE:PG/decane bilayer, with SAA-induced changes in surface tension and bilayer packing order combining to modulate the shape and stability of various conformations. The KvAP structural adjustment to diverse bilayer pressure profiles has implications for understanding desirable and undesirable actions of SAA-like drugs and, broadly, predicts that channel gating, conductance and pharmacology may differ when membrane packing order differs, as in raft versus nonraft domains.  相似文献   

6.
The effect of palmitic acid (PA) and oleic acid (OA) on electrical parameters of planar membranes was studied. We found a substantial difference between the effects of PA and OA on proton transfer. PA induced a small increase in conductance, requiring a new technique for estimating proton-mediated currents across low-conductance planar bilayers in which an electrometer is used to measure the transmembrane current under virtual short circuit (SCC). Open-circuit voltage and SCC were used to determine proton and leak conductances. OA caused a marked increase in membrane conductance, allowing the use of a voltage-clamp technique. From SCC data, we were able to estimate the flip-flop rate constants for palmitate (1 x 10(-6) s(-1)) and oleate (49 x 10(-6) s(-1)) anions. Cholesterol, included in the membrane-forming solution, decreased importantly the leak conductance both in membranes unmodified by FA and in membranes modified by PA added to the bath.  相似文献   

7.
Fourier transform infrared spectroscopic studies are reported on gramicidin ion-channels in phospholipid bilayers and the effects on the spectra of the anesthetics and related compounds (methoxyflurane, halothane, chloroform, carbon tetrachloride, n-pentane and n-decane) have been determined. The addition of anesthetics containing the 'acidic hydrogen' caused unique changes particularly on the amide I bands at 1639 cm-1 and 1670 cm-1. The 1639 cm-1 band became more intense while the intensity near 1670 cm-1 decreased dramatically. These effects were not observed with carbon tetrachloride, n-pentane and n-decane. The 1670 cm-1 band is interpreted as arising from the carbonyls involved in the head-to-head hydrogen-bonded dimerization where the relationship between chains is analogous to that of the antiparallel beta-pleated sheet structure and the anesthetics with 'acidic hydrogens' are considered to disrupt the hydrogen-bonded dimerization by competitive hydrogen bonding to the carbonyls at the head-to-head junction. As the dimer-monomer equilibrium is the 'on-off' mechanism for gramicidin ion-channel conductance, the results are considered in terms of the mechanism of action of anesthetics and are taken to suggest, for certain anesthetics, a hydrogen-bonding role to protein ion-channel components.  相似文献   

8.
Dihydropyridine receptors were purified from rabbit skeletal muscle transverse tubule membranes and incorporated into planar lipid bilayers. Calcium channels from both the purified dihydropyridine receptor preparation and the intact transverse tubule membranes exhibited two sizes of unitary currents, corresponding to conductances of 7 +/- 1 pS and 16 +/- 3 pS in 80 mM BaCl2. Both conductance levels were selective for divalent cations over monovalent cations and anions. Cadmium, an inorganic calcium channel blocker, reduced the single channel conductance of calcium channels from the purified preparation. The organic calcium channel antagonist nifedipine reduced the probability of a single channel being open with little effect on the single channel conductance. The presence of two conductance levels in both the intact transverse tubule membranes and the purified dihydropyridine receptor preparation suggests that the calcium channel may have multiple conductance levels or that multiple types of calcium channels with closely related structures are present in transverse tubule membranes.  相似文献   

9.
Amide-type pipecoloxylidide local anesthetics, bupivacaine, and ropivacaine, show cardiotoxic effects with the potency depending on stereostructures. Cardiotoxic drugs not only bind to cardiomyocyte membrane channels to block them but also modify the physicochemical property of membrane lipid bilayers in which channels are embedded. The opposite configurations allow enantiomers to be discriminated by their enantiospecific interactions with another chiral molecule in membranes. We compared the interactions of local anesthetic stereoisomers with biomimetic membranes consisting of chiral lipid components, the differences of which might be indicative of the drug design for reducing cardiotoxicity. Fluorescent probe-labeled biomimetic membranes were prepared with cardiolipin and cholesterol of varying compositions and different phospholipids. Local anesthetics were reacted with the membrane preparations at a cardiotoxically relevant concentration of 200 μM. The potencies to interact with biomimetic membranes and change their fluidity were compared by measuring fluorescence polarization. All local anesthetics acted on lipid bilayers to increase membrane fluidity. Chiral cardiolipin was ineffective in discriminating S(-)-enantiomers from their antipodes. On the other hand, cholesterol produced the enantiospecific membrane interactions of bupivacaine and ropivacaine with increasing its composition in membranes. In 40 mol% and more cholesterol-containing membranes, the membrane-interacting potency was S(-)-bupivacaine相似文献   

10.
The aquaporin-1 (AQP1) water channel protein is known to facilitate the rapid movement of water across cell membranes, but a proposed secondary role as an ion channel is still unsettled. Here we describe a method to simultaneously measure water permeability and ion conductance of purified human AQP1 after reconstitution into planar lipid bilayers. Water permeability was determined by measuring Na(+) concentrations adjacent to the membrane. Comparisons with the known single channel water permeability of AQP1 indicate that the planar lipid bilayers contain from 10(6) to 10(7) water channels. Addition of cGMP induced ion conductance in planar bilayers containing AQP1, whereas cAMP was without effect. The number of water channels exceeded the number of active ion channels by approximately 1 million-fold, yet p-chloromethylbenzenesulfonate inhibited the water permeability but not ion conductance. Identical ion channel parameters were achieved with AQP1 purified from human red blood cells or AQP1 heterologously expressed in Saccharomyces cerevisae and affinity purified with either N- or C-terminal poly-histidine tags. Rp-8-Br-cGMP inhibited all of the observed conductance levels of the cation selective channel (2, 6, and 10 pS in 100 mm Na(+) or K(+)). Deletion of the putative cGMP binding motif at the C terminus by introduction of a stop codon at position 237 yielded a truncated AQP1 protein that was still permeated by water but not by ions. Our studies demonstrate a method for simultaneously measuring water permeability and ion conductance of AQP1 reconstituted into planar lipid bilayers. The ion conductance occurs (i) through a pathway distinct from the aqueous pathway, (ii) when stimulated directly by cGMP, and (iii) in only an exceedingly small fraction of AQP1 molecules.  相似文献   

11.
The interaction of calcium with gangliosides in bilayer membranes   总被引:1,自引:0,他引:1  
We studied the binding of calcium to bilayer membranes formed from mixtures of phosphatidylcholine and mono-, di-, or trisialoganglioside by measuring its effect on the electrophoretic mobility of multilamellar vesicles and the conductance of planar bilayers. In 0.001 M monovalent salt solutions the surface potential of the membranes is large and micromolar concentrations of calcium have a significant effect on the mobility and conductance. In 0.1 M monovalent salt solutions the surface potential is small and millimolar concentrations of calcium are required to affect these parameters. The strong apparent binding of calcium we observed at low ionic strength could be due to the nonspecific accumulation of calcium in the electrical diffuse double layer. To distinguish between this nonspecific effect and binding of calcium to the membrane, we substituted dimethonium for calcium. Dimethonium is a divalent cation that screens negative charges but does not bind to lipids. We also examined the effect of replacing phosphatidylcholine by monoolein: calcium binds to phosphatidylcholine but not to monoolein. We describe our electrophoretic mobility results by combining the Poisson-Boltzmann and Navier-Stokes equations with the Langmuir adsorption isotherm. We conclude that calcium binds weakly to gangliosides with an intrinsic association constant of less than 100 M-1, which is similar to the association constant of calcium with phospholipids.  相似文献   

12.
While bupivacaine is more cardiotoxic than other local anesthetics, the mechanistic background for different toxic effects remains unclear. Several cardiotoxic compounds act on lipid bilayers to change the physicochemical properties of membranes. We comparatively studied the interaction of local anesthetics with lipid membranous systems which might be related to their structure-selective cardiotoxicity. Amide local anesthetics (10–300 μM) were reacted with unilamellar vesicles which were prepared with different phospholipids and cholesterol of varying lipid compositions. They were compared on the potencies to modify membrane fluidity by measuring fluorescence polarization. Local anesthetics interacted with liposomal membranes to increase the fluidity. Increasing anionic phospholipids in membranes enhanced the membrane-fluidizing effects of local anesthetics with the potency being cardiolipin ? phosphatidic acid > phosphatidylglycerol > phosphatidylserine. Cardiolipin was most effective on bupivacaine, followed by ropivacaine. Local anesthetics interacted differently with biomimetic membranes consisting of 10 mol% cardiolipin, 50 mol% other phospholipids and 40 mol% cholesterol with the potency being bupivacaine ? ropivacaine > lidocaine > prilocaine, which agreed with the rank order of cardiotoxicity. Bupivacaine significantly fluidized 2.5–12.5 mol% cardiolipin-containing membranes at cardiotoxicologically relevant concentrations. Bupivacaine is considered to affect lipid bilayers by interacting electrostatically with negatively charged cardiolipin head groups and hydrophobically with phospholipid acyl chains. The structure-dependent interaction with lipid membranes containing cardiolipin, which is preferentially localized in cardiomyocyte mitochondrial membranes, may be a mechanistic clue to explain the structure-selective cardiotoxicity of local anesthetics.  相似文献   

13.
Summary Gramicidin-doped asymmetric bilayers made by the Montal-Mueller method exhibited an asymmetric current-voltage relationship. The asymmetric conductance was shown to be the product of two components, a rectifying single-channel conductance and an asymmetric voltage dependence of the reaction which leads to the conducting channel. The single-channel conductance was asymmetric in both asymmetric bilayers made of charged lipids and asymmetric bilayers made only of neutral lipids. The single-channel asymmetry decreased with increasing ion concentration. From the comparison of the singlechannel conductance in symmetric and asymmetric bilayers and the dependence of the asymmetry on the solution ion concentrations, it was concluded that (1) the rate of ion entry into the channel is dependent on the lipid composition of the membrane and is asymmetric in asymmetric bilayers; (2) the entry step is rate determining at low ion concentrations; and (3) at higher ion concentrations the rate-determining step is the translocation across the main barrier in the membrane; and this translocation appears insensitive to lipid asymmetry.  相似文献   

14.
Lysenin, a hemolytic protein derived from the body fluid of earthworm, was incorporated into artificial bilayer membranes. Upon insertion, it formed a voltage-dependent large conductance channel in asolectin bilayers in a sphingomyelin-dependent manner. The channel had low ion-selectivity. Single-channel conductance was calculated as approximately 550 pS in 100 mM KCl. The channel in asolectin bilayers closed when the membrane was held at a positive potential. In contrast, the channel showed no voltage dependency in membranes made of pure phosphatidylcholine and sphingomyelin, suggesting some lipid contents included in the asolectin membranes affected channel gating.  相似文献   

15.
The effects of dipole modifiers and their structural analogs on the single channel activity of amphotericin B in sterol-containing planar phosphocholine membranes are studied. It is shown that the addition of phloretin in solutions bathing membranes containing cholesterol or ergosterol decreases the conductance of single amphotericin B channels. Quercetin decreases the channel conductance in cholesterol-containing bilayers while it does not affect the channel conductance in ergosterol-containing membranes. It is demonstrated that the insertion of styryl dyes, such as RH 421, RH 237 or RH 160, in bilayers with either cholesterol or ergosterol leads to the increase of the current amplitude of amphotericin B pores. Introduction of 5α-androstan-3β-ol into a membrane-forming solution increases the amphotericin B channel conductance in a concentration-dependent manner. All the effects are likely to be attributed to the influence of the membrane dipole potential on the conductance of single amphotericin B channels. However, specific interactions of some dipole modifiers with polyene-sterol complexes might also contribute to the activity of single amphotericin B pores. It has been shown that the channel dwell time increases with increasing sterol concentration, and it is higher for cholesterol-containing membranes than for bilayers including ergosterol, 6-ketocholestanol, 7-ketocholestanol or 5α-androstan-3β-ol. These findings suggest that the processes of association/dissociation of channel forming molecules depend on the membrane fluidity.  相似文献   

16.
Lipid bilayer vesicles (liposomes) with and without glycoprotein incorporated into the membranes were tested for stability during freezing and thawing, in presence and absence of the cryoprotective agents (CPA) glycerol and dimethyl sulfoxide. Changes in turbidity and loss of energy transfer between fluorescent probes present in the bilayers were used to estimate membrane integrity.Freezing caused a 30 to 40% destruction of protein-free liposomes, in absence of CPA. CPA at 10 to 20% concentration prevented such losses, but at higher concentrations destabilized liposomes even without freezing. Protein-containing liposomes suffered no loss on freezing in absence or presence of CPA at moderate concentrations.Lowering of the storage temperature of frozen samples within the range of ?5 to ?27 °C increased the freeze damage. Slower rates of cooling and warming caused a slightly greater loss.The results are interpreted in terms of the liquid mosaic model for lipid bilayers. CPA at higher concentrations destabilize bilayers by dissolving phospholipids. At moderate concentrations, however, they prevent the damaging effect of dehydration of the lipid on freezing. Proteins appear to stabilize bilayers by providing increased hydration at the membrane surface, and by additional hydrophobic binding in the membrane interior.  相似文献   

17.
The effects of a nonionic surfactant, octaethyleneglycol mono n-dodecyl ether (C12E8), on the electroporation of planar bilayer lipid membranes made of the synthetic lipid 1-pamitoyl 2-oleoyl phosphatidylcholine (POPC), was studied. High-amplitude ( approximately 100-450 mV) rectangular voltage pulses were used to electroporate the bilayers, followed by a prolonged, low-amplitude ( approximately 65 mV) voltage clamp to monitor the ensuing changes in transmembrane conductance. The electroporation thresholds of the membranes were found for rectangular voltage pulses of given durations. The strength-duration relationship was determined over a range from 10 micros to 10 s. The addition of C12E8 at concentrations of 0.1, 1, and 10 microM to the bath surrounding the membranes decreased the electroporation threshold monotonically with concentration for all durations (p < 0.0001). The decrease from control values ranged from 10% to 40%, depending on surfactant concentration and pulse duration. For a 10-micros pulse, the transmembrane conductance 150 micros after electroporation (G150) increased monotonically with the surfactant concentration (p = 0.007 for 10 microM C12E8). These findings suggest that C12E8 incorporates into POPC bilayers, allowing electroporation at lower intensities and/or shorter durations, and demonstrate that surfactants can be used to manipulate the electroporation threshold of lipid bilayers.  相似文献   

18.
The conductance of the BK channel was evaluated in reconstituted bilayers made of POPE/POPS (3.3:1), or POPE/POPS with an added 20% of either SPM (3.3:1:1), CER (3.3:1:1), or CHL (3.3:1:1). The presence of SPM, which is known to increase bilayer thickness, significantly reduced the conductance of the BK channel. To directly test the role of membrane thickness, the conductance of the BK channel was measured in bilayers formed from PCs with acyl chains of increasing length (C14:1-C24:1), all in the absence of SPM. Slope conductance was maximal at a chain length of (C18:1) and much reduced for both thinner (C14:1) and thicker (C24:1) bilayers, indicating that membrane thickness alone can modify slope conductance. Further, in a simplified binary mixture of DOPE/SPM that forms a confined, phase-separated bilayer, the measured conductance of BK channels shows a clear bimodal distribution. In contrast, the addition of CER, which has an acyl chain structure similar to SPM but without its bulky polar head group to POPE/POPS, was without effect, as was the addition of CHL. The surface structure of membranes made from these same lipid mixtures was examined with AFM. Incorporation of both SPM and CER resulted in the formation of microdomains in POPE/POPS monolayers, but only SPM promoted a substantial increase in the amount of the high phase observed for the corresponding bilayers. The addition of CHL to POPE/POPS eliminated the phase separation observed in the POPE/POPS bilayer. The decrease in channel conductance observed with the incorporation of SPM into POPE/POPS membranes was, therefore, attributed to larger SPM-rich domains that appear thicker than the neighboring bilayer.  相似文献   

19.
Summary The interaction of furosemide with different phospholipids was investigated. Its influence on the lipid structure was inferred from its effect on the phase transition properties of lipids and on the conductance of planar bilayer membranes. The thermotropic properties of dipalmitoyl phosphatidylcholine, phosphatidylethanolamine (natural), dipalmitoyl phosphatidylethanolamine, brain sphingomyelin, brain cerebrosides and phosphatidylserine in the presence and absence of furosemide were investigated by differential scanning calorimetry,. The modifying effect of furosemide seems to be strongest on phosphatidylethanolamine (natural) and sphingomyelin bilayers. The propensity of furosemide to decrease the electrical resistance of planar lipid membranes was also studied and it is shown that the drug facilitates the transport of ions. Partition coefficients of furosemide between lipid bilayers and water were measured.Abbreviations DSC differential scanning calorimetry - PLM planar lipid membranes - DPPC dipalmitoyl phosphatidylcholine - DMPC dimyristoyl phosphatidylcholine - PE phosphatidyl ethanol  相似文献   

20.
alpha-Hemolysin (HlyA) is an extracellular protein toxin (117 kDa) secreted by Escherichia coli that targets the plasma membranes of eukaryotic cells. We studied the interaction of this toxin with membranes using planar phospholipid bilayers. For all lipid mixtures tested, addition of nanomolar concentrations of toxin resulted in an increase of membrane conductance and a decrease in membrane stability. HlyA decreased membrane lifetime up to three orders of magnitude in a voltage-dependent manner. Using a theory for lipidic pore formation, we analyzed these data to quantify how HlyA diminished the line tension of the membrane (i.e., the energy required to form the edge of a new pore). However, in contrast to the expectation that adding the positive curvature agent lysophosphatidylcholine would synergistically lower line tension, its addition significantly stabilized HlyA-treated membranes. HlyA also appeared to thicken bilayers to which it was added. We discuss these results in terms of models for proteolipidic pores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号